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A family of score-based tests has been proposed in recent years for assessing the

invariance of model parameters in several models of item response theory (IRT). These

tests were originally developed in a maximum likelihood framework. This study discusses

analogous tests for Bayesian maximum-a-posteriori estimates and multiple-group IRT

models.Wepropose two families of statistical tests, which are basedon an approximation

using a pooled variancemethod, or on a simulation approach based on asymptotic results.

The resulting tests were evaluated by a simulation study, which investigated their

sensitivity against differential item functioning with respect to a categorical or continuous

person covariate in the two- and three-parametric logistic models. Whereas the method

based on pooled variance was found to be useful in practice with maximum likelihood as

well as maximum-a-posteriori estimates, the simulation-based approach was found to

require large sample sizes to lead to satisfactory results.

1. Introduction

Models of item response theory (IRT) are widely applied to describe the interaction of

respondents and test items. A central question in empirical research is whether the
estimated IRT parameters are invariant over the population of respondents. If this

invariance assumption is found to be violated, this indicates that persons with the same

ability differ with regard to their probability of correctly answering a specific item. In IRT,

this type of model violation is typically related to differential item functioning (DIF; e.g.,

Holland&Wainer, 1993) and to the assessment of a test’s fairness (Dorans&Cook, 2016).

Numerous methods have been proposed for the detection of violations of measure-

ment invariance in the IRT framework. An important class of these methods investigates

the invariance of parameters between predefined focal and reference groups (for an
overview, see Magis, Béland, Tuerlinckx, & De Boeck, 2010). These groups are typically
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defined based on categorical person covariates (such as gender). If the methods are

applied to detect DIF with respect to a continuous person covariate like age, it becomes

necessary to categorize the person covariate. Previous studies have shown that an

unfortunately chosen categorizationmay diminish these tests’ sensitivity against DIF (e.g.,
Strobl, Kopf, & Zeileis, 2015).

Several approaches have recently been proposed to test the invariance of model

parameterswith regard to non-categorical variables. Thesemethods are based ondifferent

ideas and work quite differently from a statistical point of view, but all share the aim of

allowing the inclusion of non-categorical variables in invariance tests. A first approach

sharing this aim is based onmixture distributionmodels. A well-known example is the so-

called mixed Rasch model (Rost, 1990). A possible approach for using these models to

check the stability of item parameters with regard to continuous covariates is based on a
binary or multinomial logistic regression model. Here, the logistic regression model uses

categorical or continuous covariates as predictors to model the mixing probabilities of

latent classes for which the item parameters are allowed to differ (e.g., Dai, 2013; Li, Jiao,

& Macready, 2016; Tay, Newman, & Vermunt, 2011).

A second approach that is not based onmixture distribution models aims to check the

invariance of item response curves directlywith regard to observedperson covariates. Liu,

Magnus, and Thissen (2016) presented a semiparametric approach that did not assume a

specific parametrization of the item response curve and allowed the modelling of
covariate effects on item responses. By defining a set of anchor items, whose item

response functions are notmoderated by the observed covariates, it is also possible to test

for DIF in this framework. A similar model was proposed by Moustaki (2003).

A third approach is based on moderated nonlinear factor analysis (Bauer &

Hussong, 2009; Bauer, 2017). Here, moderation functions are included in a factor model

to specify an assumed relationship between its parameters (e.g., factor loadings) and

observed person covariates. By estimating the parameters of these moderation functions

(e.g., the slope parameters of linear functions), the invariance of the respective
parameters of the factor model with regard to person covariates can be checked. A

related method was recently described by Molenaar (2020).

Another approach, which is the focus of this paper, was recently proposed for a

number of psychometric models andwasmotivated bymethods for parameter invariance

in econometrics (Andrews, 1993). These tests are based on the analysis of scores (i.e., the

gradient of the model log-likelihood with respect to the vector of the model parameters)

and allow the detection of DIF effects with regard to a specific person covariate without

the necessity to define focal and reference groups. Compared to the semiparametric
approach of Liu et al. (2016), these score-based tests are not based on the idea of

incorporating the person covariate in the estimated model. Instead, they can be directly

applied to models where person covariates were not considered in the parameter

estimation. Moreover, they can be applied with categorical, ordinal and continuous

covariates (Merkle & Zeileis, 2013; Merkle, Fan, & Zeileis, 2014).

This approach was applied to a wide range of psychometric models, including

Bradley–Terry models (Strobl, Wickelmaier, & Zeileis, 2011), factor analysis (Merkle &

Zeileis, 2013;Merkle et al., 2014), binary andpolytomousRaschmodels (Komboz, Strobl,
& Zeileis, 2018; Strobl et al., 2015), normal-ogive IRT models (Wang, Strobl, Zeileis, &

Merkle, 2017), logistic IRT models (Debelak & Strobl, 2019) and mixed models

(Fokkema, Smits, Zeileis, Hothorn, & Kelderman, 2018). The underlying theoretical

foundation for these tests was provided by Zeileis and Hornik (2007), who investigated

the problem of assessing the invariance of maximum likelihood (ML) estimators and M-
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estimators. These tests are related to a family of score tests for detectingDIFwith regard to

a categorical covariate that was introduced by Glas and applied to numerous models

(Glas, 1998, 1999, 2001, 2010a, 2010b; Glas & Suárez-Falcón, 2003; Glas & van der

Linden, 2010). A Bayesian variation of these tests for normal-ogive IRT models, that is
basedon Lagrangemultiplier tests,was describedbyKhalid andGlas (2016), and also aims

to detect DIF effects with regard to a categorical covariate.

The first main contribution of this paper is the derivation and evaluation of two

methods analogous to score-basedmeasurement invariance tests that are not based on the

ML framework, but can also be applied to Bayesian estimators. Conceptually, the use of

prior information allows the stabilization of item parameter estimates, and this paper

addresses the extension of score-based DIF tests to these estimators.

In applications of IRT, Bayesianmaximum-a-posteriori (MAP) estimatorswere found to
be more accurate than ML estimators, particularly in smaller samples. However, their

application requires the definition of appropriate prior distributions. As Mislevy (1986)

notes, poorly specified prior distributionsmight lead to a systematic bias in the estimation

of groups of item parameters, which he named ‘ensemble bias’. These points were shown

in several simulation studies, for example by Mislevy (1986), Harwell and Baker (1991)

and Harwell and Janosky (1991). We follow those authors and others in essentially

treating MAP estimates as potentially improved versions of ML estimates, applying

hypothesis tests to the resulting estimates. Baker andKim (2004) refer to this treatment as
a ‘pragmatic’ use of Bayesianmethodology, which can be contrasted with a fully Bayesian

treatment that abandons null hypotheses and embraces posterior model uncertainty (see

McElreath, 2015, for examples that specifically utilizeMAPestimates). It is also possible to

apply the ideas described here to the fully Bayesian treatment, a point on which we

expand near the end of the paper.

We further considermultiple-group IRTmodels,which allow the jointmodelling of the

interaction of test items with samples from multiple, heterogeneous populations and

which can be used to account for ability differences betweenpopulations inDIF tests. As a
secondmain contribution, we discuss an extension of the theoretical results of Zeileis and

Hornik (2007),whoessentially treat the single-groupcase in the context ofMLestimation,

to these multiple-group IRT models in the context of Bayesian MAP and ML estimation.

In the following sections we outline a statistical framework for score-based model

checks for MAP estimators and for multiple-group IRT models. Based on this framework,

we derive two families of approaches for score-based DIF tests, a pooled variance

approach and a simulation-based approach. We compare these approaches for MAP and

ML estimators by means of a simulation study, provide an empirical application, and
discuss our findings in the final section. In the online supplementary materials we further

present a brief tutorial for the application of both approaches in the R framework for

statistical computing (R Core Team, 2020), which allows researchers to directly apply

them to their own data.

2. Bayesian MAP item parameter estimation

Overviews on Bayesian IRT have been provided by Fox (2010), Levy and Mislevy (2016)

and others. Here, we consider Bayesian MAP estimation (Baker & Kim, 2004;

Mislevy, 1986), an estimation method that is implemented in several software packages,

for instance the R package mirt (Chalmers, 2012). It is based on two principal ideas. The

first idea is the definition of a distribution for the person parameters over which is
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integrated. This distribution is usually a normal distribution, although the parameters of

this distribution (i.e., mean and variance) can differ for predefined person groups to

account for impact effects (i.e., ability differences between the groups) (Bock &

Zimowski, 1997). The second idea is the definition of a prior distribution for the item
parameters. BayesianMAP estimation can lead tomore accurate item parameter estimates

than frequentist estimation methods if the prior distributions are close to the true

parameter distributions (Mislevy, 1986).

3. Score-based DIF tests for ML and MAP estimators

In this section we summarize the principal ideas behind the score-based DIF tests for ML

estimators (e.g., Debelak & Strobl, 2019; Komboz et al., 2018; Merkle & Zeileis, 2013;

Merkle et al., 2014; Strobl et al., 2011, 2015;Wang et al., 2017) to allow an assessment of

the extent to which these tests can be applied to MAP estimators. We consider the score

function,which is the vector of the first partial derivatives of the log-likelihoodwith regard

to the individual model parameters, that is, the gradient of the log-likelihood. In the

context of IRT models, these are typically the item parameters. In ML estimation, the

parameters β are estimated so that this gradient is a null vector at the point of the estimator

β̂. Inmany IRTmodels the gradient is a sumoverN individual score contributionsψ Y i, β̂
� �

,

where Yi are the responses of person i. In summary, we obtain

∑
N

i¼1

ψ Y i, β̂
� � ¼ 0: (1)

Instead of considering all N observations, we now consider the following stochastic

process for t ∈ 0, 1½ � (b�c denotes the floor function):

Ψ β̂, t
� � ¼ ∑

Ntb c

i¼1

ψ Y i, β̂
� �

:

Fromequation (1) it follows thatΨ β̂, t
� �

starts at 0 for t = 0 and also ends at 0 for t = 1.We

now make the additional assumption that the individual score contributions are

independent and identically distributed. This assumption typically holds, for instance,

when marginal maximum likelihood (MML) estimation (Baker & Kim, 2004) is applied
and a common distribution is assumed for all person parameters. It follows again from

equation (1) that their expected value is 0 for all respondents. Let V̂ be a consistent

estimate of their covariancematrix.We now consider the following stochastic process for

t ∈ 0, 1½ �, which is a decorrelated cumulative sum process:

ΨML β̂, t
� � ¼ V̂

�1=2
N�1=2 ∑

Ntb c

i¼1

ψ Y i, β̂
� �

:

It can be shown that this process converges to a multidimensional standard Brownian

bridge under the null hypothesis that DIF is absent (Zeileis & Hornik, 2007). It can be

further shown that in the presence of DIF, the expected value of the individual score

contributions is not 0 for individual respondents, but typically above 0 for some

respondents and below 0 for others, depending on the direction of the DIF effect (cf.
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Figure 2 in Strobl et al., 2015). If the respondents are ordered with regard to a covariate

that is related to DIF, the path of the cumulative sum process differs strongly fromwhat is

expected if DIF is absent. This idea is illustrated in Figure 1 using simulated data. As can be

seen, the cumulative score process fluctuates randomly around 0 in the absence of DIF,
whereas it deviates strongly from 0whenDIF is present.We observe that a centring of the

individual score contributions does not affect this pattern.

In MAP estimation, the sum of the individual score contributions ψ Y i, β̂
� �

, based on

the model (i.e., item) parameter estimates β̂, is equal to a term that we will label as uprior:

∑
N

i¼1

ψ Y i, β̂
� � ¼ �uprior β̂

� �
: (2)

As our notation suggests, uprior βð Þ is the vector of the first derivatives of the logarithm of

the prior distribution for β with respect to the individual estimated model (i.e., item)

parameter; for a derivation of this result, see, for instance, Baker and Kim (2004,

Section 7.4). This term depends on the prior distribution for β and on the item parameter

estimate β̂.
In contrast to the standard model used for ML estimators that was outlined above, the

expected value of the individual score contributions is not 0, and the corresponding
stochastic process is not a Brownian bridge. To obtain a similar standard model as in the

case of ML estimation (Hjort & Koning, 2002; Zeileis &Hornik, 2007), it is thus necessary

to centre the individual score contributions. In practical calculations, this can be achieved

by simply subtracting their means, leading to centred individual score contributions

~ψ Y i, β̂
� �

. This centring has the advantage that it shifts the expected value to 0, which

corresponds to a shift in the values of all respondents to the same degree, but does not

undo the effect of DIF, which corresponds to shifts in the values of different groups of

respondents to different degrees. The pattern in the expected values of the individual

score contributions, which occurs in the presence of DIF effects, is thus not affected by

this overall centring of the individual score contributions.

It should be noted that, because of equation (2), ~ψ Y i, β̂
� �

converges to ψ Y i, β̂
� �

for

increasingly large samples. This leads us to consider the following stochastic process,

which corresponds to ΨML for maximum likelihood estimates:

Figure 1. A typical example of cumulative score processeswithout (blue dotted line) andwith (red

solid line) DIF effect.
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ΨMAP β̂, t
� � ¼ V̂

�1=2
N�1=2 ∑

Ntb c

i¼1

~ψ Y i, β̂
� �

:

As before, V̂ is a consistent estimator of the covariance matrix of the individual score

contributions. Using arguments similar to those used by Hjort and Koning (2002) and

Zeileis and Hornik (2007), it can now be shown that this process converges to a standard

Brownian bridge for N ! ∞. This result is a special case of Theorem 1, which will be

presented below.

This asymptotic behaviour can be used for checking whether ML and MAP estimators

in IRT are invariant with regard to a chosen person covariate if the individual score
contributions are independent and identically distributed. In the next sectionwediscuss a

generalization of this approach to a more general scenario.

3.1. A generalization to multiple-group IRT models

In this section we discuss score-based tests of measurement invariance for models where

the individual score contributions are independent, but not identically distributed. An

important example are multiple-group IRT models (Bock & Zimowski, 1997), where
person parameter distributions are allowed to differ between groups of respondents that

are defined before the analysis. These models thus allow the modelling of ability

differences between known groups of respondents, which are also named impact effects,

before the application of DIF tests. When considering score-based tests for these models,

one can therefore obtain individual score contributions for person group parameters. As

we will show, score-based tests can also be applied to MAP estimators in these models. In

this extension, we assume that the prior distributions of the item parameters are

independent of the underlying groups. In the DIF tests discussed in this paper, the score
contributions from these group parameters were not further used in the calculation of the

test statistics (see below). The underlying idea was to only use information from the item

parameter estimates for the detection of DIF effects.

In this paper we focus on approaches that check the null model that all item

parameters are invariant over all groups of respondents. This essentially leads to an overall

DIF test for the item set. Since this test is applied to amodel that includes impact effects, it

can also discern between DIF and impact effects. Conceptually, it is also possible to adapt

the test to define sets of anchor items and to check items or itemgroups for invariance.We
will return to this point in Section 6. As will be shown, it is difficult to use a standard

Brownian bridge as an approximation in this more general scenario. A possible approach

for considering heterogeneity in the covariance matrices of the individual score

contributions was discussed by Zeileis and Hornik (2007) for linear and generalized

linear models. This first approach assumes that the covariance matrices stabilize with

increasing sample size in a matrix V̂ , which can be used as an overall estimate of the

covariance matrices in the population. In the context of multiple-group IRTmodels, such

an approach seems plausible, for instance, when there are many groups of different, but
similar, ability.

In the context of multiple-group IRT models, we will consider a second scenario,

where there are few groups that differ strongly in their ability. In this scenario, the use of a

common estimate V̂ of the covariance matrix could lead to an overestimation of the

variances of the individual score contributions in some ability groups and to an

underestimation in others. This could further lead to a bias in the assumed distribution of
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the decorrelated individual score contributions under the null hypothesis of no DIF.

Statistical tests based on such biased distributions can be expected to be either

conservative or liberal.

To address this second scenario, we suggest using group-specific covariance matrices
for decorrelating the process. We now introduce the notation Vg ið Þ to denote the

covariance matrix of the score contributions in the group g(i), of which respondent i is a

member. We further introduce V̂ g ið Þ to denote a consistent estimator for Vg ið Þ. Our main

theoretical results for this scenario are summarized in the following theorem.

Theorem1. Let ~ψ Y i, β̂
� �

denote the centred individual score contributions fromaMLor

MAP estimation. We consider the following stochastic process:

~ΨMAP β̂, t
� � ¼ 1ffiffiffiffi

N
p ∑

Ntb c

i¼1

V̂ g ið Þ β̂
� ��1=2

~ψ Y i, β̂
� �

:

Since the individual score contributions ~ψ Y i, β̂
� �

are centred, they have to meet the

following restriction:

∑
N

i¼1

~ψ Y i, β̂
� � ¼ 0: �ð Þ

We can show the following characteristics for this process under the null hypothesis

that DIF is absent and that the item parameter estimates are stable over the sample:

1. The expected values of the centred individual score contributions E ~ψ Y i, β̂
� �� �

are 0.

2. The expected values of the decorrelated individual score contributions

E V̂ g ið Þ β̂
� ��1=2

~ψ Y i, β̂
� �� �

are 0.

3. In both the single- and the multiple-group case, ~ΨMAP β̂, t
� �

converges to a standard

Brownian bridge under mild regularity conditions. In the single-group case, its path

ends at 0 for finite samples, whereas its path does generally not end at 0 for finite

samples in the multiple-group case.

The theoretical results summarized by this theorem are analogous to those reported by

Zeileis and Hornik (2007), but concern a wider range of scenarios.1 Although the

stochastic process ~ΨMAP β̂, t
� �

converges to a standard Brownian bridge, its path generally

does not end at 0 for t = 1 in the multiple-group case in finite samples, which is an

important characteristic of Brownian bridges.
There seem to be two natural approaches for investigating this process in finite

samples. First, we could use a singlematrix for estimating the overall covariance matrix of

the centred individual score contributions, which is similar to the single-group case and

leads to a path that ends at 0.

Second, we could aim to simulate the resulting stochastic process. Although there are

several possible approaches, we propose the following solution: We generate data from a

standard Brownian motion and then impose a restriction on it to make its path more

1Although we do not present a proof here, a draft of the proof of Theorem 1 can be obtained from the first
author.
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similar to that of ~ΨMAP β̂, t
� �

. This approach is inspired by a common method to generate

data for a standardBrownian bridge,which consists of first generating data froma standard
Brownian motion and then restricting its path to end at 0 for t = 1.

Below, we follow both approaches, with the first one leading to a pooled variance

approach and the second one leading to a simulation-based approach.

3.2. Summarizing empirical stochastic processes with test statistics

To compare the observed empirical stochastic process with that expected under the null

model, it is necessary to define test statistics. Merkle and Zeileis (2013), Merkle
et al. (2014) andWang, Merkle, and Zeileis (2014) described several test statistics, which

are also implemented in the software package strucchange (Zeileis, Leisch, Hornik, &

Kleiber, 2002) of the statistical framework R (R Core Team, 2020). For brevity, we will

focus on two test statistics which will be later used in our simulation studies. Several

additional test statistics for continuous, ordinal and nominal covariates are available

(Merkle et al., 2014; Wang et al., 2014).

Let γ Y i, β̂
� �

ij
denote the centred and decorrelated individual score contributions of the

empirical cumulative sumprocess,with ibeing an index for theN respondents and jbeing
an index for the item parameters. For continuous covariates, we will use a double max

statistic,which is given by (Merkle et al., 2014;Wang et al., 2014; Zeileis&Hornik, 2007)

DM ¼ max
i

max
j

j γ Y i, β̂
� �

ij
j :

For settings with a categorical covariate with m categories, we will use an unordered

Lagrange multiplier test, which is given by (Merkle et al., 2014; Wang et al., 2014)

LMuo ¼ ∑
l

∑
j

γ Y i, β̂
� �

il j
�γ Y ið , β̂Þil�1j

� �2

:

In this equation, il ¼ N � tlb c, where tl , l ¼ 1, . . . ,m�1, denotes the proportion of

respondents in the first l categories.

3.3. Methods for calculating p-values

Aswas outlined in the previous section, the stochastic processes based on the centred and

decorrelated individual score contributions can be approximated by standard models in
sufficiently large samples. However, the distribution of a test statistic for these stochastic

processes remains unclear for finite samples. We will consider two approaches to

determining the distribution of test statistics in multiple-group IRT models, which

conceptually correspond to the two approaches described in the previous subsection.

� Pooled variance approach. A first approach ignores possible differences in the

groupwise covariances. Here, the centred individual score contributions are first

calculated, and in a second step their common covariancematrix is calculated and used

for decorrelating the score processes. The basic idea of this approach is to pool the

covariancematrices to ensure that the decorrelated individual score contributions sum

to 0,which in turn allows a standard Brownian bridge to be used as a referencemodel in

finite samples. In the context of multiple-group IRT models with a small number of
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groups, we consider this approach as a computational shortcut that may be useful in

practical applications, particularly when impact effects are small and the groupwise

covariance matrices can therefore be expected to be similar for all respondents.

Computationally, it also allows a direct application of the framework of Zeileis and
Hornik (2007) via the strucchange package in R (Zeileis et al., 2002). This approach

has already been applied in previous studies with ML estimation in multiple-group

models (Debelak & Strobl, 2019; Wang et al., 2017), although not under this name.

� Simulation-based approach. This approach corresponds to the approach based on

groupwise covariance matrices. Here, we use simulated stochastic processes to obtain

a reference distribution of the test statistic. To generate these stochastic processes, we

use the fact that a Brownian motion, which we obtain as the asymptotic model in

Theorem 1, also results when considering the cumulative sum of multidimensional
standard normally distributed random variables. In this approach, the following steps

are carried out to calculate p-values:

1. Calculate the empirical stochastic process ~ΨMAP β̂, t
� �

.

2. Obtain N k-dimensional draws from a multivariate standard normal distribution,

with N being our empirical sample size and k being the number of estimated item

parameters. Each draw corresponds to an empirical observation. Since these draws

are normally distributed, their cumulative sum process can be used to simulate a

Brownian motion.
3. Apply a groupwise decorrelation and calculate cumulative sums to obtain a

multivariate stochastic process. Apply a linear transformation to these draws so that

their summatches ~ΨMAP β̂, 1
� �

, that is, the end point of the path of ~ΨMAP. The path of

this process now has the same start and end point as ~ΨMAP β̂, t
� �

.

4. Repeat steps 2 and 3many (e.g., 1,000) times and calculate a suitable test statistic for

every simulated path. This leads to a reference distribution of test statistics.

5. Calculate p-values by comparing the observed value of the test statistic with the

reference distribution calculated in step 4.

This approachwas also inspired by Zeileis andHornik (2007), who alsomentioned the

simulation of the asymptotic model as a method for determining p-values. We emphasize

that the motivation for the linear transformation in step 3 is to make the observed and the

simulated processes more similar under the null hypothesis that no DIF is present so that

DIF effects can be detectedmore easily. Other approaches for simulating ~ΨMAP β̂, t
� �

could

be based on bootstrapping, or make specific use of the group membership of the

respondents while simulating the process. A systematic investigation of various variations

of this algorithm is, however, beyond the scope of this paper.

Since thismethod is based on asymptotic results, it can be expected to lead to accurate
results in sufficiently large samples. However, its applicability in finite samples can also be

expected to depend on the rate of convergence to this asymptotic model, which in turn

can be expected to depend on the distribution of the individual score contributions. For

instance, a sum of only a few individual score contributions with a very skewed

distribution cannot be expected to be described well by a sum of normally distributed

random variables in small samples. For larger samples, however, this can be expected

because of the central limit theorem.

So far, we have discussed these approaches for a scenario with multiple groups where
a groupwise decorrelation can be applied. Both approaches can also be straightforwardly

applied in single-group IRT models. In summary, the proposed model checks consist of

the following steps: First, item parameter estimates are calculated. Second, individual
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score contributions are calculated as ameasure of personwisemodel fit. IfMAP estimation

is used, the individual score contributions are centred to take the prior distributions into

account. The score contributions should fluctuate randomly around 0 if the parameters

are invariant. Third, decorrelation is applied to obtain a standardized stochastic process.
Fourth, a suitable test statistic is chosen. In a final step, one of the outlined methods is

applied to calculate p-values.

The proposed procedures are based on large-sample arguments and it is unclear to

what extent they are applicable in finite samples. In the next section, we report a

simulation study that investigates these model checks for finite samples under conditions

with and without parameter invariance.

4. An evaluation with a simulation study

To evaluate the proposed method, we evaluate the rate of extreme p-values of the
resulting model checks in a simulation study. Since the original ML approach can be

considered as a special case that should correspond to the use of a non-informative prior,

the tests for ML estimators are included to serve as a reference method. This simulation

study considers scenarios where measurement invariance with regard to a categorical or

continuous person covariate is investigated.

4.1. Method
Wefirst describe the data-generating processes in this simulation study before proceeding

to the data analysis. The data sets generated differed with regard to the following

conditions:

� Type of IRT model. The data sets were generated and analysed based on the two-

parametric logistic (2PL) or three-parametric logistic (3PL) model (Birnbaum, 1968).

Bayesian MAP estimators are sometimes recommended for the 3PL model to obtain

more accurate item parameter estimates (e.g., Mislevy, 1986). We used the following

response function to generate data under the 3PL model:

P Y ij ¼ 1jaj,dj, cj, θi
� � ¼ cj þ Δcj

� �þ 1� cj þ Δcj
� �

1þ exp � aj þ Δaj

� � � θi� dj þ Δdj

� �� � :

Here, Yij corresponds to the response of the ith respondent to the jth item, with 1

denoting a positive and 0 a negative response. θi is an ability parameter for respondent i.

aj, dj and cj are item parameters, with aj being a slope and dj an intercept parameter for

the itemresponse function. cj is a pseudo-guessingparameter. The termsΔaj,Δdj andΔcj
correspond to DIF effects. When the 2PL model was used, cj and Δcj were set to 0.

� Number of respondents. The simulated data sets consist of either 500, 1,000, 2000 or
5,000 respondents. These numbers correspond to those typically found in psycholog-

ical and educational studies, where the 2PL and 3PL models could be applied.

� Number of items and item parameters. The simulated item sets had a size of 10 or 30

items. The slope parameters were sampled from a log-normal distribution

LN 0, 0:0625ð Þ. The intercept parameters were sampled from a normal distribution

N 0, 1ð Þ. Under conditions with the 3PL model pseudo-guessing parameters were

sampled from a beta distribution B 5, 45ð Þ. These distributions were inspired by prior

distributions proposed in the literature (Culpepper, 2016; Fox, 2010).
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� Sampling of the person covariate and presence of an impact effect. The simulated

person covariate could be either categorical or continuous. Under conditions with a

categorical covariate, this covariate was determined by randomly assigning each

respondent to one of two groups, with each respondent having a probability of.5 of
being assigned to the first group. The covariate was subsequently used to simulate DIF

and impact effects. If an impact effect was present, the person parameter distribution

for all respondents in the first group was N �0:5, 1ð Þ, whereas it was N 0:5, 1ð Þ for all
respondents in the second group. Under conditions with a continuous covariate, the

person covariate was sampled from a uniform distributionwith a minimum of 20 and a

maximum of 70. This distribution aimed to resemble a person covariate like age. The

conditional distribution of the person ability parameters was standard normally

distributed for all values of this covariate. Based on this covariate, conditions with and
without impact effects were simulated. If an impact effect was present, the person

parameter distribution for all respondents with a covariate value below 35 was

N �0:5, 1ð Þ, and for all respondents with a covariate value of 35 or abovewasN 0:5, 1ð Þ.
This condition aimed to simulate a cohort effect. If no impact effect was simulated, all

person parameters were drawn from a standard normal distribution N 0, 1ð Þ.
� Presence and type ofDIF effect. In addition to a baseline conditionwhere noDIF effects

were present, several conditions with DIF were included. Under conditions with a

continuous covariate, DIF effects led to differences in the item parameters between
respondents with a covariate value below 35 and those with a covariate value of 35 or

higher. Under conditions with a categorical covariate, DIF effects were simulated

between the two respondent groups. The conditions with DIF effects varied with

regard to the following two points:

� Parameters affected by DIF. DIF was simulated for either the intercept, the slope,

or, when the 3PLmodel was used, the pseudo-guessing parameter. For one-fifth of

the item set, DIF was simulated in the selected parameter. The items affected by

DIF were randomly selected.
� Size and direction of the DIF effects. The parameter change between the two

groups was set to Δaj ¼ 0:3 for the slope parameter, Δdj ¼ 0:6 for the intercept

parameter, and Δcj ¼ 0:1 for the pseudo-guessing parameter. There were two

conditions on the direction of the DIF effect. Under a balanced DIF effect, the item

parameters increased for one half of the items affected by DIF, whereas they

decreased for the other half. Under a condition with an unbalanced DIF effect, the

item parameters increased for all items affected by DIF. If an impact effect was

presented, this increase favoured themore able group. Again, these numberswere
inspired by previous studies (e.g., Debelak & Strobl, 2019).

� Estimation method. The model parameters were estimated by MML or MAP. In both

cases an impact effect was modelled by a multiple-group IRT model (Baker &

Kim, 2004) that constrained all item parameters to be invariant for the whole sample.

In the item parameter estimation, this effect was considered by assuming a standard

normal distribution for the ability parameters of the first of these groups and a normal

distribution N μ, σ2ð Þ for the ability parameters of the second group. μ and σ2 were

estimated from the data using an ML estimator. After estimating the model parameters,
score-based tests were conducted based on a double maximum statistic when the

person covariate was continuous and based on an unordered Lagrange multiplier

statistic when the person covariate was categorical. This corresponds to the
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recommendations made by Merkle and Zeileis (2013), Merkle et al. (2014) and Wang

et al. (2014).The application of a Bayesian MAP estimator made the definition of prior

distributions for all item parameters necessary.We used two sets of prior distributions:

� Agreeing prior. This prior aimed to depict a scenario where information about the
distribution of item parameters is available. In conditions with the 3PL model, the

prior distribution of the pseudo-guessing parameter was set to B 4, 45ð Þ,
corresponding to the distribution from which these parameters were drawn.

For the slope and intercept parameters, the prior distributions also corresponded

to the distributions from which these parameters were drawn. The prior

distribution for the slope parameters was thus LN 0, 0:0625ð Þ, whereas it was

N 0, 1ð Þ for the intercept parameters. These priors were used independently of

whether these item parameters were estimated for the 2PL or the 3PL model.
� Non-informative prior. Here, we used non-informative prior distributions for all

parameters. For the slope parameters, a normal distribution N 1, 10ð Þ was used as

prior distribution, whereas N 0, 10ð Þ was used for the intercept parameters. This

pertained to all conditions. Under conditions with the 3PLmodel, B(1,1) was used

as prior for the pseudo-guessing parameter.

Under each condition, 1,000 data sets were generated. In each data set, first the item

parameters were estimated using the estimation methods presented. As a second step,

parameter invariance was investigated for all parameter estimates with the pooled variance

approach for thefirst 500data sets and the simulation-based approach for the remaining500

data sets. In the simulation-based approach, 1,000 artificial data sets were generated per

observed data set to obtain a reference distribution for the calculation of p-values. We

investigated the rate of extreme p-values below .05 for each condition and each method.

4.2. Results under parameter invariance

Wefirst present results on the Type I error rates. Overall, the Type I error ratewas found to

depend strongly not only on the testing approach used, but also on the underlying IRT

model, the sample size and the form of the prior distribution. This was overall not

surprising, since these factors affect howwell the observed cumulative sumprocesses can

be approximated by Brownian bridges. In particular, we found the individual score
contributions of the pseudo-guessing parameter to be skewed, which generally led to an

increased Type I error rate in the 3PL model in smaller samples.

4.2.1. Results for a categorical covariate

The results on the Type I error rates for conditions with a categorical covariate are

summarized in Figure 2. Overall, the pooled variance approach leads to a rather

conservative test under these conditions, with the only exception being the 3PL model
applied to samples of 500 or 1,000 respondents and 30 items.

Overall, the simulation-based approach leads to satisfying results for the 2PL model

under conditionswith a sample size of 1,000 respondents ormore. For the 3PLmodel, the

Type I error rate was strongly increased for conditions with 30 items, but was close to the

nominal alpha level of .05 for conditions with 10 items and samples with 1,000

respondents or more. For both approaches, MAP estimation with a non-informative prior

and ML estimation led to comparable results overall, while the Type I error rate was
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increased for MAP estimation with an agreeing prior under some conditions. For the

pooled variance approach, the Type I error rate was slightly lower for the conditionswith

impact effects than for the conditions without impact effects. The simulation-based

approach, on the other hand, showed an overall comparable Type I error rate for
conditions with and without impact, with the only exception being conditions where an

agreeing prior was used.

4.2.2. Results for a continuous covariate

The results on the Type I error rate for conditions with a continuous covariate are

summarized in Figure 3. Here, the pooled variance approach leads to satisfying results

under all conditions. The simulation-based approach shows Type I error rates close to the
nominal alpha level for the 2PLmodel for samples of about 1,000ormore respondents. For

the 3PL model, the Type I error rate was strongly increased, with the only exceptions

being some conditions with very large samples. Again, MAP estimation with a non-

informative prior and ML estimation led to overall comparable results, while the Type I

error rate was increased for MAP estimation with an agreeing prior under some

conditions.Whereas conditionswith andwithout impact effects led to comparable results

for the pooled variance method, the simulation-based method showed an overall

increased Type I rate when impact was present.

4.3. Results on the sensitivity against DIF effects in the 2PL model

4.3.1. Results for a categorical covariate

Figures 4 and 5 present the results on power against DIF in the slope parameter and

intercept parameter, respectively, for the 2PL model for conditions with a categorical

covariate. As can be seen, both the pooled variance and the simulation-based approach

Figure 2. Type I error rate for various conditions of test length, sample size and presence of impact

with a categorical covariate for MML estimation (green) and MAP estimation with a non-informative

(blue) and an agreeing prior (red).
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have power against the simulated DIF effects. Overall, the simulation-based approach had

slightlymore power, but also showed an increased Type I error rate under conditionswith

500 respondents and 30 items. For both approaches, the power was overall higher in

conditions where impact was absent.

Figure 3. Type I error rate for various conditions of test length, sample size and presence of impact

with a continuous covariate for MML estimation (green) andMAP estimationwith a non-informative

(blue) and an agreeing prior (red).

Figure 4. Power against DIF in the slope parameter in the 2PL model for various conditions of test

length, sample size and presence of impact with a categorical covariate for MML estimation (green)

and MAP estimation with a non-informative (blue) and an agreeing prior (red).
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4.3.2. Results for a continuous covariate

Figures 6 and 7 present the corresponding results on power against DIF in the slope

parameter and intercept parameter, respectively, for conditions with a continuous

Figure 5. Power against DIF in the intercept parameter in the 2PL model for various conditions of

test length, sample size and presence of impact with a categorical covariate for MML estimation

(green) and MAP estimation with a non-informative (blue) and an agreeing prior (red).

Figure 6. Power against DIF in the slope parameter in the 2PL model for various conditions of test

length, sample size and presence of impact with a continuous covariate for MML estimation (green)

and MAP estimation with a non-informative (blue) and an agreeing prior (red).

742 Rudolf Debelak et al.



covariate in the 2PL model. Again, both approaches showed power against DIF effects,

although the pooled variance approach had more power under these conditions. Again,

the powerwas higher overall in conditionswhere impactwas absent for both approaches.

Figure 8. Power against DIF in the slope parameter in the 3PL model for various conditions of test

length, sample size and presence of impact with a categorical covariate for MML estimation (green)

and MAP estimation with a non-informative (blue) and an agreeing prior (red).

Figure 7. Power against DIF in the intercept parameter in the 2PL model for various conditions of

test length, sample size and presence of impact with a continuous covariate for MML estimation

(green) and MAP estimation with a non-informative (blue) and an agreeing prior (red).
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4.4. Results on the sensitivity against DIF effects in the 3PL model

4.4.1. Results for a categorical covariate

Figures 8–10 present the results on power against DIF in the slope, intercept and pseudo-

guessing parameter for the 3PLmodel for conditionswith a categorical covariate. Overall,

Figure 9. Power against DIF in the intercept parameter in the 3PL model for various conditions of

test length, sample size and presence of impact with a categorical covariate for MML estimation

(green) and MAP estimation with a non-informative (blue) and an agreeing prior (red).

Figure 10. Power against DIF in the pseudo-guessing parameter in the 3PL model for various

conditions of test length, sample size and presence of impact with a categorical covariate for MML

estimation (green) and MAP estimation with a non-informative (blue) and an agreeing prior (red).
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the results mirror those for the 2PL model, although it should be considered that the

simulation-based approach showed an increased Type I error rate for conditions with 30
items for the 3PL model. The high rate of positive rates in small samples should therefore

Figure 11. Power against DIF in the slope parameter in the 3PLmodel for various conditions of test

length, sample size and presence of impact with a continuous covariate for MML estimation (green)

and MAP estimation with a non-informative (blue) and an agreeing prior (red).

Figure 12. Power against DIF in the intercept parameter in the 3PLmodel for various conditions of

test length, sample size and presence of impact with a continuous covariate for MML estimation

(green) and MAP estimation with a non-informative (blue) and an agreeing prior (red).
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not be interpreted as an indicator of high power, but indicate that the method tends to

provide positive results in small samples for the 3PLmodel. Both approaches showed only

low power against DIF in the slope parameter. As was the case for the 2PL model, the

power was higher overall in conditions where impact was absent.

4.4.2. Results for a continuous covariate

Figures 11–13 present the corresponding results on power against DIF in the slope,

intercept and pseudo-guessing parameter for conditions with a continuous covariate.

Here,we focus on the results for thepooled variance approach, since the simulation-based

approach showed an increased Type I error rate. It can be seen that this approach has

power against all simulated DIF effects, given a sufficiently large sample. Again, we found

higher power in conditions without impact effects.

5. An empirical application

As an illustration of the new method, we demonstrate its application to the

MathExam14W data set from the psychotools package (Zeileis, Strobl, Wickelmaier,

Komboz, & Kopf, 2020). This data set contains the responses of 729 business and
economics students to 13 items in a written introductory mathematics exam at the

University of Innsbruck, Austria. The items were single-choice items with five response

options per item, and aimed to assess the basics of analysis, linear algebra and financial

mathematics. Eight items (1, 5, 6, 7, 8, 9, 11, 12)were used in two different versions in this

exam. The two versions differed in their wording, but aimed to assess the same skills;

moreover, one version was presented in the morning, whereas the other one was

Figure 13. Power against DIF in the pseudo-guessing parameter in the 3PL model for various

conditions of test length, sample size and presence of impact with a continuous covariate for MML

estimation (green) and MAP estimation with a non-informative (blue) and an agreeing prior (red).
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presented later, after the assessment of the first grouphadfinished.Wewant to investigate

parameter invariance for these two groups of respondents.

In this illustrationwe aremodelling the observed responseswith the 3PLmodel,which

seems plausible for this data set. We are further interested whether the item parameters

differ between the two groups. The R code for reproducing this demonstration is available

in the Supporting Information. In this application, we are comparing two estimation

methods. The first method is a score-based DIF test where all item parameters are

estimated by an MML approach. The second method employs an MAP approach, using a
non-informative prior. This estimation method uses flat normal distributions centred

around 0 and 1 for the intercept and slope parameters, respectively. The non-informative

prior uses a uniform distribution between 0 and 1 for the guessing parameters. We first

present the estimated parameter values under the two approaches in Table 1.

As can be seen, the MML and MAP estimations tend to lead to numerically comparable

item parameter estimates for most items. For items 7 and 9, the ML approach leads to

extreme values for the slope and intercept parameters, which are not observed under the

non-informative prior. The p-values for both estimation methods are close to 0 using the
simulation-based and pooled variance approaches, which indicates a violation of

measurement invariance for at least one item parameter. It should be noted that the

pooled variance approach was found to be conservative in the simulation studies under

similar conditions,whereas the simulation-based approachwas found to be slightly liberal

(see the bottom left panels for the pooled variance and simulation-based approach in

Figure 2).

6. Discussion

This study has discussed the application of theoretical results analogous to those of Zeileis

and Hornik (2007) and Hjort and Koning (2002) for testing the invariance of model

parameters in the context of BayesianMAPestimation andmultiple-group IRTmodels.We

argued that this framework can still be applied after a centring and a groupwise

decorrelation of the individual score contributions, and we discussed standard models

Table 1. Estimated slope (a), intercept (d) andpseudo-guessing (c) itemparameters usingMML and

MAP estimation

Item number a (MML) a (MAP) d (MML) d (MAP) c (MML) c (MAP)

1 3.797 3.778 −3.323 −3.249 0.423 0.421

2 1.479 1.463 1.111 1.120 0.000 0.000

3 1.532 1.529 1.411 1.423 0.000 0.000

4 1.859 1.855 −0.712 −0.689 0.183 0.181

5 1.244 1.240 1.054 1.063 0.000 0.000

6 1.501 1.492 0.785 0.796 0.000 0.000

7 23.191 6.389 −27.543 −7.708 0.106 0.099

8 2.126 2.123 0.851 0.868 0.000 0.000

9 27.480 6.150 −21.096 −4.627 0.285 0.272

10 2.381 2.507 −1.334 −1.407 0.138 0.145

11 2.293 2.258 1.960 1.965 0.000 0.000

12 1.793 1.790 0.756 0.770 0.000 0.000

13 1.271 1.353 −0.990 −1.067 0.151 0.164
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which could be used for testing the invariance in sufficiently large samples. Our

considerations led to two alternative approaches: a pooled variance approach and a

simulation-based approach. The approaches presented lead to DIF tests that check the

null model that all item parameters in an item set are invariant with regard to a categorical
or continuous person covariate.

Thepooled variance approach is based on the assumption that the covariancematrices

of the individual score contributions can be treated as equal. If this assumption is met, p-

values are calculated via an asymptotic model. Under the conditions used in our

simulation study, this approachwas found to be conservative, and could still be applied in

rather small samples. It was also found to be sensitive against various forms of DIF effects,

although its power also depended on the sample size, test length and type of DIF effect.

Future work should investigate possible practical limitations of this approach that could
occur if the underlying assumption of equal covariance matrices is strongly violated.

The simulation-based approach, on the other hand, aims to simulate data from a

reference model that should asymptotically hold if the parameters are invariant. As the

original approachof Zeileis andHornik (2007), this approach is based on a functional limit

theorem and therefore requires sufficiently large samples. This approach tended to show

an increased Type I error rate in small samples. Conceptually, this approach relies on

assumed approximation of the cumulative score processes of all item parameters by a

restricted standard Brownian motion. If the number of items increases, this approxima-
tion is more likely not to hold for individual items. It follows that this approach can be

expected to become more unreliable with an increasing number of items, which

corresponds to the results of our simulation study. Furthermore, this approximation can

be expected to become more unreliable when the individual score contributions show a

distribution with a high skewness. In our simulation studies, this was observed for the

individual score contributions of pseudo-guessing parameters. This observation might

explain why the Type I error rate of the simulation-based approach was generally much

higher for the 3PL model than for the 2PL model.
Our results still indicate that this approach can be useful in the comparatively simple

and widely used 2PL model and, for large samples and short tests, the 3PL model. Under

several conditions, the power of this approach exceeded that of the pooled variance

approach.

An important characteristic of both approaches is that, since they depend on

asymptotic results for the cumulative sums of the individual score contributions, their

power and Type I error depend on the chosen prior distribution. This is illustrated by the

results of the simulation study.
Additional testing approaches can be imagined in the score-based framework

presented. A first extension, already discussed in the previous literature (Merkle &

Zeileis, 2013; Merkle et al., 2014), pertains to the use of additional test statistics. Second,

one could use additional methods for the calculation of p-values besides the pooled

variance and simulated-based approaches presented. For instance, one could use

approaches based on the resampling of the individual score contributions (e.g.,

permutation or bootstrap tests) to detect significant deviations from the null model. In

a small simulation study, we found that such tests did not offer practical advantages over
the pooled variance and simulation-based methods, but future work could investigate

such tests for several alternative conditions and IRT models.

A potential limitation of the evaluated approaches is that we focused on multiple-

group IRT models where all items were restricted to be invariant to estimate impact

effects. This restriction is related to the tested null model, which also assumes that all item
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parameters are invariant, and it might not be suitable for applications where some items

cannot be considered to be stable beforehand. As a possible solution, one could further

adapt the presented procedure to obtain an itemwise DIF test for individual items or item

groups which assumes the invariance of a selected set of anchor items. This set of anchor
items would also be used for estimating impact effects. These tests would differ in two

aspects from the tests presented here. First, an IRT model would be estimated where the

itemparameters of both the anchor items and the items thatwill be investigated forDIF are

restricted to be invariant; item parameters of any other items would be allowed to differ

between groups of respondents. Second, the test statistics of the score-based tests would

be calculated using only processes that correspond to item parameters of items that we

want to test for DIF. The overall DIF tests evaluated in this paper result as a special case,

where all items are simultaneously tested for parameter invariance. The evaluation of
these itemwise DIF tests is left as a topic for future work.

Another interesting question concerns the robustness of this approach against

violations of the assumptionsmade in the impact and itemparameter estimation, such as a

misspecification of the groups used and the distribution of the ability parameters. Debelak

and Strobl (2019) investigated a similar research question for the pooled variance

approach in two simulation studies and found it to be robust against moderate violations

of the underlying assumptions. However, their study also found an increased Type I error

rate of this test when an impact effect related to the covariate tested for DIF is not
modelled. Future research might further investigate the robustness of the proposed

methods.

Finally, similar approaches could be applied in a full Bayesian approach. A possible and

straightforward extension of this kind could determine posterior predictive p-values for

Bayesian model checks. These possible extensions should be investigated and evaluated

in future work.

7. Computational details

All calculations were carried out in the R framework for statistical computing (R Core

Team, 2020), version 4.0.2. The MAP and MML estimators were calculated using the mirt

package (Chalmers, 2012), version 1.30. The pooled variance approach was calculated

with the strucchange package (Zeileis et al., 2002), version 1.5–1. The simulation-based

approach was applied with R code that was written specifically for this study.
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