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Abstract

Human voluntarymovement stems from the coordinated activations in space and time

of many musculoskeletal segments. However, the current methodological approaches

to study human movement are still limited to the evaluation of the synergies among a

few body elements. Network science can be a useful approach to describe movement

as a whole and to extract features that are relevant to understanding both its com-

plex physiology and the pathophysiology of movement disorders. Here, we propose

to represent human movement as a network (that we named the kinectome), where

nodes represent body points, and edges are defined as the correlations of the accel-

erations between each pair of them.We applied this framework to healthy individuals

and patients with Parkinson’s disease, observing that the patients’ kinectomes dis-

play less symmetrical patterns as compared to healthy controls. Furthermore, we used

the kinectomes to successfully identify both healthy and diseased subjects using short

gait recordings. Finally, we highlighted topological features that predict the individual

clinical impairment in patients. Our results define a novel approach to study human

movement.While deceptively simple, this approach is well-grounded, and represents a

powerful tool that may be applied to a wide spectrum of frameworks.
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INTRODUCTION

Movement is essential to human life and survival.1 As a conse-

quence, movement impairment significantly reduces quality of life

and individual autonomy. Thus, the study of the characteristics of the

voluntarymovement is of broad interest inmultiple frameworks. How-

ever, an appropriate description of human movement requires taking

into account multiple simultaneous interactions,2 stemming from the

coordinated activations of several musculoskeletal segments,3,4 and

resulting in complex patterns.5 Such patterns are fine-tuned, and also

small changes can lead to physiologically relevant effects.6 Therefore,

an accurate characterization of these patterns requires precise mea-

surements and appropriatemathematical methods, in order to capture

and describe their complex interactions.

To date, human movement kinematics, and notably gait kinematics,

has been approached focusing on specific body segments, or convey-

ing complex patterns into a few synthetic parameters.7–10 While this

approach is useful, it inevitably leads to loss of information, providing

a summary picture of human movement rather than a comprehensive

description of the complex patterns of interactions that generated it.

Yet, whole-body interactions are needed for a comprehensive account

of movement dynamics.11,12

Complex network theory is a methodological approach to integrate

into a unique explanatory framework, complex systems consisting of

a large number of interconnected elements.13 This approach allows

the description of the properties of the network and, ultimately, of its

functioning. The complex networks may be analyzed using a host of

mathematical techniques, such as graph theory, a branch ofmathemat-

ics dedicated to the studyof the topological properties of thenetworks.

Algebraically, graphs are represented as adjacency matrices, square

arrays of numberswherein rows and columns correspond to nodes and

individual entries give the connection between each node and all the

others.14 Network analysis, given its ability to capture the properties

of the network as a whole, but also to analyze the contribution of each

individual element to theorganization of the entire network, findswide

applications in a large number of disciplines (e.g., physics, sociology,

epidemiology, climatology, and neuroscience).15–18

As a consequence, network science may lend itself nicely to

describe the complex patterns generated by motor behaviors, and

extract features that are relevant to the pathophysiology of move-

ment disorders.19 Indeed, in the last decades, network science has

been extensively applied to characterize the aspects of neurologi-

cal disorders.13 Recently, the first applications of network analysis

to the study of human movement proved successful. Utilizing elec-

tromyography, Boonstra et al. analyzed the network of the leg muscles,

detecting the presence of lower and higher frequency components

related to between and within legs connectivity, respectively.20 The

authors suggested that network analysis may be suitable to study

the motor system also in a clinical setting. In another study, Kerk-

man et al. investigated a combined musculoskeletal network struc-

ture. They examined the different frequency-specific muscle networks

during postural control.21 The study showed that the examined net-

works presented frequency-specific relationships with the synaptic

input tomotor neurons.

Despite these first efforts, to date a comprehensive network

description of the kinematics of movement is still lacking. To overcome

this deficiency, borrowing concepts from network science, we set out

to represent certain anatomical points as nodes, and their coaccelera-

tions throughout gait as edges, thereby defining the network of human

movement. With this approach, we aimed at identifying the large-scale

characteristics of the human gait. Hence, we considered the whole

body as an integrated and synergistic system, whose individual mus-

culoskeletal segments are in a constant and reciprocal biomechanical

relationship constrained by the individual anatomical characteristics.

To this end, we utilized a three-dimensional motion analysis

stereophotogrammetric system, which is the gold standard for quanti-

tative analysis ofmovement,22 and iswidely applied for the assessment

of motor skills in health and disease.23–27 Specifically, we captured

the position of reflective markers applied on specific bone reference

points during gait. Each bone marker was considered as a node, and

the edges linking the nodes were defined by the covariance of the

acceleration and jerk (i.e., the first derivative of acceleration with

respect to time) between each pair of bone markers. We named the

resulting network the human kinectome. We focused on acceleration

and its derivative (i.e., jerk) for our analysis since those kinematic mea-

sures are mainly associated with smoothness of gait and quality of

movement control.28,29 Indeed, through acceleration and its tuning,we

are able to properly control speed.

Then, we characterized the human kinectome in a cohort of healthy

subjects (HS). Furthermore, in order to explore the clinical relevance

of our framework, we compared the kinectomes of individuals affected

by Parkinson’s disease (PD), a neurodegenerative disorder which dis-

rupts the motor patterns of the patient,30 to those of matched healthy

controls (HC). Kinematics in PD patients has been widely investigated,

with several studies focusing ondifferent aspects ofmotor impairment,

including variability, asymmetry, smoothness, and stability of gait.31,32

Hence, PD kinematics emerges as a natural scope for the proposed

approach. We hypothesized that PD patients would be less capable of

maintaining an optimal motor strategy, as opposed to HC. According

to this hypothesis, we first explored the structure of the kinectomes,

expecting a dysregulated (i.e., more variable) organization in patients

with respect to controls. Then, to test the reliability of the kinectome,

we performed an identifiability analysis,33 identifying subjects based

on their kinectomes, similarly to amotion fingerprint. This idea is in anal-

ogy to recent evidence showing that dysregulated activity wouldmake

brain network identifiability harder in patients as compared to healthy

people.34 Finally, we hypothesized that our technique was able to cap-

ture clinically relevant features. To test this hypothesis, we extracted

the nodal topological features of the kinectomes of the PD patients,

and used them to predict the level of clinical impairment, as measured

by the Unified Parkinson’s Disease Rating Scale part III (UPDRS).35
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MATERIALS AND METHODS

Participants

Sixty HS, including 38 males and 22 females, were recruited (mean

age 58.7 ± 12.7 years). Exclusion criteria were the following:

(1)Mini-Mental State Examination<24;36 (2) Frontal Assessment Bat-

tery<12;37 (3) Beck Depression Inventory II>13;38 neurological or

psychiatric disorders; (4) intake of psychoactive drugs; and (5) physical

or medical conditions causingmotor impairment.

To test the validity of our methods in a clinical setting, we used

the data of 23 patients (mean age 65.3 ±11.6) affected by PD and

23 HC, matched for age, sex, and education. The subjects included in

this study are partially overlapping with those included in a previous

study.39 Parkinsonians were tested in off-medicament state. Inclusion

criteria were: (1) Hoehn and Yahr score≤3 while off-medicament;40

(2) disease duration<10 years; and (3) antiparkinsonian treatment

at a stable dosage. All participants signed an informed consent in

accordance with the declaration of Helsinki. The study was approved

by the “Azienda Ospedaliera di Rilievo Nazionale A. Cardarelli’” Ethic

Committee (protocol number: 00019628).

Stereophotogrammetric acquisition

The acquisitions were carried out in theMotion Analysis Laboratory of

the University of Naples Parthenope. Gait datawere recorded through

a stereophotogrammetric system for motion analysis composed of

eight infrared cameras (ProReflex Unit—Qualisys Inc., Gothenburg,

Sweden), capturing (at 120 frame per second) the light reflected by 21

passive markers positioned on the naked skin of the participants. The

markers were placed in correspondence of bone landmarks, based on

a modified version of the Davis protocol.41 We asked the participants

to walk in a straight path choosing their preferred walking speed. For

each participant, two gait acquisitions were performed, each of which

included one complete left and right gait cycle. A complete gait cycle

is defined as starting with the heel touching the ground, and finishing

with the next contact with the ground of the same heel. Through the

Qualisys Track Manager software, we obtained the three-dimensional

position of each bonemarker during the gait cycle. Hence,we could cal-

culate the time series for acceleration and jerk (the first derivative of

acceleration with respect to time) of each bonemarker.

Introducing the kinectome

Wecomputed the Pearson’s correlation coefficients between each pair

of the time series representing thebonemarkers (see also Figure1A,B),

and defined the kinectome as the covariance matrix, which conveys

whole-body interactions in a pairwise fashion. Hence, using 21 mark-

ers as nodes, we obtained a symmetric matrix containing 420 edges

(excluding the main diagonal elements which represent the correla-

tion of a node with itself). Only 210 edges (since the kinectome is

symmetric) were used in the subsequent analyses.

Time series from acceleration and jerk of the 21 markers along the

three axes of movement (i.e., mediolateral, anteroposterior, and ver-

tical) were used to build six kinectomes for each subject (2 kinematic

units × 3 axes of movement). First, we explored the kinectomes het-

erogeneity within and between groups (PD patients and controls), by

comparing mean and standard deviations of the kinectomes. On the

one hand, the analysis of the mean allows to understand the level of

motor synchronization, and may help to understand whether a clin-

ical condition is able to alter it. On the other hand, the analysis of

the standard deviation allows to assess the variability of the motor

patterns within a group, which in turn highlights anatomical elements

affected by the disease. After those preliminary investigations,we then

characterized the kinectomesutilizing a graph-theoretical approach, as

detailed in the next sections, and shown in the flowchart (Figure 2).

Modularity analysis

Modularity measures the strength of division of a network into mod-

ules or communities. We assessed the community structure (i.e.,

partition) of each group-averaged kinectome (anteroposterior, medi-

olateral, and vertical, separately), in both healthy and PD patients, by

using the Louvain (with consensus clustering across 100 iterations)

method for identifying communities in large networks (Figure 1C).42,43

This is a method that detects communities by optimizing the modular-

ity (Q) of the graph, defined as:

Q =
1
2m

∑
ij

(
Aij −

kikj
2m

)
δ
(
ci, cj

)
,

wherem is the sum of weights of all the edges in the network, Aij is the

weight of the edge between i and j, ki and kj are the sum of the weights

of the edges connected to nodes i and j, respectively, and δ(ci, cj) is the

Kronecker delta between community ci and cj.42

With this approach, we were able to determine which body ele-

ments were recognized as belonging to the same group, based on their

acceleration and jerk motor patterns, creating an allegiance matrix.44

The aim was to identify, in a data-driven fashion, functional dynami-

cal clusters within healthy and diseased kinectomes during gait. The

modularity analysis allows to divide the body into sets of anatomical

elements working together toward a motor task. While symmetrical

organization of these groups is expected in health, individuals with

PD might show altered distributions, highlighting which are the most

affected anatomical elements.

Fingerprint analysis

Can we identify individuals based solely on their motion patterns, that

is, their kinectomes? To address this question, we took inspiration

from previous studies on fingerprint in human functional brain con-

nectomes extracted from functional magnetic resonance imaging and

magnetoencephalography data.33,34 In a recent work,33 the authors

defined a mathematical object known as identifiability matrix (IM),
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F IGURE 1 Scheme of kinectome analysis. (A)Marker positions of the bone landmarks. Acceleration and jerk time series are computed based
on the positions of themarkers during the gait cycle, as recorded by a stereophotogrammetric system. (B) Kinectome: the covariancematrix is
computed correlating each pair of the bonemarkers acceleration or jerk time series; different kinectomes were built, based on themediolateral
and anteroposterior axis, and separately taking into account the accelerations and the jerks. (C) Functional networkmodularity was investigated
using the Louvain method, an algorithm customarily employed for community detection. (D) Schematic illustration of the fingerprint analysis. Two
kinectomes (named test and retest) have been computed for each subject. The identifiability matrix is obtained by correlating the test and retest
kinectomes of each subject. Themain diagonal displays self-identifiability. (E) Graphical representation of the bonemarkers network used for the
topological analysis. Note that the bonemarkers positioned on the back of the body are not visible.

which encodes the information about the self-similarity (I-self, main

diagonal elements) of each subjectwith herself/himself, comparing two

recording sessions, and the similarityof each subjectwith theothers. To

build an IMbased on the kinectomes, we first considered two gait cycle

registrations for each individual, called “test” and “retest,” respectively.

We then obtained the IM through Pearson’s correlation between the

test and the retest of our subjects (Figure 1D). Themain diagonal of this

matrix contains the similarity between two separate acquisitions of the

same subject (self-similarity or I-self); the off-diagonal elements con-

tain the similarity between different subjects (I-others). Furthermore,

the difference between I-self and I-others, also known as differential

identifiability (I-diff), provides a robust score of the overall fingerprint-

ing assessment of a dataset. Finally, we estimated the identification

rate (IR) as the percentage of times a subject was identified when

compared to different subjects, as:

IR =

∑N
n=1(Iselfn > Iothersn)

N
,

whereN is the sample size of the group, Iselfn is the similarity between

two connectomes of the same individual, and Iothersn is an array of

elements representing the similarity between an individual with every

other individual of the same group.

The fingerprint analysis assesses the uniqueness of the individ-

ual movement patterns. Moreover, if applied within a longitudinal

framework, our approachmight show individual changes over time.
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F IGURE 2 Schematic description of the network analysis. The flowchart describes themethodological approaches applied to the kinectomes.
Threemain network frameworks were explored: modularity,42 fingerprint,33,45 and topology.46 For each of them, themethodological approach
and the aim of the analysis have been highlighted.

Edge-based identification

We repeated the IR analysis on subsets of edges, based on their

contribution to fingerprinting. To obtain this information, similarly to

Sorrentino et al.,34 we used the intraclass correlation (ICC):45

r =
MSA −MSW

MSA + (k − 1) ∗ MSW
,

where MSA is the among-clusters mean square, MSW is the within-

clusters mean square, and k represents the number of observations.45

It is an approach that assesses how stable an edge value is across

test-retest kinectomes. The higher the stability of an edge between the

two kinectomes, the higher the contribution to identifiability. We per-

formed this analysis inPDandHCgroups separately, obtaining two ICC

matrices. Based on this information, we calculated the IR of the two

groups at each step utilizing an iterative model in which we added the

edges in descending ICC order from the most to the least contributing

to the identifiability. We started with the three edges and kept adding

one edge at each iteration, up to including the complete kinectome.We

obtained a curve displaying the IR of each group each time an edgewas

added to the analysis. To confirm the validity of the chosen ordering,

for each curve of IR based on ICC ordered edges, we built 100 null

curves obtained by calculating the IR based on randomly selected

edges. To highlight the nodes that significantly contribute to subject

identifiability, we checked howmany edges were needed to exceed the

99% IR, and considered those edges as of interest. Then, we checked

the distribution of the occurrences of the nodes over which the edges

of interest hinge. Nodes whose occurrences exceeded chance level

(confidence interval set to 99%) were considered significant and were

considered for further investigation. This approach highlights which

elements of themotor patterns are specific to the single subject (hence

allowing identification). When applied to diseased motor patterns,

this analysis may point to anatomical/functional elements of clinical

interest.

Topological feature for the motor impairment
prediction

Weconceptualized the body as a network, where body parts are nodes

and their correlations form the edges, thereby obtaining one weighted

undirected graph per subject (Figure 1E). For each node of a graph, we

estimated the weighted degree (s), a centrality parameter,13,46 defined

as the sum of the absolute value of the edgeweights for each node:47

si =

i ≠ j
N∑
j=1

wij,

where i and j are two nodes of the network, w is the edge connecting

them, andN is the number of nodes.

The degree of the nodes of interest was used to predict clinical

impairment in patients. To this aim, we built a multilinear regres-

sion model to predict the UPDRS scores from the degree of the

nodes of interest.48 We added further predictors to the analysis

to account for the effect of age, education, and gender. Multi-

collinearity was assessed through the variance inflation factor.49,50

Furthermore, we improved the robustness of our approach using the

k-fold cross-validation,with k=5.51 In particular, k iterationswere per-

formed and at each iteration, the kth subgroup was used as a test set.

Topological analysis elucidates the role of a single elementwith respect

to thewhole body. If a node presents an altered degree (with respect to

healthy individuals), then that anatomical elementmay be of particular

interest to understand how the disease affects themotor patterns.



252 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 3 From bones to kinectomes. (A) Illustration of the bonemarkers position on the kinectome. Each kinematic information derived from
each bonemarker is used as entry data for both rows and columns. The edges of the kinectome stem from the pairwise interaction between bone
markers. (B) Acceleration and jerk kinectomes averaged among healthy subjects (HS) in themediolateral (ML) and the anteroposterior (AP) axes.
The interactions between body elements vary according to both the specific axis andmeasurement (acceleration or jerk).

Statistics

Statistical and data analysis were carried out in MATLAB 2020a.

Significance of the between groups (PD and HC) differences in the

kinectomes standard deviation, fingerprint values (I-self, I-other, and

I-diff), and topological parameter (degree) were assessed through per-

mutation testing, by randomly shuffling group labels 10,000 times. At

each permutation, the absolute value of the difference was computed,

obtaining a distribution of the differences that are to be expected

by chance alone.52 This distribution was compared to the observed

differences to retrieve a statistical significance. Correlation analy-

sis between nodal degree and motor scores was performed through

the Spearman correlation test. The significance threshold was set at

p< 0.05, andwas Bonferroni corrected in each analysis.

RESULTS

Group-specific characteristics of the kinectomes

We started from a group-level analysis comparing the average kinec-

tomes of HS and those of PD patients that were recorded during gait.

Specifically, after building the subject-specific kinectomes (Figure 3A),

we averaged themwithin each group, obtaining the group-specific (i.e.,

HS, HC, and PD) kinectomes. Then, using permutation analysis, we

compared the average values of the kinectomes in HC and PD patients

(Figure 3B). However, neither acceleration nor jerk kinectomes high-

lighted any significant difference between the two groups in any axes

of movement. That is, the acceleration and jerk patterns of the two

groups were similar to each other. Note that Figure 3B only shows the

mediolateral and anteroposterior kinectomes of the HS group. The full

set of kinectomes of each group is shown in Supplementary Materials

(Figures S1 and S2).

Next, we checked the kinectomes’ within-group variability, by

observing the standard deviation of the kinectomes across HS, HC,

and PD patients (Figure 4). Notably, the variability in the whole-body

movement patterns between the two groups (HC and PD) showed

significantly higher standard deviation among PD patients in the

anteroposterior acceleration (p=0.0002, Bonferroni cutoff p<0.0083

over six comparisons, i.e.,ML/AP/V jerk and acceleration comparisons),

when compared to the HC group (Figure 4). This suggests augmented

variability in whole-body movement patterns for the PD population,

which might be due to suboptimal motor control. No significant differ-

ences have been found in mediolateral and vertical axes. The full set of

standard deviation kinectomes of the three groups (HS, HC, and PD) is

shown in SupplementaryMaterials (Figures S3 and S4).
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F IGURE 4 Within group variability of the kinectomes. Standard
deviations of the anteroposterior acceleration kinectomes of healthy
controls (HC) and Parkinson’s patients (PD). Higher values (i.e., yellow
entries in thematrices) indicate greater heterogeneity (i.e., higher
standard deviation).

Modularity analysis

We then set out to provide a principled description of the kinectomes’

topological structure, by investigating the emergingmodular structure

of the kinectomes. To this end, we computed the allegiancematrices,44

which contain the probability of any two bonemarkers being clustered

in the same community across individuals. Thismeans that twoormore

bone markers belonging to the same cluster refer to body parts which

are likely to coordinate themselves toward the same motor pattern,

for each specific group. Figure 5 shows that the HS and HC groups

share the same communities, while the PD group features a different

clustering pattern. Specifically, in the healthy groups, theML allegiance

matrix showed three communities: (1) upper trunk and arms; (2) head,

forearms, and pelvis; and (3) legs and feet. In the PD group, the same

matrix showed four different communities: (1) upper trunk and right

upper arm; (2) head, left upper arm, forearms, and pelvis (upper por-

tion); (3) legs and feet; and (4) pelvis (lower portion). The AP allegiance

matrix in the healthy groups highlighted three communities: (1) head,

upper trunk, and pelvis; (2) left leg and foot, and right upper arm, and

forearm; and (3) right leg and foot, and left upper arm and forearm. In

the PD group, the same matrix identified four communities: (1) head

and upper trunk (upper portion); (2) left leg and foot, and right upper

arm; (3) upper trunk (lower portion), pelvis and right forearm; and (4)

right leg and left upper arm and forearm. Finally, the modularity anal-

ysis concerning the vertical axis is shown in Supplementary Materials

(Figure S5). In this case, the healthy groups presented the following

communities: (1) head, trunk, pelvis, and legs; (2) arms; and (3) feet. The

PD patients presented the same clusters with a slight difference that

sees the left side of the pelvis being included in the “arms” community.

This approach unraveled the kinematic structure of gait in the

healthy, and its alterations in disease. It is noteworthy that the algo-

rithm calculating the communities split the body parts symmetrically

in healthy individuals, while the same result was not achieved for the

PD patients, which might be due to the typically asymmetrical motor

impairments occurring in PD, which is even a diagnostic criterion.

Fingerprint of human movement

Based on these results, we wondered whether it was possible to iden-

tify each individual based on their motion patterns. To answer this

question, we tried to identify individuals through their kinectomes,

obtained from different gait sessions recorded the same day. To this

aim,we started by building an IMbased on the kinectomes.33 In the IM,

the rows refer to the kinectomes from the first recording session (test

kinectomes in Figure 1D), and the entries on the columns refer to the

kinectomes from the second recording session (retest kinectomes in

Figure 1D). The entries of the IM are Pearson’s correlation coefficients

between the kinectomes derived from the first and the second record-

ing sessions. Briefly, from the IM, we calculated three parameters: the

I-self (self-similarity, across the two recordings of the same individual),

the I-others (similaritywith other individualswithin the group), and the

I-diff (differential identifiability), obtained subtracting the I-other from

the I-self. The I-diff expresses how much an individual is recognizable

with respect to the other individuals. Figure 6 displays the acceleration

and jerk IM for bothML and AP axes, in PD andHC groups, while infor-

mationon theHSgroupand the vertical axis is shown in Supplementary

Materials (Figures S6 and S7). AP andML jerk were the best quantities

for gait identifiability (highest I-diff values), and this result applies to

both groups (I-diff > 37.5%). Beyond the I-diff, the identifiability rate

(IR – the percentage of times the I-self of an individual is higher than

any I-others, i.e., the two kinectomes belonging to the same individual

are most similar to each other as compared to the kinectomes belong-

ing to any other participant) is higher than 95% for each parameter

in each direction of movement. Strikingly, this approach allowed sub-

ject recognition fromgait relying on approximately 2-s long recordings.

Hence, our approach nearly always correctly identifies the individuals,

regardless of them being HS or patients. For further validation, the IM

was computed in the HS group, where it confirmed the optimal per-

formances showed in the HC group (Figure S6). Hence, expanding the

sample (from 23 to 60 subjects) did not affect the performance of the

fingerprinting approach.

Comparing PD and HC groups (permutation test, Bonferroni cut-

off p < 0.0028 over 18 comparisons, i.e., I-self, I-others, and I-diff in

AP/ML/V jerk/acceleration kinectomes), no differencewas found in the

I-self parameter, nor in any analysis comparison involving the vertical

axis. However, with respect to the I-diff scores, the PD group showed

higher values compared to the HC group in AP acceleration axis (p <

0.0001) (Figure 7). This effect is mainly driven by the difference in the

I-others scores. In fact, the PD group showed lower I-others scores

as compared to HC patients in AP acceleration (p < 0.0001), ML jerk

(p < 0.0001), and AP jerk (p < 0.0001) (Figure 7). This implies

that the PD patients have more heterogeneous motor patterns with

respect to the HC groups; hence, their kinectomes differ more with

respect to each other. Nonetheless, both groups expressed similar IRs,

which were above 95%. This result highlighted that an almost perfect

identification is possible for both PD patients and controls.
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F IGURE 5 Kinematic modular organization of the kinectomes. Allegiancematrices for cluster analysis, based on the Louvainmethod and
consensus-clustered through 100 iterations. The algorithm automatically defines which body parts belong to the same community, suggesting a
functional relationship among those elements. Eachmatrix includes clustering information from both accelerations and jerks. Healthy subjects
(HS) and healthy controls (HC) share the same communities in bothmediolateral (ML) and anteroposterior (AP) axes. Parkinson’s disease (PD)
patients’ matrices show different structural organizations. Body parts depicted with the same color belong to the same functional community.

F IGURE 6 Motion fingerprinting: identifiability based on kinectomes. Identifiability matrices of healthy controls (HC) and Parkinson’s disease
(PD) patients, based on jerk and acceleration kinectomes inmediolateral (ML) and anteroposterior (AP) axes. The highest values within themain
diagonal (I-self) convey great self-similarity. Off diagonal elements (I-others) are representative of the similarity between different subjects.
IR, identification rate; I-diff is the differential identifiability scores of the dataset and is defined as I-self–I-others.



ANNALSOF THENEWYORKACADEMYOF SCIENCES 255

F IGURE 7 Identifiability comparison between healthy controls and patients. Box plot for the comparison of I-diff and I-others between
healthy controls (HC) and patients with Parkinson’s disease (PD). High I-diff values imply that individuals aremore similar to themselves than they
are to the other subjects of the same group. High I-others values indicate high within-group similarity among the subjects of a group. The box
represents data from the 25th to the 75th percentiles; the horizontal line shows themedian; error lines indicate the 10th and 90th percentiles, and
values falling beyond them are represented by colored dots. *, represents significant Bonferroni-corrected p-values.

F IGURE 8 Edge-based identification rate. Identification rate (IR) for healthy controls (HC) and patients with Parkinson’s disease (PD)
kinectomes, for acceleration and jerk parameters in mediolateral (ML) and anteroposterior (AP) axes. The IR is computed in an iterative fashion:
starting from three edges, at each iteration, one edge is added and the IR is computed. The edges were included following an order based on their
contribution to the identifiability (from themost to the least contributing), as measured by the intraclass correlation analysis. The HC group
exceeded the 99% identification threshold with a smaller number of edges (roughly 12), as compared to the PD patients (about 30).

Edges contribution to subjects’ identification

We wondered if the loss of coordination observed in PD is a general-

ized phenomenon or, rather, affects the interactions of specific body

segments. In the latter case, the different IR between the PD and HC

groups should be due to a subset of specific edges. To test this, we

calculated the IR iteratively, using each time a different number of

edges (from 3 to 210) ordered from the highest to the lowest ICC rank.

Based on this, we built an IR curve describing the identification rate as a

function of the number of added edges, as described. The analysis was

performed in each group (PD andHC) separately, and for each parame-

ter (AP/ML/Vacceleration andAP/ML/V jerk). To confirm the reliability

of our approach, each step of the curvewas validatedusing a nullmodel

based on 100 IRs, each calculated on the same number of randomly

chosen edges (Figure S3). For each IR curve, in both HC and PD, the

null-models performed worse than the ICC-ordered IR curve. This

result talks to the clinical validity of the subset of selected edges since

the same quantity of randomly selected edges does not perform as

well. In other words, identification is based on a subset of edges, which

are the ones representing the most fine-tuned interactions. In fact, in

both groups, the whole kinectome is not needed to maximize identifi-

ability. Rather, a small subset of edges is enough, and this set is smaller

in HC with respect to PD patients. In fact, we observed that, in order

to exceed the 99% identifiability threshold, the HC group needed



256 ANNALSOF THENEWYORKACADEMYOF SCIENCES

F IGURE 9 Clinical relevance of kinectome features. (A) The left panel highlights the position of the 10th thoracic vertebra, whose degree in
the kinectome derived from themediolateral accelerations (MLA-T10) has been analyzedwithin a clinical framework. Themiddle panel shows that
patients with Parkinson’s disease (PD) have significantly higherMLA-T10 degree with respect to the healthy controls (HC); the right panel shows
the positive significant correlation between theMLA-T10 degree and the clinical motor impairment assessed through the Unified Parkinson’s
Disease Rating Scale (UPDRS). (B)Multilinear regressionmodel for the prediction of the UPDRS from theMLA-T10 degree. The left panel shows
the explained variance (R2) of the UPDRS, while sequentially adding the predictors (i.e., age, education, gender, andMLA-T10 degree) to themodel;
MLA-T10 degree was a significant predictor with positive beta coefficient; themiddle panel displays the relationship between empirical and
predicted UPDRS scores, with k-fold cross validation (k= 5); and the right panel illustrates the distribution of the residuals with k-fold cross
validation (k= 5).

approximately 12 edges on average, while the PD group needed

approximately 30 edges. Again, this is in line with a dysregulation of

the interactions in PD.

Nodal relevance for clinical evaluation

Following the previous analysis, we focused on the 30 edges with high-

est ICCvalueof thePDgroup. Indeed, since thoseedgeswere sufficient

to maximize the identifiability of each patient for each parameter

(AP/ML acceleration and AP/ML jerk), we assumed that they carried

most subject-specific information. Hence, we counted, for each param-

eter, howoften (across subjects) the 30 edgeswould be incident on any

given node (i.e., body element). We observed that the T10 node in the

ML acceleration (MLA-T10, the 10th thoracic vertebra) was included

above chance level by the 30 edges (falling outside the upper limit of

the 1–99% confidence interval). Subsequently, for theML acceleration

kinectomeof each subject, we calculated theweighted degree (the sum

of the weights of all the edges incident upon a given node) of the T10

node (Figure 9A, left panel). Comparing the MLA-T10 degree between

HC (5.07 ± 0.96) and PD (6.22 ± 1.7), we observed that the patients

showed significantly higher values (p = 0.0069) (Figure 9A, middle

panel). That is, the PD group showed higher degree at thoracic level

during mediolateral acceleration movements. To test the clinical rele-

vance of this finding, we used the Spearman correlation to investigate

associations between the degree of MLA-T10 and the clinical condi-

tion of PD patients, evaluated through UPDRS. We found a significant

positive correlation (r= 0.65, p= 0.0007), meaning that the higher the

motor impairment, the higher the degree ofMLA-T10 (Figure 9A, right

panel). This might be capturing the rigidity, a typical clinical feature in

PD.

Network-based clinical prediction

We then wondered whether MLA-T10 could predict patient-specific

motor impairment. To this end, we performed a multilinear regression

analysis to predict the UPDRS scores based on the MLA-T10 degree

values.48 We included three nuisance variables in the regressionmodel

to account for confounds, such as age, sex, and education. The pre-

diction model was validated through k-fold cross validation (k = 5),51
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to test its specificity and generalization capacity. We found that the

model based on theMLA-T10 degree significantly predicts the UPDRS

(p = 0.003, R2 = 0.44) with a positive beta coefficient (Figure 9B, left

panel). That is, the higher the degree, the higher the UPDRS score.

Noneof the remaining predictorswas significant. The agreement of the

actual/predicted UPDRS scores, and the distribution of the residuals

can be observed in Figure 9B (middle and right panels, respectively).

DISCUSSION

In this paper, we propose a novel approach to analyze human move-

ment, based on the kinectome, a mathematical structure containing

the pairwise interactions betweendifferent body segments during gait.

In fact, the kinectome consists of the covariance matrix of the accel-

erations (or the jerks) of all body segments. First, we show that the

kinectome provides a thorough description of gait and distinguishes

population-specific features (Figures 3 and 4). Second, the kinectome

captures symmetries in the modularity of the human motion patterns,

which are lost in PD patients (Figure 5). Third, through the kinec-

tome analysis, it is possible to identify subjects based on their gait

data, using only short (∼2 s) recordings (Figures 6–8). Finally, andmost

importantly, the topological analysis of the kinectomes allows us to

explore the role of individual biomechanical elements of the human

kinematic network within a holistic, complex system perspective, and

to use this information to predict clinical impairment (Figure 9). These

findings confirm thepotential of the kinectome in tapping into the com-

plex dynamics arising during human movement and their alteration in

disease.

The presence of groups of functionally related body parts emerged

naturally from the analysis of the kinectome, showing that the covari-

ance of accelerations conveys biomechanically meaningful informa-

tion. Furthermore, these patterns have clinical relevance, since they

differentiate healthy individuals from patients with PD. Notably, the

best distinction between the groups was obtained using the variance

of the acceleration (Figure 4), with patients havingmuchmore variabil-

ity as compared to the controls, and particularly so in the upper body

along the anteroposterior axis.We speculate that the healthy patterns

of movements are optimally constrained, especially in the upper body

segments (which are very relevant to allow bipedal locomotion).5 At

the same time, the neurological impairment in PD compromises the

motor control, which manifests itself in more variable, dysregulated

gait patterns.53 These results are in line with the literature.32 In fact,

several studies confirmed greater variability of gait in PD patients as

compared to controls, using a number of metrics and techniques. A

recent reviewconsidered several studies of gait analysis in PDpatients,

with the aimof describing gait impairment, theunderlyingmechanisms,

and the relationship to disease progression.31 From the data collected

by Mirelman et al., it is evident that increased variability is one of

the most common findings in PD patients. However, the authors also

pointed out the need for standardized practice for variability assess-

ment.Our approach,which is applied at the subject-level,may highlight

the variability across the whole body over different trials.

From the biomechanical perspective, the clustering analysis of the

kinectome reveals the large-scale functional organization of the body

segments (Figure 5). It is our opinion that the ML allegiance matrix

highlights the stabilization mechanism occurring during mediolateral

oscillations in HS. During gait, the swing phase reduces the width of

the base of support, decreasing the stability. Pelvis smoothens the

movement of the center of mass,54,55 as well as forearms counterbal-

ance its displacement contributing to the vertical alignment between

head and pelvis.56 Finally, the upper trunk produces controlled oscil-

lations in order to stabilize the head.57,58 However, the modularity

patterns are consistently rearranged in PD patients. With regard to

the PD allegiance ML matrix, the modules that were observed in the

healthy individuals are altered in PD, where body movements appear

more fragmented. Indeed, unlike the healthymodules, the left and right

upper arms belong to two different modules in PD, and the same goes

for the pelvis (upper and lower pelvis do not belong to the same func-

tional module). These alterations may be due to postural abnormalities

and asymmetries, features that are typically altered in the gait of PD

patients.30,59 In particular, asymmetry is widely studied in PD, as it is

one of the clinical hallmarks of the disease. Several approaches have

been used to quantify asymmetry, most of which focused on the right-

to-left ratio. Recently, Godi et al. quantified the power of asymmetry

in discriminating HS from individuals with PD, based on the abso-

lute value of the natural logarithm of the left-to-right ratio.60 Another

approach, performed by Orcioli-Silva et al., evaluated the laterality as

the ratio between the sum and the difference of the dominant and

the nondominant side.61 In their study, the authors suggested that, in

the presence of obstacles, the asymmetry in PD becomes more pro-

nounced. Despite highlighting the asymmetry (among other elements),

our approach is different in nature, as it groups body elements in a

data-driven fashion, based on their acceleration patterns.

With regard to the AP axis, the allegiance matrix of the healthy

groups distinguished the passenger unit from the locomotor unit.62

The former is composed of the head, the trunk (including the pelvis),

and the arms, the latter includes the lower limbs. However, our analysis

grouped together the accelerations of the arms and the legs, defining

two separate communities encompassing contralateral arms and legs.

This shows the fact that our approach goes beyond purely anatom-

ical arguments, and defines modules on functional grounds. In fact,

our definition of the modules captures the fact that arms oscillate in

antiphase with respect to the contralateral legs.63 Interestingly, this

linear pattern fails in PD, especially with respect to the trunk. In fact,

the first community is composed of the head and the upper trunk in

PD, while the lower trunk and the pelvis belong to a different commu-

nity together with the right forearm. The two remaining communities

capture the antiphased oscillations between contralateral arms and

legs, as observed in the healthy groups. Once again, we can relate

these disrupted patterns to the motor characteristics of parkinsonian

patients.On the one hand, the asymmetrymayhave caused the dysreg-

ulation of the acceleration of the right arm with respect to the healthy

pattern.59 On the other hand, the axial rigidity, a semiologic feature

of the disease,64 does not allow the trunk to effectively relay multiple

body parts. Hence, different subsections of the trunk remain entrained
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tomore peripheral anatomical parts. In turn, this is captured by the fact

that the trunk is split in different communities in patients, instead of

being a coherent functional unit as seen in the HC group. Once again,

the kinectomes allow us to identify the features of gait that are shared

by all HS and that are lost in PD patients.

Finally, the modularity expressed in the vertical axis was very simi-

lar between HS and PD patients. Verticality in gait is characterized by

the raising of the whole body at each step, identified by the clustering

involving the whole body, with the exclusion of arms and feet, that in

turn were included in two separate communities. The arms community

stems from the vertical component of the armoscillation that goeswith

walking, while the community encompassing the feet includes those

anatomical elements that alternatively engage in the swing phase. In

this case, the only differencewithin thePDclusteringwas the presence

on the left side of the pelvis in the arms community. This result may be

attributed once again to the asymmetry of the patients.

The kinectomes can be exploited further, to identify subject-specific

gait features, thus defining a “fingerprint” of the human gait. Our analy-

sis demonstrated that the kinectomes carried a uniquepattern for each

individual. In fact, using (approximately) 2-s long acquisitions as test

and retest sessions, we were able to identify subjects with an accuracy

rate above 99%. Note that the jerk kinectomes were the most reliable

in identifying individuals (Figure 6). PD patients exhibited identifiabil-

ity rates similar to those of the controls. However, the similarity within

the PD group (as measured by the I-others) was lower than that within

the control group (Figure 7). In other words, controls are more simi-

lar to each other than PD patients. One might speculate that a correct

motor control imposes stricter constraints to the kinectome structure,

which in turn produces more similar motion patterns. In pathologi-

cal conditions, such as PD, such control mechanisms would fail, the

constraints on the gait pattern would become looser and, hence, the

patterns would be less similar to each other. This alteration in motor

patterns could be related to the increase in gait variability, which, as

mentioned above, is one of the gait features most commonly found in

Parkinson’s patients.

Next, we started exploring the contribution of individual edges to

the identification (Figure 8 and Figure S8). First, it can be noticed that

only a few edges suffice for an optimal recognition. Indeed, human

movement interactions are fine-tuned, and only a few are sufficient

to define a fingerprint of movement and, hence, to identify individ-

uals (even when they are affected by a motor disease). Beyond this

general viewpoint, the edges that mainly contribute to identification

in the clinical framework may represent the interactions between the

body elements that are mainly affected by the disease (in terms of

coordination and control). A possible explanation of this finding stems

from the consideration that the way and the extent to which motor

behavior is affected is patient specific. This, in turn, might enhance the

identifiability of the patterns, making patients more identifiable. The

kinectome is effective in capturing these patterns and, accordingly, it

shows enhanced identifiability in PD patients. Comparing both HC and

patients, the jerk IR models maximized identifiability. Indeed, the IR of

patients on themediolateral andvertical accelerationdoesnotperform

as well (compared to the healthy individuals) as in the jerk IR analy-

sis. This outcomemay reflect the impaired ability of patients to control

mediolateral and verticalmovement, thereby generatingmore variable

patterns (at the individual level), which are harder to recognize. With

regard to the anteroposterior acceleration, despite a better perfor-

mance of the healthy individuals when focusing on a few edges, the

IR of the controls drops when including all the edges into the analysis.

The interpretation of this finding is challenging. We hypothesize that,

when all the elements of the body are considered, the healthy individ-

uals manage anteroposterior accelerations similarly (and, presumably,

optimally), generating similar patterns that make identification harder.

Furthermore, with respect to the HC, the patients needed the con-

tribution of more edges to exceed the 99% identifiability threshold.

We hypothesize that healthy individuals are more likely to repeat a

motor behavior with high precision, determining well-defined patterns

(based on a few specific edges, highlighted by the ICC analysis) that

help recognition. On the contrary, the impaired motor behavior of PD

patients may result in dysregulated movement patterns (which is in

line with the modularity analysis) that are harder to recognize. Conse-

quently, the contribution of a higher number of interactions is needed

for identification.

To reach a clinical interpretation of this finding, we investigated

which nodes (i.e., body parts) were involved the most in subject iden-

tification in the PD group. We reasoned that, if all that edges upon

which subject identification is based preferentially hinge on some

node(s), then this node would point at a specifically relevant region

for large-scale coordination, and might optimally capture patholog-

ical processes as well. Indeed, the MLA-T10 node (which occurred

the most in edges that allow subject identification, and is represen-

tative of the mediolateral acceleration of the 10th thoracic vertebra)

showed several interesting features. First, we observed that the MLA-

T10 degree was higher within the PD group as compared to the

HC group. As said, this might be capturing the trunk rigidity typical

of PD,65–69 causing hypersynchronization of the movement between

the trunk and the limbs. Several studies focused on trunk kinemat-

ics, in particular for the assessment of the smoothness of gait, using

different metrics.32,70 Lowry et al. assessed the walking stability in

PD using the harmonic ratio, a measure that takes into account the

rhythm of trunk acceleration.71 The authors analyzed gait fluidity in

PD patients, and showed reduced harmonic ratio over the three axes.

Similar results were found by Cole et al.72 A different approach was

presented by Beck et al., which used the spectral arc length measure

to assess the smoothness of trunk acceleration in PD.29 The authors

reported reduced smoothness in patients as compared to HC and,

notably, a correlation with the UPDRS. All these studies, regardless of

the methodological approach, highlighted the trunk acceleration as an

informative element, andour results are in linewith these findings. Fur-

ther longitudinal studies may explore the potential of this approach

in diagnostics and assessment/prediction of therapeutic responsive-

ness. Furthermore, we found that the MLA-T10 degree of the patients

was significantly correlated with the motor impairment evaluated

through the UPDRS scores (Figure 9A). This correlation showed that

the greater the motor impairment, the more the mediolateral accel-

erations of the upper trunk were coherent with those of the other
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body segments. Axial rigidity and postural abnormalities are typical

features of PD that might reflect themselves into “hyperconnected”

patterns.73–75 Finally, we observed that the MLA-T10 degree could

predict the UPDRS score at individual level, even after taking into con-

sideration confounding variables, such as age, gender, and education.

Notably, the prediction has been validated with k-fold cross valida-

tion. This result highlighted that the hyper connectedness shown by

themediolateral trunkaccelerationwas strongly related to the subject-

specific impairment level. This outcomemay open the possibility to use

this approach to monitor at individual level both the disease progres-

sion and the effects of pharmacological therapies and rehabilitation

protocols.

It should be stressed that this is the first time that the kinectome

is defined. Hence, its ability to convey the individual clinical condition

needs to be tested in samples, including more PD patients, as well

as both in different movement disorders and in more neurological

diseases. In our analysis, it was observed a lack of significant results

concerning the vertical axis. One explanation could be that the vertical

axis may be less informative when assessing the synchronization

of movement during gait. Furthermore, the amplitude of the move-

ments along the vertical axis is smaller as compared to the other

direction, thereby making measurements less precise and, hence, less

reliable. Methodologically, further analysis should be performed to

explore the required number of bone markers for an optimal spatial

resolution of the kinectome. In this work, we utilized 21 markers to

sample the whole body. However, according to the research question

at hand, it may be useful to vary the number and locations of the

markers. As an example, one may also consider to focus on specific

subnetworks (e.g., the lower limb network), as appropriate to test

specific working hypotheses. Finally, in this work, we only consider

pairwise interactions, future work should also consider higher-order

interactions.76

In conclusion, we have proposed a network approach to motion

analysis, which identified several disease-related features, both at

global and individual levels. It must be noted that the methodology

underlying our approach is grounded in network science, which is a

solid branch of mathematics. We believe that the application of such

methodology in the motion analysis opens new possibilities, especially

in the domain of clinical applications, where it allows disease-specific

motor features examination. In particular, we think that the kinec-

tome represents an informative tool, which encodes a large number

of features that can be extracted, depending on the specific research

question at hand. In this work, we started from a global examination,

we then zoomed in to describe the characteristics of the kinectome

that emphasize individual features, up to revealing a kinematic element

(i.e., the MLA-T10), which captures many of the significant features

of PD. Further studies may focus on the usefulness of exploiting the

kinectome to support pharmacological and rehabilitative treatments.

Finally, this study limited itself to a first application, but the kinec-

tome is a powerful tool that can be applied in a wide spectrum of

frameworks. Useful applications could be in the differential diagnosis

between PD and atypical parkinsonisms (e.g., multiple system atrophy,

progressive supranuclear palsy, and corticobasal syndrome). More in

general, this approach might be useful to capture pathophysiological

changes that manifest in subtle alterations of the interactions among

multiple body parts. These kinds of patterns are easily missed by the

human eye, andmight greatly help doctors to refine diagnosis by taking

this information into account. Finally, other fields of applicationswill be

in biomedical engineering for the construction of robots, or to design

motor assistance devices.
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