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Abstract
1. Connectivity is a fundamental concept linking dispersal to the emergent dynamics 

and persistence of spatially structured populations. Functional measures of 
connectivity typically seek to integrate aspects of landscape structure and 
animal movement to describe ecologically meaningful connectedness at the 
landscape and population scale.

2. Despite this focus on function, traditional measures of landscape connectivity 
assume it is a static property of the landscape, hence abstracting out the 
underlying spatiotemporal population dynamics. Connectivity is, arguably, 
a dynamic property of landscapes, and is inherently related to the spatial 
distribution of individuals and populations across the landscape. Static 
representations of connectivity potentially overlook this variation and therefore 
adopting a dynamic approach should offer improved insights about connectivity 
and associated ecological processes.

3. Using a large- scale, long- term time series of occupancy data from a 
metapopulation of water voles Arvicola amphibius, we tested competing 
hypotheses about how considering the dynamic nature of connectivity improves 
the ability of spatially explicit occupancy models to recover population dynamics. 
Iteratively relaxing standing assumptions of connectivity metrics, these models 
ranged from spatially and temporally fixed connectivity metrics that are widely 
applied, to the more flexible, but lesser used model that allowed temporally 
varying connectivity measures that incorporate spatiotemporally dynamic patch 
occupancy states.

4. Our results provide empirical evidence that demographic weighting using patch 
occupancy dynamics and temporal variability in connectivity measures are 
important for describing metapopulation dynamics.

5. We highlight the implications of commonly held assumption in connectivity 
modelling and demonstrate how they result in different and highly variable 
predictions of metapopulation capacity. Thus, we argue that the concept of 
connectivity and its potential applications would benefit from recognizing 

www.wileyonlinelibrary.com/journal/jane
mailto:
https://orcid.org/0000-0003-0458-3533
https://orcid.org/0000-0003-4643-2653
https://orcid.org/0000-0003-2073-1751
http://creativecommons.org/licenses/by/4.0/
mailto:drakej@vt.edu


    |  2051Journal of Animal EcologyDRAKE et al.

1  |  INTRODUC TION

Dispersal is a key, but complex, ecological process that impacts local 
population dynamics and, through resulting connectivity, shapes the 
emergent dynamics and ultimate persistence of spatially structured 
populations (Bowler & Benton, 2005; Clobert et al., 2009; Drake 
et al., 2021). Dispersal is generally defined as the movement between 
natal and breeding patches (Clobert et al., 2012; Matthysen, 2012), 
and connectivity is the aggregate strength of these linkages among 
habitat patches (Calabrese & Fagan, 2004). As such, connectivity 
represents the set of spatial dependencies that arise between in-
dividuals in a landscape (Kool et al., 2013) and offers a lens through 
which to view a suite of complex processes, which themselves are 
challenging to observe directly (Clobert et al., 2009).

Connectivity lies squarely at the centre of contemporary con-
servation science (Elliot et al., 2014), yet approaches to quantifying 
connectivity often lack the mechanistic basis required to make them 
informative of realized connectivity on the landscape. To date, con-
nectivity has generally been treated as a static feature of a system 
(Kool et al., 2013; but see Fernández et al., 2016) and there have 
been calls for a greater appreciation for dynamic nature of connec-
tivity (e.g. McIntyre et al., 2018) and a focus on long- term changes 
in habitat due to environmental change (Bishop- Taylor et al., 2018) 
or climate change (Drake et al., 2017; Ruiz et al., 2014). Indeed, 
modification of connectivity through short- term changes in habitat 
(Martensen et al., 2017) or loss of connections between patches 
(Perry & Lee, 2019) have been shown to have implications for meta-
population functioning. So, while a focus on the shifting landscape 
mosaic is important when considering potential connectivity, the 
contribution of dispersers and their spatial distribution may be 
equally or more important to consider; this has often been over-
looked even despite the implicit focus on movement vital for realized 
connectivity (Drake et al., 2021). This raises questions about the util-
ity of inferred connectivity, particularly for future projections, and 
especially for non- equilibrium populations (Johansson et al., 2013). 
Also, many approaches for quantifying connectivity typically ignore 
the underlying spatial distribution, and heterogeneity therein, of the 
dispersing individuals, thus assuming spatially and temporally homo-
geneous contribution to connectivity across studied systems (Zeller 
et al., 2020).

Spatially realistic metapopulation theory (Hanski, 1999; Hanski & 
Ovaskainen, 2003) is one framework in which the dynamic nature of 
connectivity is made explicit: connectivity is treated as a landscape 
aggregate of weighted patch contributions, where the weighting 

scheme relates directly to the occupancy state of a patch (i.e. are 
dispersers present?), the size of the population occupying the patch 
(i.e. how many potential dispersers are present?) and the dispersal 
behaviour (i.e. how far will dispersers travel and what controls dis-
persal?) all of which may change in space and time. Weighting con-
nectivity estimates on any number of ecological state variables or 
demographic data should be increasingly possible with the prolifera-
tion of species distribution models (Acevedo et al., 2017; Ovaskainen 
et al., 2016), occupancy models (MacKenzie et al., 2018) and abun-
dance models (Kery & Royle, 2016) that offer frameworks for spa-
tially explicit predictions of ecological state variables at landscape 
scales. Therefore, there is no reason weighting schemes applied 
in metapopulation models cannot be formally integrated into con-
nectivity research in general (Meyer et al., 2020; Morin et al., 2017; 
Sutherland et al., 2014). Metapopulations represent ideal systems 
in which to investigate the consequences of the restrictive assump-
tions of spatiotemporal invariance for inference about connectivity, 
a topic that has hitherto received little attention (Perry & Lee, 2019), 
despite its potential to fundamentally alter predictions about land-
scape connectivity.

Acknowledging that the definition of connectivity is tied closely 
to a specific scale, context and available data, the existence of a single 
unifying measure is unlikely. Instead, we strive to better understand 
how specific assumptions impact model outcomes and inference so 
they can be applied sensibly and judiciously. We address this through 
the analysis of data collected from a long- term, large- scale model 
mammalian metapopulation to evaluate how predictions of meta-
population dynamics and persistence are influenced by commonly 
held assumptions of connectivity. Bayesian analysis of stochastic 
patch occupancy models (SPOMs: Ovaskainen, 2002, Ovaskainen & 
Hanski, 2004), a flexible class of metapopulation models, lends itself 
naturally to the relaxation of the implicit assumptions often made 
in landscape ecology about spatiotemporal (in)variability of model 
parameters and patch occupancy states, and to formal comparison 
of model performance. We analyse a patch occupancy time series 
using a spatiotemporally homogeneous metapopulation model, that 
is, one that assumes all patches are occupied and that dispersal pa-
rameters are temporally invariant. We then iteratively relax the as-
sumptions of spatial and temporal invariance in connectivity; this is 
analogous to increased realism in how demographic contributions to 
connectivity are characterized. Relaxing these rigid spatiotemporal 
connectivity model assumptions should provide greater insight to 
sources of variation in the dispersal process which drive occupancy 
patterns and colonization– extinction processes. Our approach seeks 

inherent spatiotemporal variation in connectivity that is explicitly linked to 
underlying ecological state variables.

K E Y W O R D S
Bayesian, colonization– extinction, mammal, population dynamics, spatially realistic 
metapopulation model, SPOM, stochastic patch occupancy model, structural connectivity
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to quantify the relative contributions of spatial and temporal vari-
ability in demographic contributions to connectivity dynamics, and 
in doing so attempts to advance the ideas of demographic connec-
tivity. While we demonstrate this using a metapopulation ecological 
modelling framework, we believe the concept could be applied to 
ecological connectivity- related research in general.

2  |  MATERIAL S AND METHODS

2.1  |  Study system

We focus on a model mammalian metapopulation system in Assynt, 
northwest Scotland, UK. The species is the riparian specialist water 
vole Arvicola amphibius, and the patch network is a riparian network 
consisting of 98 vegetated patches embedded in an approximately 
140 km2 area. Around 10% of the total 860 km waterway network 
represents suitable habitat, patches are therefore highly fragmented 
(mean nearest neighbour distance of 0.5 km) and vary in size from 
50 m to nearly 3 km (mean = 0.847 km). The patches represent 
temporally stable habitat with very little variation observed over 
20 years and/or between periods of occupancy (Bryce et al., 2013). 
The intervening landscape is almost exclusively composed of unsuit-
able heather matrix through which water voles disperse overland 
and within the riparian network (Drake, 2021; Fisher et al., 2009; 
Telfer et al., 2003). Patches are connected by dispersal, they exhibit 
frequent turnover, and the metapopulation fluctuates around a long- 
term average of 55% occupancy, that is, the system functions as a 
classic metapopulation (Sutherland, 2013; Sutherland et al., 2012). 
Between 1999 and 2015, the water vole patches were surveyed 
between 1 and 4 times per year during the breeding season (July 
and August). Surveys involved faecal latrine searches as indicators 
of vole occupancy. The data are year-  and patch- specific binary 
detection histories representing imperfect observations of patch 
occupancy for a diffuse patch network that lends itself naturally 
to analysis using spatial occupancy models (see below). This study 
complied with all pertinent local and national legislation and regula-
tions for the duration of the study; no animals were handled for the 
data used in this study and ethical approval for this research was not 
needed. For further details on the study system and data collections, 
see Sutherland et al. (2012, 2013, 2014).

2.2  |  Spatial occupancy modelling framework

The 17- year 98- patch time series of detection/non- detection data 
was analysed using a Bayesian spatial occupancy model (Chandler 
et al., 2015; Risk et al., 2011; Sutherland et al., 2014). Here, the latent 
patch occupancy state, z, is treated as a partially observed Bernoulli 
random variable, with site (i) and year (t) specific occupancy prob-
ability � i,t. In the initial year, where no information about occupancy 
states or dynamics in the previous year are available, occupancy is 
modelled as:

where �1 is the expected proportion of occupied sites in the initial year 
(1999). In subsequent years (i.e. t > 1), occupancy states are modelled 
as:

where occupancy probability is a Markovian process that depends on 
the occupancy state in the previous year and conditional colonization 
(� i,t, if zi,t−1 = 0) and extinction (�i,t, if zi,t−1 = 1) probabilities:

Assuming that patch size and population size are correlated (Sutherland 
et al., 2014), the probability of extinction, �i,t, is modelled as a function 
of patch size, here the length of the riparian habitat patch, using a logit 
linear model:

where Ai is the time invariant length of a patch i and �0 and �1 are the 
regression parameters to be estimated.

Unoccupied sites are assumed to be (re)colonized with probabil-
ity � i,t, which is modelled as an asymptotically increasing function of 
connectivity (Si,t):

 The general formulation of the connectivity term, which we adapt 
below, is given by:

where � is the per capita effective dispersal rate parameter, Ai is the 
patch length and zi,t is the patch state which sets the contributions 
of empty patches to zero. The term exp

(
− �di,j

)
 is a spatial function 

that declines with inter- patch distance, di,j, the spatial scale of the de-
cline being determined by the scale parameter �. This function can be 
thought of as a dispersal kernel and is the spatial weighting that defines 
the distance- dependent contribution of a patch to the connectivity of 
all other patches.

To evaluate specific assumptions influence on estimates of model 
parameters, and the corresponding inference to connectivity, we 
define four alternative formulations of Equation 6. These formula-
tions are focused on two aspects of the model and data that broadly 
represent analogies of commonly made assumptions in connectivity 
modelling. The first relates to the structural connectivity paradigm 
that defines connectivity as a property of the landscape rather than 
the populations residing within them (Urban & Keitt, 2001), and the 
second relates the definition of ‘function’ in the functional connec-
tivity paradigm which seeks to introduce aspects of species move-
ment ecology (Adriaensen et al., 2003). This iterative relaxation 

(1)zi,1∼Bernoulli
(
�1

)
,

(2)zi,t ∼ Bernoulli
(
� i,t

)
,

(3)� i,t =
(
1 − zi,t−1

)
� i,t + zi,t−1

(
1 − �i,t−1

)
.

(4)logit
(
�i,t

)
= �0 + �1Ai ,

(5)� i,t = 1 − exp
(
− Si,t

)
,

(6)S∗
it
= �

∑
j≠i

Aizi,texp
(
− �di,j

)
,



    |  2053Journal of Animal EcologyDRAKE et al.

of connectivity modelling assumptions reflects increasing realism 
of connectivity estimated from occupancy data with focus on de-
mographic contributions and helps account for shifts in dispersers 
(Drake et al., 2021). We refer to these as unweighted with time- 
invariant dispersal (UI), demographically weighted with time- invariant 
dispersal (DI), unweighted with time- varying dispersal (UV) and demo-
graphically weighted with time- varying dispersal (DV). Full connectivity 
model formulations and descriptions are provided in Table 1.

We represent the structural assumption (models UI and UV) by 
setting all patches in the network to be occupied (zi,t = z = 1) which 
produces a measure of connectivity that is the aggregate of spatio-
temporally homogeneous contributions from every patch weighted 
by their size which is heterogeneous in space but temporally invari-
ant. We then relax that assumption by adopting the classical meta-
population formulation of the model where patch contributions are 
weighted also by the occupancy state, which is spatiotemporally 
dynamic (models DI and DV). We account for the functional assump-
tion through inclusion of the dispersal function that is also typically 
assumed to be temporally invariant (but see Andrew & Ustin, 2010). 
Here, contributions to connectivity are defined by the per- capita ef-
fective dispersal rate (�) and the scale parameter (�). By setting these 
parameters as �t = � and �t = �, respectively, we enforce temporal 
invariance (models UI & DI). We then relax that assumption (models 
UV and DV) to allow for dynamic dispersal estimates by modelling 
year specific dispersal parameters (i.e. �t and �t) as random deviates 
coming from a hyper distribution: �t = � + �t, where �t ∼Normal

(
0,σ2

θ

)
 

and � = {�,�}.
Finally, acknowledging that the data, yi,j,t, denoting whether la-

trines were detected during the jth visit to patch i in year t, arise via 
an imperfect observation process, we assume the data are condi-
tional on the estimated latent occupancy state z:

treating year- specific detection probabilities as random effects 
(Sutherland et al., 2014):

2.3  |  Model comparison

We use a Gibbs variable selection (GVS) approach (O'Hara & 
Sillanpaa, 2009; Tenan et al., 2014) to quantify support for compet-
ing model structures. In the GVS approach, the indicator variables 
represent variables that define specific model structures, and the 
mass of the posterior distribution of the indicator variables cor-
responds to support for hypothesized connectivity model formu-
lations. We introduce two latent indicator variables, Iz and ID that 
correspond to the weighting scheme (i.e. whether occupancy state 
weighting is included or not), and the random effect structure of the 
dispersal parameters, �t and �t, respectively. These enter the model 
as:

for the occupancy weighting, and as �t = � + �� ,t × ID and 
�t = � + ��,t × ID, which imposes temporal invariance on effective 
dispersal when ID = 0. For both binary indicator variables, we used a 
I ∼ Bernoulli(0.5) prior, assuming no prior information about support 
for either outcome, and hence posterior distributions that deviate 
from 0.5 suggest support or not for specific assumptions. This offers a 
means by which to assess statistical support for the four hypothesized 
forms of connectivity.

However, we were also interested in evaluating the ecological 
significance of connectivity assumptions and do so by calculating 
the metapopulation capacity (MC) under each of the models. MC 
incorporates measures of patch area, connectivity, spatial net-
work structure and dispersal behaviour to quantify the relative 
ability to support metapopulations in a spatially explicit metric 
(Hanski & Ovaskainen, 2000; Schnell et al., 2013). While gener-
ally used in analyses comparing scenarios of augmented networks, 
here, for a single network but with competing models, it can be 
instructive to evaluate how sensitive this important measure is to 
specific connectivity modelling assumptions. Therefore, by hold-
ing all other aspects of MC static, we can explore the impact of 

(7)yi,j,t ∣ zi,t ∼ Bernoulli
(
zi,tpt

)
,

(8)logit
(
pt
)
∼ Normal

(
�p , �p

)
,

(9)Sit =

⎧
⎪⎨⎪⎩

�
Ai×exp

�
−�dij

�
, if Iz=0�

Ai×zi×exp
�
−�dij

�
, if Iz=1

,

TA B L E  1  Alternative formulations of the standard metapopulation connectivity function. Connectivity (S) is modelled as a function of 
patch size (Ai), a proxy for population size and a distance- dependent spatial function e(−�di,j). The occupancy column relates to the structural 
assumpion about contributions to connectivity and the dispersal column relates to functional assumptions about the temporal nature of 
dispersal. The Gibbs variable selection (GVS) column is a summary of the model support based on the posterior distribution of the indicator 
variable used in the GVS

Definition Occupancy Dispersala Equation GVS

Unweighted with time- invariant dispersal (UI) zi,t ≡ 1 � and � SUI
i,t

= �
∑

j≠iAie
(−�di,j) 0.0011

Unweighted with time- varying dispersal (UV) zi,t ≡ 1 �t and �t SUV
i,t

= �t
∑

j≠iAie
(−�t di,j) 0.0078

Demographically weighted and time- invariant 
dispersal (DI)

zi,t � and � SDI
it

= �
∑

j≠iAie
(−�di,j)zi 0.1543

Demographically weighted and time- varying  
dispersal (DV)

zi,t �t and �t SDV
it

= �t
∑

j≠iAie
(−�t di,j)zi 0.8368

aFor models without temporally varying connectivity, the parameters � and � are static, whereas in models with temporally varying connectivity it is 
treated as a year- specific random effect where �t = � + �t, where �t ∼Normal

(
0,σ2

θ

)
 and � = {�,�}.
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competing estimates of dispersal parameters among our models 
to see the impact to MC and the implied long- term persistence of 
patch networks through time.

Each of the models were analysed using Markov chain Monte 
Carlo, fitted in R 3.6.1 (R Core Team, 2019) using the r package nim-
ble (de Valpine et al., 2017), with three chains of 100,000 iterations, 
50,000 discarded for burn- in. Model priors (see Appendix S1) were 
chosen to be non- informative (Gelman, 2006; Gelman et al., 2017). 
Prior sensitivity analysis, based on visual inspection of posteriors, 
suggested that inference was not sensitive to prior specification. 
Visual diagnostics of model chains as well as autocorrelation lag 
plots and r- hat values provided evidence of convergence (Plummer 
et al., 2006). Using parameter estimates from each connectiv-
ity model, we used the r package metacapa (Strimas- Mackey & 
Brodie, 2018a) to calculate metapopulation capacities using the 
joint posterior distribution of parameters from the metapopulation 
model; thus, we are able to report point estimates of MC with associ-
ated uncertainty. All visualizations were produced using the r pack-
age ggplot2 (Wickham, 2016). Parameter estimates are presented as 
posterior means, unless otherwise noted, with 95% credible inter-
vals (CI's).

3  |  RESULTS

We found substantial support for the demographically weighted 
with time- varying dispersal hypothesis (DV: pr

(
IZ + ID = 2

)
= 0.84, 

Table 1). Considering GVS- based support for each hypothesis was 
calculated separately, in relative terms, models containing demo-
graphic weighting carried slightly more combined model weight 
(pr(Iz = 1) = 0.99 and pr

(
ID = 1

)
= 0.85, Table 1). Also, support for 

uninformed and invariant model was negligible (UI: pr
(
IZ + ID = 0

)
 

< 0.01, Table 1). Thus, we provide evidence of dynamic connectivity 
in spatially structured populations and the importance of consider-
ing spatiotemporal weighting related to both the underlying state- 
variable and the strength and scale of connectivity.

The support for the inclusion of the occupancy weighting (mod-
els DI and DV) is compelling and intuitive: connectivity measured 
as a function of occupied patches (rather than all) better predicts 
occupancy dynamics as it includes information about the spatial dis-
tribution of potential dispersers. The support for temporal variability 
(models UV and DV) in the strength of connectivity is interesting 
(Figure 1) and deserves further discussion (see below). The disper-
sal kernel is defined by the scaling parameter, �, and the rate of ef-
fective dispersal, �. For the time invariant models UI and DI, α was 
0.461 [0.171– 0.881] and 0.446 [0.236– 0.0.738] for the unweighted 
and weighted models, respectively (Appendix S2). Estimates of the 
average � (i.e. the mean of the random effect distribution) for the 
models UV & DV which allowed temporal variability via a random 
effect were 0.518 [0.210– 1.04] and 0.588 [0.316– 1.084], for UV 
and DV, respectively. Year- specific estimates ranged from 0.463 
[0.113– 0.946] to 0.729 [0.212– 2.022] for UV and 0.513 [0.205– 
0.94] to 0.780 [0.289– 2.189] for the DV (Appendix S2). Thus, esti-
mates of the scale of dispersal are higher without weighting, and 
although average values are similar between temporally varying and 
invariant models, there exists substantial interannual variation. For 
�  , estimates from the static models were 0.096 [0.029– 0.229] and 
0.128 [0.056– 0.259] for UI and DI, respectively, compared to corre-
sponding random effects average estimates of 0.087 [0.027– 0.242] 
and 0.144 [0.054– 0.388] for the time- varying models UV and DV, 
respectively. Yearly estimate of � ranged from 0.058 [0.010– 0.190] 
to 0.313 [0.059– 0.924] for UV and 0.085 [0.014– 0.268] to 0.588 
[0.132– 1.915] for DV (Appendix S2). For dispersal rate, estimates are 
lower without weighting, and again, while average values are similar 

F I G U R E  1  The random effect variance relationship of raw parameter estimates representing our connectivity process from the 
demographically weighted, time- varying model (DV) to each other and estimated occupancy in the previous years. This represents the 
underlying raw parameter estimates variance around the mean of the random effect. Left column: The random effect variances, �t, for 
the rate of effective dispersal �t and dispersal scaling parameters �t. Middle column: Random effects variance of �t and previous years 
occupancy estimates, � t−1. Right column: Random effects variance of �t and previous years occupancy estimates, � t−1. Error bars represent 
50% credible interval (CI) for parameter values.
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between temporally varying and invariant models, there exists sub-
stantial interannual variation. In general, the inclusion of either de-
mographic weighting or temporally varying dispersal parameters 
(i.e. increased realism) produces shorter dispersal distances (1∕�) 
and higher per capita dispersal rates (�; Appendix S2).The tempo-
rally dynamic model parameters �t and �t, the width and height of 
the kernel, respectively, were negatively correlated (Figure 1a), and 
interestingly, the observed temporal variability in both �t and �t 
were not related to annual metapopulation size (number of occupied 
patches) in an obvious way (Figures 1b,c). Differences among patch 
occupancy estimates were negligible among models (Appendix S2).

To understand how estimates of connectivity model parameters 
translate to characterizations of landscape connectivity, we calculated 
2- year- specific measures of total connectivity for each of the four 
formulations. We used the model- specific connectivity functions and 
naïve occupancy values, for convenience and relative comparisons 
across models. First, we computed the landscape- level average colo-
nization probability (i.e. from Equation 5) which is the average coloni-
zation probability across each pixel of a raster defined as a rectangular 
polygon contained within a 2 km buffer around the patches in the 

network (Appendix S3). Second, we calculated a network- level average 
colonization probability which is the average colonization probability 
across each patch in the network. Average landscape- level coloniza-
tion was lowest for the dynamic models (DV = 0.187 [0.175– 0.201]; UV 
0.214 [0.201– 0.227], Figure 2a), while the static, unweighted model 
had the highest 17- year mean (UI = 0.240 [0.226– 0.253], Figure 2a). 
Comparing the range of annual values, however, changes this trend 
with the dynamic, weighted model having the largest range of annual 
colonization means (DV range = 0.067 [0.061– 0.074] to 0.464 [0.441– 
0.489], Figure 2a). However, inclusion of only a demographic weighting 
allowed a temporal realism to emerge, but with a smaller range of values 
(DI: 17 year mean = 0.218 [0.205– 0.231]; range = 0.125 [0.116– 0.134] 
to 0.301 [0.285– 0.317]). This is likely a result of underlying spatiotem-
porally heterogeneity in demographic covariate weighting influencing 
the static, weighted model results. Network- level colonization esti-
mates followed similar trends (see Appendix S3). In general, including 
demographic weighting, temporally varying dispersal kernels, or both 
(i.e. increased realism) induces heterogeneity in the realized functional 
landscape connectivity, while static and invariant measures estimate 
greater connectivity on average. We also conducted a Freeman– Tukey 

F I G U R E  2  Descriptions of local and landscape level processes may depend on the model of connectivity used and its underlying 
assumptions such as if they are demographically weighted and time- varying (DV), unweighted and time- varying (UV), demographically 
weighted and time- invariant (DI) or unweighted and time- invariant (UI). (2a) Annual measures of total colonization probability under each of 
the four connectivity parameterizations of the stochastic patch occupancy model (SPOM). The measures show the landscape- level summary 
of individual landscape pixel colonization probabilities. Points represent the average across all pixels. The vertical lines represent the 95% 
interval spanning the 0.025 and 0.975 quantiles of the empirical distribution of landscape colonization probabilities, product of the realized 
connectivity between patches (see Appendix S3). (2b) Annual metapopulation capacity (MC; Hanski & Ovaskainen, 2000) calculated using 
the joint posterior distribution of parameter estimates for each of the four connectivity parameterizations of the SPOM. Points represent 
the posterior means MC and vertical lines are the 95% Bayesian credible intervals (CIs). These CIs provide insight into the level of noise 
surrounding the point estimates of metapopulation capacities which are almost exclusively ignored in the literature.
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Goodness- of- Fit test (sensu Kery & Royle, 2021) which did not pro-
duce evidence of a lack of fit (Appendix S4).

MC, the measure of relative potential of a landscape to maintain 
persisting metapopulations, was lowest when connectivity was as-
sumed to be a fully dynamic property of the system regardless of 
the weighting structure used (Figure 2b). In contrast, the weighting 
scheme for the (less supported) temporally invariant models did af-
fect predictions of MC: assuming all patches are occupied results in 
a less precise estimates of MC when compared to estimates from the 
demographically weighted connectivity model (UI MC = 8.41 [4.16– 
25.78] and DI MC = 8.66 [5.18– 15.08], respectively). Estimated MC, 
for most supported model including demographic weighting with 
temporally varying dispersal, was less than the static- structural 
model (DV: mean capacity = 6.03, range = 4.84 [1.10– 13.14] to 7.58 
[3.95– 17.02]). For both dynamic models, MC was highest in 2006 
(Figure 2b), still lower than static metrics (Figure 2b).

Here we produce seldomly reported quantification of the uncer-
tainty associated with estimates of MC, and the first that we are 
aware of with full joint posterior distributions of model parameters. 
Interestingly, the homogeneous model that produces estimates of 
temporal averages of time- varying parameters and makes unrealistic 
assumptions about the distribution of potential dispersers has ex-
tremely large degree of uncertainty which may render them useless 
from an applied perspective (Figure 2b). Increases in biological real-
ism reduce uncertainty in resulting estimates of MC, although pre-
dictions appear more sensitive to the use of estimates from models 
that allow for temporal invariance than use realistic representations 
of the distribution of potential dispersers (Figure 2b).

4  |  DISCUSSION

We present an empirical evaluation of two widespread assumptions 
used in the generation of connectivity metrics. In an attempt to un-
derstand how characterizations of connectivity propagate through 
characterizing the dynamics of spatially structured populations, 
we advance discussions about the dynamic nature of connectivity. 
We show that spatiotemporal assumptions about effective disper-
sal rates and the underlying distributions of the potential pool of 
dispersers influence statistical estimation and ecological inference 
using spatially explicit SPOMs. We add empirical weight to the theo-
retical assertion that it is important to consider connectivity dynam-
ics as an inherent property of any spatially- structured landscape 
(Zeller et al., 2020). And critically, we highlight the fundamental, but 
often overlooked, role of demography as a major contributor to con-
nectivity dynamics (Drake et al., 2021).

Our four competing parameterizations of a SPOM represents 
statical analogies of commonly made assumptions in connectivity 
models. These included (a) assumptions about spatial structure 
of the system, specifically the inclusion or not of a demographic 
weighting scheme that explicitly conditions connectivity on the 
underlying patch occupancy states, and (b) temporal variation in 
contributions to connectivity, that is, in effective dispersal rates. 

We note also that the use of a Bayesian hierarchical model allows 
latent occupancy states to be estimated and thus included in the 
weighting while still accounting for imperfect detection (Royle & 
Kery, 2007). These amount to a test of two important components 
of the quantification of connectivity: refined representations of 
where dispersers are, and of the dispersal process itself, both of 
which are inherently dynamic in space and time. We present these 
results in the context of a classic metapopulation, that is, a highly 
structured patch network with high rates of dispersal- driven turn-
over, which is ideally suited to exploring the consequences of con-
nectivity assumptions. As such, our conclusions, which are likely 
to hold to various degrees depending on where the system lies 
on the discrete- continuous continuum, offer generalities that con-
tribute to a better understanding of the causes and consequences 
of dynamic connectivity.

An iterative relaxation of assumptions represents a transition of 
increasing biological realism; here we specifically focus on how de-
mographic contributions to connectivity are introduced. The degree 
of support for competing formulations of connectivity followed this 
realism gradient: the UI model (unweighted with time- invariant dis-
persal) receiving least support, and the DV model (demographically 
weighted with time- varying dispersal) overwhelmingly supported, 
with models that included a relaxation of either the structural (Dx 
vs. Ux) or functional (xV vs. xI) falling in between. In our case, rel-
ative support for the relaxation of specific assumptions suggests 
that demographic weighting was more important than allowing for 
temporally varying dispersal (Table 1). This outcome is notable as 
the assumptions being relaxed in this study represent those often 
violated, out of necessity or convenience, in many studies (Drake 
et al., 2021). In particular, and for example, water voles experience 
frequent turnover events, limiting the pool of dispersers and intro-
ducing false positives in structural measures. The relative impor-
tance of specific contributions to connectivity may be inconsistent 
across systems, wherein depending on landscape heterogeneity 
and dispersal behaviour, the relative importance of demographics 
may shift. We emphasize that this does not limit the generality of 
our approach: the framework we have presented is able to quantify 
the relative contributions of these two demographic components to 
connectivity dynamics.

Implicitly assuming homogeneous contributions to connec-
tivity across the landscape does not consider the inherent spatial 
variation in the distribution of dispersing individuals. In fact, this is 
akin to a false- positive observation process in occupancy models, 
the consequences of which have been described in detail recently 
(Miller et al., 2011; Royle & Link, 2006). False positives could lead 
to mis- estimation of dispersal or colonization ability, extinction 
rates and a reduction in patch turnover rates (Moilanen, 2002; 
Sutherland, 2013). For example, even relatively small rates of false 
positives, that is, designating empty sites as occupied, result in bi-
ased inferences about occupancy estimates (Royle & Link, 2006) 
and occupancy dynamics (Sutherland et al., 2013). Similarly, we find 
support for our demographically weighted connectivity models that 
account for such assumptions that create false positives (Table 1; 
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Figure 2). The degree to which this assumption will affect inference 
is linked to the dependency of spatial dynamics (e.g. occupancy) on 
dispersal, although we argue that such weighting is necessary in any 
dispersal dependent systems (Drake et al., 2021).

Connectivity metrics rarely consider temporal dynamics (but see 
Bishop- Taylor et al., 2018; Martensen et al., 2017; Ruiz et al., 2014; 
Hodgson et al., 2009). Our fully spatiotemporally dynamic formula-
tion of a connectivity model allowed for multiple sources of temporal 
variability, both in the underlying occupancy states and the effective 
dispersal parameters. What results is substantial variation in effec-
tive dispersal (Figure 1), which, in turn, results in variation in esti-
mates of both colonization potential (Figure 2a) and MC (Figure 2b). 
While individual variability can account for some variation in effec-
tive dispersal (Baguette et al., 2013), the spatiotemporal distribution 
of the disperser pool among habitat patches will likely contribute 
greatly to the observed variation in effective dispersal. Inclusion 
of such information into connectivity metrics will better describe 
observed colonization and occupancy, especially if those popula-
tion dynamics are thought to be influenced through demographic 
processes such as the rescue effect (Brown & Kodric- Brown, 1977), 
Allee effects (Amarasekare, 1998) or conspecific attraction (Morgan 
et al., 2019).

As well, environmental shifts (such as climate change) may in-
duce changes in dispersal probability or distances, but these shifts 
can play out at much different scales (often larger and longer) than 
demographic processes. Such long- term processes can influence 
the structural and functional connectivity between patch networks 
(Bishop- Taylor et al., 2018; Drake et al., 2017). In Assynt, there 
was very little (if any) spatiotemporal variation in the distribution 
of habitat or the interpatch matrix over the course of the study 
(Appendix S5). This apparent ‘controlling for’ the potentially con-
founding influence of spatiotemporal changes in the habitat quality 
allowed us to isolate the demographic contribution to connectiv-
ity. Effective connectivity, connectivity weighted by the effective 
disperser pool, will likely be driven at shorter scales through popu-
lations and by shifts in their dispersal. Local contributions to connec-
tivity, and local connectivity measures, are thus dependent on the 
location in time and space of conspecifics, as well as the patches they 
reside in. Furthermore, such explorations of demographically driven 
dynamic connectivity may require conclusions be made in context of 
defined temporal windows to account for non- equilibrium dynamics 
if equilibrium assumptions may not be made, particularly if spatio-
temporal landscape heterogeneity impacts effective dispersal.

Measuring connectivity is difficult, yet the metapopulation par-
adigm continues to show utility to progress understanding in this 
regard. Recent attempts to extend the metapopulation paradigm 
have integrated spatiotemporally variable patch suitability and 
among- patch distances, which performed better than static par-
allels (Bertassello et al., 2021). However, such landscape- oriented 
approaches can overlook the demographic or behavioural contribu-
tions to connectivity. Indeed, connectivity is an emergent property 
of demographic processes, for example, dispersal and the spatial 
distribution of dispersers, which are both spatially and temporally 

dynamic (Sutherland et al., 2012, 2014). Our model explicitly relaxed 
such assumptions to allow dispersal to be inferred from population 
dynamic processes, instead of predefining dispersal with discrete 
cut- off values. Such a priori definitions of connections among hab-
itat are often speculative and may misrepresent effective dispersal 
in the system leading to problematic interpretations of landscape 
connectivity (Prugh, 2009).

Intraspecific variation in dispersal proclivity and response to 
external cues also may alter predictions of landscape connectivity 
and thus be a driver of metapopulation dynamics (Jacob et al., 2019). 
Dispersal can respond to both external cues and internal phenotype- 
dependent factors (Le Galliard et al., 2012) and can vary across 
the range of a species (Alex Perkins et al., 2013) and over time 
(Andrew & Ustin, 2010). Such variation may occur through density- 
dependent dispersal, phenotypically plastic responses to shifts 
in individuals environment (Bowler & Benton, 2005), but may also 
emerge in phenotypically dependent dispersal syndromes which can 
shift spatiotemporally throughout a population (Clobert et al., 2009; 
Cote et al., 2017; Fobert et al., 2019). These data are hard to come 
by, but using the random- effects structure we adopted for the dis-
persal model, variability can be captured which can, even in the ab-
sence of knowing the mechanism, provide insight into the extent to 
which connectivity varies, and as such provide important measures 
of uncertainty that can inform landscape planning, conservation and 
management, and connectivity science.

MC, although a relative metric, can be sensitive to the scale 
of dispersal (Blazquez- Cabrera et al., 2014; Strimas- Mackey & 
Brodie, 2018b). Sensitivity analyses are important but uncommon 
when reporting the MC metric to understand a network's ability 
to support the metapopulation relative to dispersal capability. Also 
important, but rarely calculated, is the uncertainty around MC as a 
point estimate. Uncertainty around key parameters for MC, such as 
the dispersal rate and scale, propagate and therefore contribute to 
uncertainty in any derived metric, and MC is no exception. Using the 
full joint posterior distribution of model parameters, we compared 
metapopulation capacities of the same network under different as-
sumptions. This showed remarkable variation both in terms of point 
estimates and associated uncertainty, but demographic weighting 
resulted in smaller CI than unweighted counterparts for MC esti-
mates. While models incorporating heterogeneity through either 
demography or dynamism allow for temporal variation to emerge in 
MC metrics, the static- unweighted model predicted higher MC with 
extreme uncertainty (Figure 2b). This lack of variation should not 
be interpreted as an ‘averaged’ MC; our results suggest that such 
structurally derived models may consistently misgauge MC along-
side the high uncertainty: MC more than halved in some years when 
considering fully dynamic connectivity relative to static metrics. We 
stress the need to account for uncertainty in MC; even when ac-
counting for sources of dynamism, there is the potential for errone-
ous assessment of population persistence and network resilience. 
Temporal heterogeneity in dispersal matters (Matter et al., 2020) 
and may be masked by model assumptions or the time series anal-
ysed (Ovaskainen & Hanski, 2001; Schnell et al., 2013).
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SPOMs, a tool developed to address questions of dynam-
ics in systems assumed to be in long- term equilibrium or quasi- 
equilibrium (Hanski, 2004), have been criticized for their reliance 
on snap shot data that are either short term or small scale or 
both (Baguette, 2004). Dispersal estimates may not be accurate 
if estimated from short time series or small spatial scale (Nathan 
et al., 2012), potentially over-  or under- estimating dispersal rates 
depending on stochastic variations. Assuming connectivity is 
static also amounts to estimating long- term average effective dis-
persal rates (with the potential that it may not capture a realis-
tic average dispersal), overlooking potentially important temporal 
heterogeneity that can be informative of both demographic and 
landscape processes impacting population dynamics. This import-
ant year- to- year variation not only emerges in model parameters, 
but also in related system- wide properties (Figure 2); although 
such variation may not pose a problem to some conservation goals 
when connectivity or dispersal is not average in one direction, it 
may be devastating in the other. Thus, focusing on an assumed dis-
persal capability of a species or population, either via an assumed 
discrete cut- off distance, from a snapshot of data, or assumed in-
variant processes, may not be adequate. Each and all of these may 
mask short- term events that can significantly influence long- term 
connectivity trends.

Existing approaches to connectivity modelling have been de-
scribed as often being too naïve or conservative for management real-
ity (Diniz et al., 2020; Nathan et al., 2012). One example of this is the 
fact that spatiotemporal variation in spatially structured populations 
can be masked by restrictive model assumptions, precluding the dis-
covery of important underlying variation driving population processes. 
However, we also recognize that modelling is not the only constraint 
when approaching connectivity or metapopulation analyses. This spe-
cific analysis leveraged a long- term dataset of generally comprehen-
sive monitoring of the metapopulation. These data allowed us to fit 
increasing realistic and complex models. Resources to acquire or main-
tain such datasets are not always available, nor necessary to achieve a 
specific conservation goal. However, we agree with the general con-
sensus that to solve increasing complex ecological and conservation 
questions, long- term monitoring is an essential component (Drake 
et al., 2021; Lindenmayer & Likens, 2010; Stein et al., 2013).

Our aim here has been to increase awareness about the im-
plications of commonly used modelling decisions on conclusions 
drawn about a wide range of processes of interest in (meta)
population and landscape ecology (e.g. population synchrony, 
colonization– extinction dynamics, landscape connectivity). In 
particular, our results support the importance of considering de-
mographic processes as an accounted component of connectivity 
dynamics (Drake et al., 2021). Indeed, connectivity is dynamic, and 
we argue via empirical demonstration, that appropriate modelling 
decisions that link the dynamic process of animal behaviour to the 
underlying spatial structure of the landscape and the in- situ pop-
ulations are essential for accurate characterization and manage-
ment of connectivity.
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