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Abstract
Purpose: To investigate the use of statistical process control (SPC) for quality
assurance of an integrated web-based autoplanning tool, Radiation Planning
Assistant (RPA).
Methods: Automatically generated plans were downloaded and imported into
two treatment planning systems (TPSs), RayStation and Eclipse, in which they
were recalculated using fixed monitor units. The recalculated plans were then
uploaded back to the RPA, and the mean dose differences for each contour
between the original RPA and the TPSs plans were calculated. SPC was used
to characterize the RPA plans in terms of two comparisons:RayStation TPS ver-
sus RPA and Eclipse TPS versus RPA for three anatomical sites, and variations
in the machine parameters dosimetric leaf gap (DLG) and multileaf collima-
tor transmission factor (MLC-TF) for two algorithms (Analytical Anisotropic
Algorithm [AAA]) and Acuros in the Eclipse TPS. Overall, SPC was used to
monitor the process of the RPA, while clinics would still perform their routine
patient-specific QA.
Results: For RayStation, the average mean percent dose differences across
all contours were 0.65% ± 1.05%, −2.09% ± 0.56%, and 0.28% ± 0.98%
and average control limit ranges were 1.89% ± 1.32%, 2.16% ± 1.31%, and
2.65% ± 1.89% for the head and neck, cervix, and chest wall, respectively. In
contrast, Eclipse’s average mean percent dose differences across all contours
were −0.62% ± 0.34%, 0.32% ± 0.23%, and −0.91% ± 0.98%, while average
control limit ranges were 1.09% ± 0.77%, 3.69% ± 2.67%, 2.73% ± 1.86%,
respectively.Averaging all contours and removing outliers,a 0% dose difference
corresponded with a DLG value of 0.202 ± 0.019 cm and MLC-TF value of
0.020 ± 0.001 for Acuros and a DLG value of 0.135 ± 0.031 cm and MLC-TF
value of 0.015 ± 0.001 for AAA.
Conclusions: Differences in mean dose and control limits between RPA and
two separately commissioned TPSs were determined.With varying control limits
and means, SPC provides a flexible and useful process quality assurance tool
for monitoring a complex automated system such as the RPA.
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1 INTRODUCTION

Autocontouring and autoplanning tools are gaining
prominence in radiotherapy (RT) research, in part
because they may provide better access to RT
globally.1,2 The Radiation Planning Assistant (RPA) is an
integrated web-based autocontouring and autoplanning
tool, currently under development, which provides plans
calculated on standard linear accelerators (e.g., Varian
2100 using Golden Beam data).3 Users must then recal-
culate the plans in their own treatment planning systems
(TPSs) for their own accelerators. Currently, the RPA
provides autocontouring and autoplanning for complex
plans,such as volumetric modulated arc therapy (VMAT)
of the head and neck4–6 and postmastectomy RT to
the tangential and supraclavicular fields with field-in-
field segments7 (called “chest wall” hereafter), as well
as simpler plans such as four-field box RT of the uterine
cervix8–10 and opposed lateral beam treatment of the
whole brain.11

However, these techniques also require a rigorous
quality assurance (QA) system to ensure safety is main-
tained and errors are identified within the process of the
RPA before treatment delivery.1,2 With such a complex
system with diverse applications,an intuitive,flexible QA
system is needed to monitor plans as they are calcu-
lated and exported from different TPSs. In addition, the
purpose of this QA application needs to be focused on
the process to ensure that communication of changes
presented by both the RPA and the user’s TPS do not
introduce any additional errors. From a user’s perspec-
tive, their standard QA procedure, which may include
measurement-based QA, such as gamma analysis for
patient-specific QA, has to still be performed outside of
the RPA process to inform clinics of the acceptability of
plans. Specifically, monitoring dose calculations in the
user’s TPS and comparing them with those calculated
for standard linear accelerators by the RPA may identify
unintentional errors or changes in the overall automated
process or in the end user’s systems. For example,
changes in dosimetric settings in the end user’s sys-
tems, such as the calibration of the planning system or
changes to the multileaf collimator (MLC) parameters
(e.g.,dynamic leaf gap or transmission) may affect dose
calculations.Other process changes, intentional or unin-
tentional, that could result in dosimetric changes include
changes to the CT-electron density table used for dose
calculations and changes to the threshold values used
to determine the body contour.12 Because RPA plans
are calculated twice—once by the RPA system and
once by the end user’s own TPS—QA systems for RPA
should compare the two plans and identify differences
or changes over time.

Statistical process control (SPC) has been previously
used for dosimetric verification,13–17 patient-specific
QA,18–20 expansion of contour margins,21 verification
of patient positioning,22 and evaluation of MLC and

machine performance,23–25 in image-guided RT26 and
adaptive RT.27 The diverse use of SPC provides the
flexibility to monitor the RPA’s system. Understanding
how SPC means and control limits are affected by differ-
ing TPSs and machine parameters may provide insight
into how to monitor and assess errors in autocontouring
and autoplanning systems. The purpose of this study
was to determine the expected differences in means
and control limits for different anatomical sites,contours,
and machine parameters. Specifically, we used SPC to
compare the mean percent dose differences and control
limits of different TPS/algorithm combinations for three
anatomical sites/treatment approaches (head and neck
VMAT, cervix VMAT, and chest wall 3DRT) and machine
parameters for head and neck VMAT plans (dosimetric
leaf gap [DLG] and MLC transmission factor [MLC-TF]).
It is of note that the purpose of monitoring the mean
percent dose differences for each contour is to identify
gross changes throughout the RPA process.

2 METHODS

SPC has been used in several applications concern-
ing RT and can help identify gross errors in the overall
process. Specifically for our study, here are some exam-
ples of errors and their expected impact on the dose
distributions that our QA might be able to observe: (a)
changes in CT scanner, for example, poor description
by the original CT number - electron density tables;
(b) changes in MLC parameters, for example, MLC-
TF or DLG, which could be changed unintentionally
when local TPS is upgraded; and (c) changes in dose
calculation algorithm used locally where beam charac-
teristics are not well matched with the original dose
calculation algorithm.Several task groups based on TPS
commissioning and quality assurance, including TG-53
and TG-157, have shown that beam models can affect
accuracy of dose calculations and supposedly, changes
in these parameters either intentional or unintentional
might produce further errors concerning the dose
distribution.28,29

The general workflow of the RPA begins with the
upload of a CT scan and a service request form that
contains pertinent information such as dose prescrip-
tion and treatment approach. After the clinical user
and radiation oncologist accept the prescription and
approach, the RPA automatically performs contouring
and planning. The RPA-generated plan is then down-
loaded from the RPA website and imported into the
user’s TPS, in which the user recalculates the dose and
completes any desired edits to the plan. Once finalized,
the user-calculated plan is uploaded back to the RPA
for comparison with the original RPA plan.This workflow
was designed to facilitate the deployment of the RPA
to many centers without the need to specifically com-
mission the RPA for local linear accelerators, thereby
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reducing overall running costs.3 However, the users still
need their own TPS.

For this study, RPA plans, including the generated
contours, were downloaded and imported into either
RayStation v10B (RaySearch Laboratories) or Eclipse
v13.6 (Varian) TPS (or both), mimicking an expected
clinical workflow. The TPS was then used to recalculate
the plans using fixed monitor units within contours pro-
vided by the RPA. Following the general workflow, the
recalculated plans were uploaded back to the RPA, and
the percent mean dose difference between the original
RPA plan and the recalculated plan for each contour was
calculated.

SPC was used to monitor the variations in per-
cent mean dose difference for each contour. Upper
control limits (UCL), lower control limits (LCL), and
individual control charts were generated according to
Equations (1) and (2)30:

UCL = 𝜇 + 3 ∗ 𝜎 (1)

LCL = 𝜇 − 3 ∗ 𝜎 (2)

where μ is the mean and σ is the standard devia-
tion. Mean percent dose differences that fell outside
of the calculated control limits were removed from the
calculation of the mean and standard deviation.

The following RT plans were generated using the RPA
(Varian Clinac): VMAT for head and neck cancers,5,6

VMAT for cervical cancers,9,10 and chest wall tangential
and supraclavicular fields (with field-in-field segments).7

The previous references contain an in-depth view and
analysis of how these plans and contours are gener-
ated by the RPA.5–10 Using the general workflow of
the RPA previously mentioned, SPC was used to com-
pare RPA through two methods: (i) anatomical and
TPS/algorithmic differences,and (ii) machine parameter
differences.It is important to note that the comparison by
TPS/algorithm used separate systems, commissioned
separately by different teams. This limits the true direct
comparison of the TPS/algorithms; however, the flexi-
bility of SPC, specifically its monitoring of trends over
time and the process of the system,allows us to monitor
changes based on their differences to identify poten-
tial errors or changes to the user’s independent system.
In addition, the anatomical comparison between met-
rics for the target and structures was based solely on
anatomical regions and their corresponding structures
that are supported by the RPA, no structural delineation
comparison was performed.

2.1 Anatomical and TPS/algorithmic
differences in control limits

To determine how control limits varied by the anatomical
site and by differences in TPS and dose calculation algo-
rithm, we generated 32 head and neck VMAT plans, 33

cervical four-field box RT plans, and 51 chest wall plans
with the RPA using an Analytical Anisotropic Algorithm
(AAA) (Eclipse v.13.6). Specifically, the head and neck
VMAT plans consisted of three arcs with energy of 6 MV,
cervical four-field box plans had an energy of 18 MV,
and chest wall plans had 12 beams at energy of 6 MV
and 18 MV with an additional two supraclavicular fields
with energy of 18 MV. These plans were downloaded
and imported into the TPSs. The dose calculation algo-
rithm used by the RayStation v10B TPS was collapsed
cone convolution (CCC),and the Eclipse v13.6 dose cal-
culation algorithm was Acuros (dose to medium). The
resulting plans were compared to the original RPA plans,
and for each contour, a percent mean dose difference
was calculated. Using Equations (1) and (2), control lim-
its were calculated on the basis of these percent mean
dose differences.

2.2 Machine parameter differences in
control limits

To determine how control limits varied by machine
parameter and dose calculation algorithm in the same
TPS,we generated 30 head and neck VMAT plans using
the RPA, downloaded them, and imported them into
Eclipse v13.6. Dose calculation was performed on a
different machine from that used to calculate the RPA
plans and used either AAA or Acuros algorithm. In addi-
tion, DLG and MLC-TF were varied for each plan. The
choice of DLG and MLC-TF was based on a study by
Glenn et al.31 that found that for the Eclipse TPS, these
parameters had the greatest impact on dose changes
among treatment parameters. Using the 2.5th–97.5th
percentiles of the values determined by Glenn et al.,
we selected five values for DLG (0.1, 0.155, 0.17, 0.19,
0.23 cm) and four values for MLC-TF (0.0118, 0.0145,
0.0158, 0.0165).31,32 The DLG and MLC-TF values for
RPA plans were 0.2 cm and 0.02, respectively. While the
value of either DLG or MLC-TF was varied, the other
parameter value was held constant at that of the RPA
plan.The resulting plans with variation in DLG and MLC-
TF values were compared to the original RPA plans
(i.e.,Eclipse-AAA),and for each contour,a percent mean
dose difference was calculated. Using Equations (1)
and (2), control limits were calculated based on these
percent mean dose differences. Linear regression was
performed to characterize how the control limits and
means changed with variations in DLG and MLC-TF.

3 RESULTS

3.1 Anatomical and TPS/algorithmic
differences in control limits

Table 1 provides the UCL, mean percent difference, and
LCL for a selection of contours for each anatomical site.
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TABLE 1 Percent mean dose differences from the RPA plan for selected contours from three anatomical sites

Site/contour
RayStation-CCC mean
(LCL, UCL)a

Eclipse-Acuros mean
(LCL, UCL)a

Head and neck

Brain −0.21 (−0.44, 0.01) −0.24 (−0.42,−0.05)

CTV1 2.19 (1.04, 3.34) −0.25 (−1.25, 0.75)

CTV2 1.26 (0.11, 2.40) −0.22 (−0.72, 0.28)

CTV3 1.11 (−0.09, 2.31) −0.36 (−0.82, 0.10)

Oral cavity 1.47 (0.24, 2.71) −0.37 (−0.72,−0.02)

Left submandibular gland 1.71 (0.14, 3.27) −0.94 (−1.59,−0.28)

Right submandibular gland 1.74 (0.45, 3.04) −0.98 (−1.57,−0.39)

Larynx 2.28 (1.09, 3.47) −0.97 (−1.57,−0.38)

Mandible 1.11 (0.20, 2.02) −1.60 (−2.39,−0.81)

PTV1 2.29 (1.00, 3.59) −0.48 (−1.83, 0.88)

PTV2 2.18 (−1.19, 5.55) −0.15 (−0.68, 0.37)

PTV3 1.55 (−0.03, 3.14) −0.32 (−0.74, 0.10)

Left parotid 0.49 (−0.61, 1.60) −0.95 (−1.33,−0.57)

Right parotid 0.43 (−0.63, 1.49) −0.93 (−1.20,−0.66)

Cervix

Left femoral head −1.78 (−2.78,−0.77) 0.21 (−0.92, 1.34)

Right femoral head −1.79 (−2.81,−0.77) 0.19 (−0.93, 1.31)

L4 −2.21 (−4.87, 0.45) 0.49 (−4.43, 5.41)

L5 −2.59 (−3.43,−1.74) 0.48 (−1.31, 2.27)

Chest wall

Clinical chest wall 1.51 (−1.65, 4.67) −1.55 (−3.62, 0.52)

Clavicle −0.86 (−2.20, 0.49) −3.60 (−5.64,−1.56)

Heart −0.17 (−0.68, 0.35) −0.10 (−0.68, 0.49)

Humeral head −0.34 (−1.18, 0.50) −0.52 (−1.01,−0.03)

Left lung −0.40 (−1.66, 0.86) −0.36 (−1.97, 1.25)

Right lung −0.34 (−1.69, 1.02) −0.32 (−1.79, 1.15)

Ribcage −0.17 (−1.05, 0.71) −1.99 (3.59,−0.39)

Supraclavical 0.23 (−1.33, 1.78) −1.21 (−2.69, 0.28)

Spinal canal −0.17 (−0.51, 0.17) −0.14 (−0.35, 0.07)

Sternum 0.61 (−0.56, 1.78) −0.48 (−1.53, 0.57)

Abbreviations: CCC, collapsed cone convolution; CTV, clinical target volume; LCL, lower control limit; PTV, planning target volume; RPA, Radiation Planning Assistant;
UCL, upper control limit.
aAll values are percentages.

Specifically,head and neck and chest wall cases showed
approximately 70% of contours being less than 2%
in the mean differences between separately commis-
sioned planning systems (RayStation-CCC and Eclipse-
Acuros). All percent dose differences are relative to the
automated plan.

The individual control charts for head and neck
contours showed that mean percent dose differences
and control limits varied by structure and by the
TPS/algorithm combination (Figure 1). In general, the
differences for organs at risk (OARs) were smaller
than those for targets. For RayStation-CCC, the aver-

age range of the control limits (UCL−LCL) was
1.89% ± 1.32%, with an average mean percent dose
difference across all contours of 0.65% ± 1.05%. In
contrast, Eclipse-Acuros’ average range was smaller, at
1.09% ± 0.77%, with an average mean percent dose
difference across all contours of −0.62% ± 0.34%.
Figure 1 shows example contours where this can be
identified, especially in the primary target. Compari-
son of the two TPS/algorithm combinations showed
that the average absolute difference in means was
1.31% ± 1.05% and the average absolute difference
in range was 0.88% ± 1.12%. Overall, RayStation-CCC
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F IGURE 1 Selected individual control charts for head and neck contours. Left: percent dose difference between RPA and RayStation-CCC.
Right: percent dose difference between RPA and Eclipse-Acuros. Blue circles: individual cases. Solid green lines: mean percent dose difference
calculated by SPC for the indicated contours. Dotted red lines: upper and lower control limits calculated by SPC for the same contours. RPA,
Radiation Planning Assistant; CCC, collapsed cone convolution; SPC, statistical process control; PTV, planning target volume

produced a higher dose than did the RPA plan, whereas
Eclipse-Acuros produced a smaller dose than the RPA
plan.

Unlike the head and neck contours, the mean per-
cent dose differences for cervix contours showed larger
and more consistent discrepancies between RPA and
RayStation-CCC as opposed to Eclipse-Acuros plans
(Figure 2a). The average mean percent dose differ-
ence for all cervix contours was −2.09% ± 0.56%
for RayStation-CCC, but only 0.32% ± 0.23% for
Eclipse-Acuros. Nonetheless, the average range of per-
cent dose differences was larger for Eclipse-Acuros,
at 3.69% ± 2.67%, than for RayStation-CCC, at
2.16% ± 1.31%. The average absolute difference in
means across the cervix contours between RayStation-
CCC and Eclipse-Acuros was 2.41% ± 0.77%, with an
average absolute difference in range of 1.56% ± 1.49%.
Unlike the head and neck plans, cervix plans with
RayStation-CCC produced a lower dose than the RPA
plan,whereas Eclipse-Acuros plans had a slightly higher
dose than the RPA plan.

Finally, for chest wall plans with tangents and supr-
aclavicular fields, we observed similar differences in
means and control limits to those found in head and
neck plans (Figure 2b). For RayStation-CCC, the aver-
age range of the control limits was 2.65% ± 1.89%,
with a small average mean percent dose difference
across all contours of 0.28% ± 0.98%. In contrast,
the average range of Eclipse-Acuros was slightly
larger, at 2.73% ± 1.86%, with a much larger aver-
age mean percent dose difference across all con-

tours of −0.91% ± 0.98%. The average absolute
difference in means across the chest wall contours
between RayStation-CCC and Eclipse-Acuros was
1.25% ± 1.46%, with an average absolute difference in
range of 0.83% ± 0.81%. However, in contrast to both
head and neck and cervix plans, RayStation-CCC and
Eclipse-Acuros plans both tended to produce a lower
dose than the RPA plans. However, several contours,
especially those generated by RayStation-CCC, had a
higher dose than that of the RPA, which made the over-
all average positive. As with the head and neck plans,
this effect was associated more with targets than with
OARs.

3.2 Machine parameter differences in
control limits

Figure 3 illustrates how the control limits and mean per-
cent dose differences for the same six head and neck
structures shown in Figure 1 changed along with DLG,
and Table 2 provides the rate of change in the con-
trol limits and mean of the percent dose differences per
0.1 cm of DLG (and 0.01 of MLC-TF) for Acuros and
AAA. These rates of change values for DLG and MLC-
TF were chosen so as to discuss the largest variation
observed based on what has been reported clinically
for varying institutions.31 For Acuros, the control limits
tended to shrink toward the mean as DLG increased.
This feature is especially visible in Figure 3e for the
mandible.However,for AAA,the rates of change for UCL,
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F IGURE 2 Selected individual control charts for (a) cervix and (b) chest wall contours. Left: percent dose difference between RPA and
RayStation-CCC. Right: percent dose difference between RPA and Eclipse-Acuros. Blue circles: individual cases. Solid green lines: mean
percent dose difference calculated by SPC for the indicated contours. Dotted red lines: upper and lower control limits calculated by SPC for the
same contours. RPA, Radiation Planning Assistant; CCC, collapsed cone convolution; SPC, statistical process control

TABLE 2 Rate of change of percent dose differences per 0.1 cm DLG and 0.01 MLC-TF for selected contours of head and neck plans
calculated by Acuros and AAA

Rate of change of percent dose differences/0.1 cm of DLG
Rate of change of percent dose differences/0.01 of
MLC-TF

Acuros AAA Acuros AAA
UCL Mean LCL UCL Mean LCL UCL Mean LCL UCL Mean LCL

Brain 0.16% 0.19% 0.21% 0.32% 0.20% 0.09% 0.26% 0.42% 0.57% 0.44% 0.44% 0.44%

Larynx 2.12% 2.45% 2.78% 2.28% 2.54% 2.80% 2.46% 2.46% 2.37% 2.72% 2.49% 2.26%

Mandible 1.01% 1.87% 2.73% 1.78% 2.02% 2.26% 2.32% 2.28% 2.23% 2.47% 2.36% 2.26%

PTV1 2.88% 3.17% 3.45% 3.41% 3.23% 3.05% 1.87% 1.89% 1.91% 2.13% 1.93% 1.74%

PTV2 1.94% 2.25% 2.56% 1.90% 2.28% 2.65% 1.88% 1.85% 1.82% 1.95% 1.87% 1.83%

Left parotid 1.51% 1.74% 1.96% 1.72% 1.81% 1.89% 2.52% 2.54% 2.55% 2.59% 2.59% 2.58%

Abbreviations: AAA, Analytical Anisotropic Algorithm; DLG, dosimetric leaf gap; LCL, lower control limit; MLC-TF, multileaf collimator transmission factor; PTV, planning
target volume; UCL, upper control limit.

mean, and LCL were similar for five of the six struc-
tures, indicating that the control limits were relatively
independent of DLG. However, there were exceptions,
for example, the brain (Figure 3a), which showed a
widening of control limits as DLG increased. On aver-
age for all contours,a 0% dose difference corresponded
with a DLG value of 0.299 ± 0.180 cm for Acuros and
0.135 ± 0.031 cm for AAA. However, the Acuros value
was greatly skewed by several outliers, including val-
ues greater than 0.5 cm for structures, such as the eye,
lens, and optic nerve. After we removed these outliers,
a 0% dose difference for Acuros corresponded with a
DLG value of 0.202 ± 0.019 cm. The overall changes in

control limits and means for AAA and Acuros for all con-
tours for two DLG values (0.1 and 0.19 cm) can be found
in Figure 4. A comparison of Figures 4a and 4b shows
that targets’means and control limits changed more dra-
matically as the DLG value increases. In contrast, the
means and control limits of OAR structures tended to
not change as dramatically.

For the same six head and neck structures, Figure 5
shows how changes in MLC-TF affected mean dose
differences. Unlike DLG, Acuros tended to show no con-
sistent distinguishing pattern as MLC-TF increased.This
is especially apparent in a comparison of Figures 5a
and 5b,which shows a decrease of control limits and no
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F IGURE 3 Percent dose differences with changes in DLG for head and neck plans calculated with different dose calculation algorithms:
(a) brain, (b) larynx, (c) PTV1, (d) PTV2, (e) mandible, and (f) left parotid. The black, orange, and purple + symbols represent changes in Acuros’
UCL, mean, and LCL, respectively. Yellow, blue, and green x symbols represent changes in AAA’s UCL, mean, and LCL, respectively. The dotted
lines represent the linear fit. AAA had a narrower range between control limits than Acuros. For most contours, Acuros matched the RPA plan at
an approximate DLG of 0.2 cm (removing outliers), while AAA matched the RPA plan at an approximate DLG of 0.14 cm. DLG, dosimetric leaf
gap; PTV, planning target volume, UCL, upper control limit; LCL, lower control limit; AAA, Analytical Anisotropic Algorithm; RPA, Radiation
Planning Assistant

change in control limits as MLC-TF increased, respec-
tively. A similar pattern was observed for AAA. Only
the control limits for planning target volume 1 (PTV1)
showed a slight broadening with increasing MLC-TF,
while the control limits for the other contours remained

steady, indicating, as with DLG, that the control lim-
its were relatively independent of MLC-TF. On average,
for all contours, a 0% dose difference corresponded
with an MLC-TF value of 0.025 ± 0.010 for Acuros
and 0.015 ± 0.001 for AAA. Again, we observed that
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F IGURE 4 Mean percent dose differences, UCL, and LCL for head and neck contours calculated with AAA (orange) and Acuros (blue) at a
DLG of (a) 0.1 cm, and (b) 0.19 cm. As DLG increased toward the value of the optimized DLG (0.2 cm) for the RPA machine, Acuros’ and AAA’s
means and control limits became more similar for all contours. UCL, upper control limit; LCL, lower control limit; AAA, Analytical Anisotropic
Algorithm; DLG, dosimetric leaf gap; RPA, Radiation Planning Assistant; CTV, clinical target volume; GTVn, gross nodal tumor volume; GTVp,
gross primary tumor volume; PTV, planning target volume

this value for Acuros was skewed by several outliers
for structures such as the eye, lens, and optic nerves,
although the effect of these outliers was not as promi-
nent as it was for DLG.After removal of the outliers,a 0%
dose difference for Acuros corresponded to an MLC-TF
value of 0.020 ± 0.001. The overall changes in control

limits and means for AAA and Acuros for all contours for
two MLC-TF values (0.0118 and 0.0165) are shown in
Figure 6. However, in contrast with the pattern observed
for DLG, we observed a consistent rise in the means for
all contours as MLC-TF increased,with the control limits
at approximately the same range around the mean.
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F IGURE 5 Percent dose differences with changes in MLC-TF for head and neck plans calculated for different dose calculation algorithms:
(a) brain, (b) larynx, (c) PTV1, (d) PTV2, (e) mandible, and (f) left parotid. The black, orange, and purple + symbols represent changes in Acuros’
UCL, mean, and LCL, respectively. Yellow, blue, and green x symbols represent changes in AAA’s UCL, mean, and LCL, respectively. The dotted
lines represent the linear fit. AAA had a narrower range between control limits than Acuros. For most contours, Acuros matched the RPA plan
approximately at an MLC-TF of 0.02, while AAA matched the RPA plan approximately at am MLC-TF of 0.015. MLC-TF, multileaf collimator
transmission factor; PTV, planning target volume; UCL, upper control limit; LCL, lower control limit; AAA, Analytical Anisotropic Algorithm; RPA,
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F IGURE 6 Mean percent dose differences, UCL, and LCL for head and neck contours calculated with AAA (orange) and Acuros (blue) with
an MLC-TF of (a) 0.0118, and (b) 0.0165. As MLC-TF increased toward the value of the optimized MLC-TF (0.020) for the RPA machine, Acuros’
and AAA’s means and control limits became more similar for all contours; however, this effect was less pronounced than it was for DLG. UCL,
upper control limit; LCL, lower control limit; AAA, Analytical Anisotropic Algorithm; MLC-TF, multileaf collimator transmission factor; RPA,
Radiation Planning Assistant; DLG, dosimetric leaf gap; CTV, clinical target volume; GTVn, gross nodal tumor volume; GTVp, gross primary
tumor volume; PTV, planning target volume

4 DISCUSSION

In general, several factors must be considered when
using SPC to monitor a process. These can include, but
are not limited to, the known potential systematic errors
throughout a process and the effect of the process on
the metric you are monitoring. Furthermore, the imple-
mentation of SPC is important considering which control
charts might be used (e.g., individual control charts) and
how to identify the number of points that are sufficient
to categorize SPC’s mean and standard deviation.How-
ever, for our specific case,SPC will be integrated into the
RPA as a process QA monitoring system and the deter-
mination of these important considerations concerning
SPC will be determined and adapted by the RPA staff.
We aim to flag outlier situations to the user, rather than
have them develop their own SPC. For further reference

and a graphical representation of the RPA workflow,
please see the several figures provided by Court et al.3

SPC allows for the monitoring of these systems over
time and can alert the user or provider of these tools
to systemic changes or errors that may affect plans.
However, although a fixed threshold (e.g., 5%) may be
sufficient to identify large errors, this approach may not
be sufficient to capture the numerous potential errors
that may arise during the complex process of auto-
contouring and autoplanning. Failure to identify small
potential sources of error may lead to missed oppor-
tunities to identify larger, unintentional changes in how
equipment and automated tools are being used. SPC
can produce individualized results per contour,as shown
in Table 1. Across different TPS/algorithm combina-
tions and anatomical sites, the mean and range of the
control limits varied from tenths of a percent to greater
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than 5%. This variability arose from several factors,
including,but not limited to,TPS/algorithm dose calcula-
tion differences and calibration of machine parameters.

A phantom study by Alghamdi and Tajaldeen33

showed that CCC had better dose agreement in out-
of -field points compared to AAA and Acuros, whereas
it did not agree as well for in-field points of varying
clinical densities. Similarly, our data showed, across all
examined anatomical sites, that the largest differences
between RayStation-CCC and Eclipse-Acuros were in
the doses to primary targets, followed by OARs located
proximally to the primary target (e.g., oral cavity con-
tour for head and neck, left and right femoral heads for
cervix). The doses then began to equalize toward the
distal OARs (e.g.,brain contour for head and neck,heart
contour for chest wall). Particularly for targets near the
surface in head and neck cases, this variability in SPC
control limits may be attributed in part to differences
in dose calculations near the surface and to differ-
ing body contours between Eclipse and RayStation.12

These factors also may explain why the dose differ-
ences in chest wall cases and head and neck cases
were similar among the various contours, but were not
as pronounced in the cervix cases, in which the dose
differences were more uniform across contours. In addi-
tion, this might also provide an explanation as to why we
see the opposite effect of overall dose in Raystation-
CCC versus Eclipse-Acuros for cervix plans compared
to head and neck and chest wall plans.

The dependency of the plan on the choice of machine
parameters can also play a role in determining accept-
able control limits. We found that as DLG or MLC-TF
increased, both the mean and range of control limits
changed for some contours. Specifically, we observed
a smaller range between UCL and LCL with AAA than
with Acuros. This is unsurprising because the RPA plan
also used AAA, though calibrated to different machine
parameters. However, this finding also demonstrates
the need to set variable limits when monitoring a sys-
tem like the RPA; different RT facilities use different
TPS/algorithm combinations. Specifically, Martin-Martin
et al.34 found that AAA and Acuros can differ by up to
6.3% if not properly characterized for VMAT head and
neck flattening filter-free RT cases—well beyond a clin-
ical threshold, though this does not necessarily reflect
the quality of the plan.

As the RPA is multi-institutional, it is imperative to
design a flexible QA system that can adapt to differing
setups and machine configurations.Toward this end, the
mean and control limits depend on setup of the user’s
TPS; therefore, the SPC limits are institution specific. It
is important to emphasize this fact of the SPC limits
being institution specific, because the use of SPC is for
the purpose of analyzing the process that invariably dif-
fers,sometimes largely,between institutions.Specifically,
agreement of their calculations with the RPA will depend
on how their TPS is commissioned, so SPC cannot be

expected to identify commissioning errors, but can be
expected to identify changes in the TPS.

Furthermore, we observed that not all machine
parameters have the same impact across all contours.
In particular, we observed that primary targets were the
most affected when DLG was increased, in terms of
both means and control limits. In contrast, increases in
MLC-TF tended to affect all contours similarly. In addi-
tion, AAA plans were less affected by changes in these
machine parameters than were Acuros plans, for all
contours. Nonetheless, Acuros and AAA became more
similar as both DLG and MLC-TF increased, specifically,
when DLG was 0.2 cm and MLC-TF 0.02, the values
used by the RPA machine. However, we did observe
outliers (e.g., eye, lens, and optic nerves) that skewed
the value of MLC-TF in which Acuros and RPA were
equal. The increased sensitivity of dose changes to
relatively small contours could explain why these con-
tours were outliers and justify their removal from the
calculation.

In this study,we investigated monitoring of mean dose
differences. This choice was initially made so that antic-
ipated differences between treatment planning systems
(especially near the skin surface) would not overly affect
our ability to monitor changes, particularly gross errors.
Also, we did show that SPC can identify changes in pro-
cess (e.g., in the user’s planning system); however, one
limitation of this work is that we did not investigate other
metrics, such as several dose volume histogram met-
rics, maximum dose, or dose to the hottest 1 cm3. These
other metrics might be more adept, when monitored
through SPC, at identifying errors within the process
and increasing sensitivity and specificity of our process
QA. Further investigation is needed to identify the most
appropriate parameter.

5 CONCLUSIONS

This study used SPC to determine the differences in
mean dose and control limits between RPA and two sep-
arately commissioned TPSs. For head and neck and
chest wall cases, most contours had only small mean
differences under different TPS/algorithm combinations
and machine parameters.Because it can account for the
effects of varying control limits and means for different
users and different planning approaches, SPC provides
a flexible and useful QA tool for monitoring a complex
autocontouring and autoplanning system such as the
RPA.
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