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Abstract

Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson’s 

disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by 

specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor 

deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms 

are now recognized as important features of the prodromal stage of PD, we comprehensively 

assessed the clinically relevant motor and nonmotor deficiencies from ages 8–24 wk in both male 

and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark 

mice began around 12–14 wk and became severe by 16–24 wk. Interestingly, MitoPark mice 
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exhibited olfactory deficits in the novel and social scent tests as early as 10–12 wk as compared 

to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory 

deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined 

by the Morris water maze. MitoPark mice between 16–24 wk spent more time immobile in forced 

swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, 

indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior 

as determined by immobility in forced swim test was reversible by antidepressant treatment 

with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB 

phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. 

Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory 

discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well 

as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can 

serve as an invaluable model for studying motor and nonmotor deficits in addition to studying the 

motor deficits related to pathology in PD.
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Introduction

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder affecting 

about 5 million people worldwide. The neuropathology of this disease is characterized 

by a loss of dopaminergic neurons in the substantia nigra (SN) of the brain, leading 

to a functional loss of dopamine in the striatum and severe motor deficits. Additionally, 

accumulations of abnormal alpha-synuclein (αSyn) proteins form Lewy bodies and Lewy 

neurites, both pathologic hallmarks of PD. Several genes have been linked with PD 

including PINK1, Parkin, DJ-1, and LRRK2; however, the vast majority of PD cases are 

considered idiopathic, implicating an etiologic role of environmental factors such as metals, 

pesticides, and other toxins in the development of the disease. Cardinal motor symptoms 

such as bradykinesia, tremor, rigidity, and postural instability are still classically used for the 

clinical diagnosis of PD. Neuroinflammation, oxidative stress and mitochondrial dysfunction 

are thought to contribute to the neurodegenerative processes of this disease (Kanthasamy 

et al., 2010; Subramaniam and Chesselet, 2013; Varcin et al., 2012). Current therapies, 

including levodopa (L-DOPA), monoamine oxidase inhibitors, and dopamine agonists, 

treat the symptoms yet ultimately cannot interrupt or slow down the neurodegenerative 

process. Furthermore, most commonly prescribed treatments do not address the full scope of 

symptomology in PD patients and may even pose an elevated risk of developing nonmotor 

symptoms (Marinus et al., 2018).

In addition to the characteristic motor symptoms, nonmotor symptoms such as hyposmia, 

sleep disturbances, gastrointestinal (GI) dysfunction, autonomic and cognitive deficits 

negatively affect the quality of life and cost of living for PD patients (Schapira et al., 2017). 

Although often overlooked, nonmotor symptoms are a frequent cause of hospitalization 

and diminished quality of life for PD patients (Chaudhuri and Schapira, 2009). More than 
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70% of PD patients present nonmotor symptoms, according to a recent cross-sectional 

observational study (Zhang et al., 2016a). Disease onset in areas of the brain outside of 

the substantia nigra (SN) or even peripheral onset of PD is supported by the idea that 

PD patients experience a variety of nonmotor symptoms before classical motor signs are 

observed (Mahlknecht et al., 2015). Certain symptoms are now considered to be early 

warning signs of PD, including hyposmia, constipation, rapid eye movement behavior 

disorder, and depression (Abbott et al., 2005; Ishihara and Brayne, 2006; Kang et al., 2016; 

Postuma and Berg, 2016). Neuropsychiatric symptoms in PD include depression, dementia, 

anxiety, apathy, and cognitive dysfunction. Olfactory deficits are observed in more than 95% 

of those affected by PD, while depression is estimated to affect more than one-third of PD 

patients (Chaudhuri and Schapira, 2009; Haehner et al., 2011; Meyer et al., 2014).

Although behavioral tests are available to study various nonmotor phenotypes in rodent 

species, large data gaps still remain in understanding the nonmotor phenotype of many 

toxin-based and genetic models of PD (Taylor et al., 2010). Significant overlap and co-

morbidity exist between nonmotor symptoms (Postuma and Berg, 2016), yet combined 

effects or interdependency of behavioral phenotypes have not yet been addressed.

In many toxin-based models of PD, rodent species either do not suffer from PD-related 

nonmotor symptomology or their complete behavioral phenotyping has not yet been 

performed. For example, animals receiving intraperitoneal injections of MPTP display 

inconsistent olfactory impairment across studies (Doty et al., 1992; Kurtenbach et al., 2013; 

Schintu et al., 2009), although intranasal MPTP adminitration can functionally damage 

the olfactory epithelium (Kurtenbach et al., 2013). Although gastric emptying and small 

intestine transit are unaffected by MPTP, the toxin-induced loss of enteric dopaminergic 

neurons increases colon motility (Anderson et al., 2007). Several studies using rodent 

models reported that exposure to the neurotoxic pesticide paraquat or paraquat/maneb co-

administration only induced anxiety- and depression-like behaviors (Campos et al., 2013; 

Litteljohn et al., 2009; Tinakoua et al., 2015). Interestingly, a recent study revealed that 

rotenone-treated zebrafish display motor, olfactory, and neuropsychiatric changes (Wang et 

al., 2017). In the 6-OHDA lesion model, olfactory discrimination, neuropsychiatric effects, 

memory impairment, and gut microbiota changes have been observed (Bonito-Oliva et al., 

2014a; Bonito-Oliva et al., 2014b; Faivre et al., 2019; Koutzoumis et al., 2020).

In transgenic mouse models, only a few αSyn mutant animal models reportedly show 

olfactory and GI functional changes (Dawson et al., 2010; Fleming et al., 2008; Wang et 

al., 2008). A bacterial artificial chromosome (BAC) synuclein transgenic rat model with 

human SNCA displayed progressive motor impairments and alterations in olfaction by 3 

months of age along with an increase in new olfactory bulb neurons (Nuber et al., 2013). 

Parkin knockout mice have spatial memory impairments but do not show evidence of 

olfactory dysfunction, anxiety, depression, or motor deficits (Rial et al., 2014). Dranka et. 
al. identified olfactory dysfunction in the LRRK2R1441G mouse model (Dranka et al., 2014). 

The presence of nonmotor behavioral impairments in PD models would be particularly 

useful if they can be characterized as early-onset and progressive similar to clinical PD. 

It is imperative that we develop and characterize models that recapitulate a broad range 

of nonmotor abnormalities and their associated neurochemical mechanisms. These models 
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could then be utilized in the development of therapies to treat nonmotor symptoms and also 

to screen for adverse effects resulting from dopaminergic therapies.

The MitoPark mouse model, which recapitulates many of the hallmark features of PD, 

was created by selectively inactivating the mitochondrial transcription factor A (TFAM) 

in the nigrostriatal pathway, creating a conditional knockout driven by the dopamine 

transporter (DAT) promoter. MitoPark mice exhibit adult-onset progressive dopaminergic 

neurodegeneration, protein aggregation in nigral tissues, and L-dopa-responsive motor 

deficits (Ekstrand and Galter, 2009; Ekstrand et al., 2007). More recently, MitoPark mice 

were discovered to display certain nonmotor deficits such as all-light- or all-dark-induced 

circadian rhythm dysfunction and early cognitive deficits (Fifel and Cooper, 2014; Li et 

al., 2013). The overarching hypothesis of this present study is that MitoPark mice display 

nonmotor deficits characteristic of PD. Thus, we chronologically characterized the nonmotor 

behavioral phenotype of the MitoPark mouse model of PD in both sexes throughout the 

disease progression.

Materials and Methods

Chemicals

Dopamine hydrochloride, 3–4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid 

(HVA) were all purchased from Sigma (St Louis, MO). Halt protease and phosphatase 

inhibitor cocktail was obtained from Thermo Fisher (Waltham, MA). Bradford assay 

reagent and Western blotting buffers were purchased from Bio-Rad (Hercules, CA). Anti-4-

hydroxynonenal antibody was purchased from R&D Systems (MAB3249, Minneapolis, MN 

(Ghosh et al., 2016)), while anti-BDNF was purchased from Santa Cruz Biotechnology 

(sc-546, Dallas, TX). CREB and p-CREB (Ser133) antibodies were obtained from Cell 

signaling (9104, 87G3, Boston, MA (Jin et al., 2011)). The anti-mouse and anti-rabbit 

secondary antibodies (Alexa Fluor 680 conjugated anti-mouse IgG and IRdye 800 

conjugated anti-rabbit IgG) were purchased from Invitrogen and Rockland Inc., respectively.

Experimental design

The experimenter was blinded to mouse genotype for each behavioral test by flipping 

cage cards and randomizing mouse order prior to beginning the experiment. A third party 

was used to conceal treatment and vehicle solution identity prior to drug administration. 

Genotype and administration blinding was decoded after data acquisition was complete. 

Power analysis using the “fpower” function in SAS was used to determine the following 

animal requirements based on 80% power, alpha=0.05, and four groups. Clinically 

significant differences and standard deviations used to determine delta were taken from 

ANOVA analyses of previous studies in our lab. Based on preliminary forced swim test data, 

a minimum of 11 animals per group were used for behavioral animal studies to detect an 

effect size of 1.5. Male and female mice were combined, for a total of 19 MitoParks and 

25 Littermate control mice used for all behavioral experiments. Mice unable to swim to a 

visible platform were to be excluded from Morris water maze (MWM) on day one, however, 

no such mice were observed in our study.
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Animal treatment

MitoPark mice were originally kindly provided and generated by Dr. Nils-Goran Larson 

at the Karolinska Institute in Stockholm (Ekstrand et al., 2007). All mice for this study 

were bred, maintained, genotyped, and further characterized at ISU. MitoPark mice (DAT 

+/Cre, Tfam LoxP/LoxP) and their littermate controls (DAT +/+, Tfam +/LoxP) were fed 

ad libitum (Teklad S-2335 #7004 from Envigo) and housed in standard conditions (constant 

temperature (22 ± 1°C), humidity (relative, 30%), and a 12-h light/dark cycle) approved 

and supervised by the Institutional Animal Care and Use Committee (IACUC) at ISU. Mice 

were weighed and subjected to behavioral tests every two weeks to minimize effects on 

other behavioral experiments (See Figure 1A). Neurochemical, biochemical, and histological 

studies were performed after sacrificing mice at age 24 wk.

Motor function test

For the open-field test, a VersaMax system (VersaMax monitor, model RXYZCM-16, and 

analyzer, model VMAUSB, AccuScan, Columbus, OH) was used for monitoring locomotor 

activity. For horizontal and vertical activity and corresponding plots, mice were acclimated 

for 2 min prior to recording for 10 min using the VersaMax system. RotaRod equipment 

(AccuScan) was used to test movement coordination as previously described (Ghosh et al., 

2012). Briefly, time spent on rod rotating at 20 rpm was measured for a maximum of either 

20 min or five trials, each of which ended with a mouse falling from the rod.

Neuromuscular function and muscular strength

Each mouse was lifted over the grip strength meter (GSM)’s baseplate by the tail so that 

its forepaws could grasp onto the steel grip. Each mouse was then gently pulled backward 

by the tail until its grip released. The GSM measures the maximal force before the mouse 

releases the bar (Danilov and Steward, 2015). Three trials were performed for each mouse 

with a 1-minute resting period between trials. Latency to release (sec) and gram-force (gF) 

were recorded.

Social discrimination and novel scent tests

To determine the olfactory function of control and MitoPark mice, we used a social 

discrimination test as previously described (Ngwa et al., 2014). However, this procedure 

was adapted to use ANY-maze tracking software (AMS, Stoelting Co., Wood Dale, IL ) to 

determine time spent sniffing based on the animal’s head being within a defined zone (1-cm 

perimeter around dish) surrounding the bedding. Total time spent sniffing the opposite sex’s 

bedding (from a group-housed cage) was recorded during a 3-min trial. Similarly, AMS was 

used to determine time sniffing a novel scent as described by Taylor et al. (Taylor et al., 

2009). During a 3-min trial, time spent sniffing scented and non-scented zones was recorded 

using AMS. Scents used were lemon, peppermint and vanilla, whereas water served as the 

non-scent.

Cognitive testing

A six-day MWM protocol was used as described previously in an Alzheimer’s disease 

mouse model (Bromley-Brits et al., 2011). Briefly, each mouse gets five 1-min trials per day. 
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On the first day, the platform is visible and its position changes between trials to show that 

the ability to see and swim to the platform is not impaired by visual or motor deficits. On 

days 2–5, mice are placed into the MWM tank filled with white (Tempera paint), opaque 

water to learn to find a hidden platform whose position does not change between trials. The 

time required for a mouse to find and mount the platform is reported here as escape latency. 

Finally, the platform is removed on the sixth day when mice performed a single 1-min probe 

trial to show memory retention of the previously located platform, reported here as time 

spent searching in the quadrant that contained the platform during Days 2–5. Each trial was 

monitored using AMS. Each inter-trial interval was a minimum of 20 min, during which 

time mice were warmed and dried on heating pads placed under cages. Water temperature in 

the MWM tank was maintained at 23±1°C.

Forced swim and tail suspension tests

For depressive-like phenotyping, tail suspension and forced swim tests were used to measure 

behavioral despair or stress-coping response during inescapable tasks (Commons et al., 

2017). During tail suspension trials, mice were individually suspended at a height of 30 

cm by attaching the tail to a horizontal ring stand bar using adhesive tape. Each 6-min test 

session was videotaped and scored using AMS for escape-oriented behavior/mobility and 

bouts of immobility. The time spent immobile was recorded for each mouse as a correlate of 

depression-like behavior (Can et al., 2012b; Taylor et al., 2010).

For the Porsolt “forced swim” test, mice were placed individually in a glass cylinder (24 × 

16 cm) with 15 cm of water maintained at 25°C as previously described (Can et al., 2012a; 

Porsolt et al., 1979). Mice were left in the cylinder and their behavior was videotaped from 

the side of the cylinder for 6 min. After the first 2 min, the total duration of time spent 

immobile was recorded during a 4-min test. A mouse was deemed immobile when it was 

floating 65% passively for at least 2.5 sec according to AMS. A separate cohort of mice 

underwent the forced swim test with intraperitoneal administration of the antidepressant 

desipramine or saline 30 min prior to testing (n=7). These mice were immediately sacrificed 

for dissection and Western blotting, so were not subjected to any additional behavioral 

testing.

Elevated plus maze

Time spent in the open arms is inversely correlated with an anxious phenotype (Lister, 

1987), which in rodents emerges as the trade-off between risk avoidance and spontaneous 

exploration of novel environments (Crawley, 2008). Mice were placed into the center of 

the elevated plus maze (Stoelting) and video-recorded for 10 min as previously described 

(Komada et al., 2008). Time spent in open arms was determined by AMS.

Sleep latency test

Animals were allowed to acclimate 4 h in the VersaMax monitor, and were then video-

recorded from above after being awakened by gentle handling. Latency to sleep was 

determined by observer video-monitoring behavioral signs of sleep. Sleep was defined as 2 

min of uninterrupted sleep behavior and 75% of the next ten minutes spent in sleep behavior 

as previously described (Taylor et al., 2009).
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High-performance liquid chromatography (HPLC)

Striatum, hippocampus, and olfactory bulb samples were prepared and processed for 

HPLC as described previously (Gordon et al., 2016). Briefly, dissected brain regions were 

placed in a buffer comprising 0.2 M perchloric acid, 0.05% Na2EDTA, 0.1% Na2S2O5 

and isoproterenol (internal standard) to extract monoamine neurotransmitters. Monoamine 

lysates were placed in a refrigerated automatic sampler (model WPS-3000TSL) until being 

separated isocratically by a reversed-phase C18 column with a flow rate of 0.6 mL/ min 

using a Dionex Ultimate 3000 HPLC system (pump ISO-3100SD, Thermo Scientific, 

Bannockburn, IL). Electrochemical detection was achieved using a CoulArray model 5600A 

coupled with a guard cell (model 5020) and an analytical cell (microdialysis cell 5014B) 

with cell potentials set at −350, 0, 150, and 220 mV. Data acquisition and analysis were 

performed using Chromeleon 7 and ESA CoulArray 3.10 HPLC Software and quantified 

data were normalized to wet tissue weight.

BrdU treatment paradigm

Littermate control and MitoPark mice were injected intraperitoneally with 100 mg/kg BrdU 

daily for 3 days and sacrificed 12 h past the last injection as previously described (Fu et 

al., 2016). For each age, 6–8 mice were used per genotype. Mouse brains were perfused 

with PFA, and then cryoprotected in sucrose before being cryo-embedded in OCT and 

cryosectioned at 30 μm. Sections were treated with HCl to denature DNA prior to IHC 

to allow binding of BrdU antibody. DAB immunostaining was performed for BrdU and 

hematoxylin was used to counterstain the nuclei. Prior to antigen retrieval in citrate buffer, 

DNA was denatured by keeping sections in 1N of ice-cold HCl for 10 min, 2N HCl at 37°C, 

followed by 2 washes (15 min) in borate buffer at pH 8.5. Color deconvolution and cell 

counting were performed in Image J Software.

Western blot

Protein lysates from the striatum and SN were prepared in RIPA buffer with protease and 

phosphatase inhibitors and ran on a 12–15% SDS-PAGE as previously described (Jin et 

al., 2014) before being transferred to a nitrocellulose membrane. After blocking for 1 h, 

membranes were incubated with primary antibodies at 4ºC overnight. Next, membranes 

were incubated with secondary antibodies (Alexa Fluor 680 and Rockland IR800) at RT for 

1 h, and images were captured via a LI-COR Odyssey imager. Densitometric analysis was 

done using ImageJ software.

Statistical analysis

Behavioral tests were analyzed by 3-way ANOVA to determine any significant effect of 

sex or an interaction between sex and genotype. For behavioral tests where sex was not 

a significant source of variation, data were combined and analyzed by two-way ANOVA 

with Bonferroni post-tests in GraphPad Prism software. Data in which sex and/or the 

interaction between genotype and sex was a significant source of variation were separated 

by sex, graphed, and analyzed by two-way ANOVA with Bonferroni post-tests. Similarly, 

biochemical and neurochemical analyses were performed by 2-way ANOVA to check for 

the effect of sex before combining and analyzing by two-tailed Student’s t-test. No data 
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sets analyzed for this study violated the normality assumption, so nonparametric tests were 

not used. For ANOVA and t-tests, p≤0.05 was used to determine significance. Plotted data 

represent mean ± SEM.

Data Availability

Raw data supporting the results reported in this article are in the figure source data files 

available upon request.

Results

Progressive Motor Deficits in MitoPark Mice

Previous studies have characterized motor deficits in MitoPark mice (Ekstrand et al., 2007). 

In our laboratory, some female mice exhibit poor condition after age 24 wk. Therefore, we 

decided to sacrifice at 24 wk instead of the previously reported 40 wk (Ekstrand and Galter, 

2009; Ekstrand et al., 2007). A comprehensive behavioral battery of motor and nonmotor 

tests was performed on the same mice in a strategic order with breaks in between activities 

to avoid confounding effects of other tests as much as possible without using individual 

cohorts of mice for each test (Fig. 1A). Briefly, MWM trials were performed first and 

mice were acclimated for a minimum of 2 h prior to a second behavioral testing period, 

which varied by day in the sequence as depicted in Fig. 1A. Female MitoPark mice revealed 

decreased horizontal activity at 14 wk and vertical activity as early as 12 wk (Fig. 1B–D, 

right panels), which progressively worsened over time. Male mice first showed deficits 

by 16–18 wk in the open-field test (Fig. 1B–D, right panels), yet male MitoPark mice 

spent significantly less time on the RotaRod from 12 wk onward (Fig. 1E, right panel). 

Female MitoPark mice began spending less time on the RotaRod at 14 wk (Fig. 1E, right 

panel). No significant changes were observed for grip strength at any age between MitoPark 

mice and littermate controls (Fig. 1F), indicating forelimb neuromuscular function remained 

intact. Similar to previous reports, MitoPark mice showed a significant reduction in body 

weight at 20 wk for males and at 22 wk for females (Fig. 1G). Because males and females 

differed significantly overall for certain behavioral parameters, including body weight and 

the learning portion of MWM, they were graphed and statistically analyzed separately 

instead of combined. The overall statistical analysis and additional graphs of combined or 

separated data are also available in Supplementary Figures 1–3 and Supplementary Table 1.

Cognitive dysfunction in MitoPark Mice

To screen for cognitive deficits associated with spatial learning and memory, we next applied 

a six-day MWM protocol as described in Fig. 2A and depicted at 24 wk in Fig. 2B. 

Days 1–5 are track plots of an animal’s path to the visible (day1) or hidden (days 2–5) 

platform. Day 6 occupancy plots reveal time spent in each location during a one-minute 

retention trial with the platform removed. Importantly, average speed (m/s) was determined 

to not significantly differ between genotypes, and all animals were able to find the visible 

platform (day 1) at each age assessed (Supplemental Fig. 2). Recently, Li et al. (Li et al., 

2013) showed that cognitive dysfunction precedes motor deficits in MitoPark mice using 

the Barnes Maze. Similarly, we report that 8-wk MitoPark males exhibited impairments in 

the learning phase of the MWM (Fig. 2C). To our surprise, female MitoPark mice did not 
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show an increase in escape latency until 12 wk of age (Fig. 2F–G). At 24 wk, both male 

and female MitoPark mice were unable to find the platform during the MWM learning phase 

(Fig. 2E, H). Deficits in the memory retention testing phase of MWM were apparent by 

16 wk of age in males and 18 wks of age in females as depicted and quantified in Fig. 2I 

and 2J, respectively. Overall, these results not only confirm previous findings that learning 

deficits precede motor dysfunction in the MitoPark mouse model, but also further describe 

advanced spatial memory problems after 16 wk of age and reveal sex differences in learning 

the MWM platform location.

Behavioral despair and anxiety-like behavior in MitoPark mice

Depression is estimated to affect more than half of Parkinson’s patients and largely 

impacts patients’ quality of life (Balestrino and Martinez-Martin, 2017). MitoPark mice 

were monitored every two weeks for depressive and anxiety-like phenotypes from 8–24 wk 

of age. The tail suspension test (TST) revealed depressive-like behavior as indicated by 

increased immobility time in MitoPark mice at 16 weeks when compared to age-matched 

littermate control mice (Fig 3A). Control mice also showed increased immobility during 

TST at 24 wk. During the Porsolt forced swim test (FST), a significant increase in 

immobility occurred from 14 wk onward in MitoPark mice, while immobility in control 

mice remained relatively constant over time (Fig 3B).

To further support that this finding was due to behavioral despair and not motor 

dysfunction, we treated a subset of 16- and 24-wk mice with desipramine (5 mg/kg, 

i.p.), an antidepressant that increases neurogenesis, and performed the FST 30 min 

post-treatment. In accordance with other studies showing antidepressant efficacy through 

neurogenesis, our Western blotting revealed increased CREB phosphorylation in the 

hippocampus of FST-tested mice versus untested controls (Fig. 3C–D and Supplemental Fig. 

4). However, MitoPark mice did not show significant induction of pCREB unless treated 

with desipramine. Importantly, antidepressant treatment restored CREB phosphorylation to 

the levels in littermate control mice (Fig. 3C–D) and reduced immobility during the FST 

at 16 and 24 wk of age (Fig. 3E and Supplemental Fig. 5A). Neurochemical data showing 

significant increases in norepinephrine and serotonin in desipramine-treated MitoPark mice 

are available in Supplemental Figs. 5B and 6. Our data show that neurochemical restoration 

and increasing pCREB in the hippocampus in desipramine-treated MitoPark mice attenuated 

behavioral despair. Furthermore, the fact that immobility was reduced by antidepressant 

treatment suggests that motor dysfunction in the MitoPark model is not the cause of 

immobility observed during the FST.

We also performed a 10-min elevated plus maze trial to test for anxiety-like behavior in 

MitoPark mice. The open arms are indicated by black arrows and closed arms by red 

arrows in Fig. 3F. Due to their natural preference for darker, enclosed spaces, mice in both 

groups spent less than 5–10% of their time exploring open arms. Despite the overwhelming 

preference for closed arms, clear behavioral differences emerged between groups. The time 

spent in the open arms decreased significantly in MitoPark mice beginning at 14 wk of age 

(Fig. 3G), suggesting a progressive increase in anxious behavior. Taken together, we have 

identified anxiety-like and depression-like changes present starting from 14 wk in MitoPark 
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mice, concurrent with the onset of motor deficits in this model. The neuropsychiatric 

effects observed seem to not be mediated by sleep deprivation, since both sleep latency 

(Supplemental Fig. 7A) and total time sleeping (Supplemental Fig. 7B) during the sleep 

latency test remain unchanged between control and MitoPark mice.

Olfactory dysfunction in MitoPark mice

Some degree of hyposmia is highly prevalent in PD patients and may occur decades prior to 

the onset of motor dysfunction, making screening of olfactory deficits a potential prognostic 

tool in early PD (Ottaviano et al., 2016; Visanji and Marras, 2015). Representative 

occupancy plots from a 3-min trial of the social discrimination test (Fig. 4A) and novel scent 

test (Fig. 4B) at ages 8–24 wk reveal a reduced preference for the scented region (arrow) 

over time in MitoPark mice but not age-matched controls. Olfactory deficits, as indicated 

by significant differences in percent investigatory time during the social discrimination and 

novel scent tests, emerged at 14 and 16 wk, respectively (Fig. 4C–D). Also, fewer entries 

into the scented region during the social discrimination test occurred as early as 10 wk (Fig. 

4E), while during the novel scent test, a significant reduction in entries began at 12 wk of 

age (Fig. 4F). Our results indicate that olfactory deficits begin prior to the onset of motor 

dysfunction in MitoPark mice.

Biochemical changes parallel observed behavioral impairments in MitoPark mice

Next, we tested for specific biochemical changes potentially corresponding to the occurrence 

of key nonmotor behavioral impairments. Since CREB phosphorylation and BDNF levels 

increase in mice post-MWM in a time-dependent manner (Cho et al., 2013; Lee et al., 

2015; Min et al., 2015), we sacrificed mice 10–30 min after the last MWM retention trial 

and performed Western blotting for CREB, phospho-CREB, and BDNF protein levels. The 

significant reductions in CREB phosphorylation (Fig. 5A, C; all full western blot images 

available in Supplemental Fig. 8) and BDNF (Fig. 5A, D) protein levels in the hippocampus 

may be associated with the observed cognitive deficits.

Conversely, the increases in CREB phosphorylation and BDNF in the striatum may be 

related to the depressive phenotype observed (Fig. 5B, F, and G). In both striatal and 

hippocampal tissues, we observed a significant increase in 4HNE, a lipid peroxidation 

product that results from oxidative damage (Fig. 5A, B, E, and H).

Researchers have attempted to link olfactory dysfunction to αSyn deposition since both 

occur early in PD pathogenesis (Reichmann et al., 2016). However, we did not see an 

increase in oligomeric protein in the olfactory bulb of MitoPark mice as determined by 

slot blot for A11 anti-oligomeric protein antibody (Fig. 5I–J). Similar to what Ekstrand et 
al.(Ekstrand et al., 2007) reported in the substantia nigra of MitoPark mice, we did see 

significantly increased protein aggregation in striatal tissues.

Altered neurogenesis in MitoPark mice

The subventricular zone (SVZ) to rostral migratory stream to olfactory bulb pathway 

is responsible for olfactory function and maintenance, while alterations in hippocampal 

neurogenesis in the subgranular zone (SGZ) has been linked to both depression-like 
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behavior and cognition. Therefore, we injected MitoPark and control mice with BrdU 

to see if neurogenesis was affected in this model of chronic, progressive dopaminergic 

neurodegeneration. Littermate control and MitoPark mice were injected i.p. with 100 mg/kg 

BrdU daily for 3 days and sacrificed 12 h past the last injection as shown in the treatment 

paradigm (Fig. 6A). DAB immunohistochemistry for anti-BrdU was performed on sections 

containing the SVZ (Fig. 6B) and SGZ (Fig. 6C) to label proliferative cells counterstained 

with hematoxylin. Although no significant changes in BrdU+ cells were observed at 12 wk 

of age (Fig. 6D and E), MitoPark mice had fewer BrdU+ cells in the SVZ in contrast to 

littermate control mice at ages 16 and 24 wk (Fig. 6F). Similarly, a significant decrease in 

BrdU+ cells is observed in the SGZ in hippocampal sections from 16-wk-old MitoPark mice 

(Fig. 6G). Overall, BrdU staining revealed fewer proliferating cells in both the SVZ and 

SGZ of aged MitoPark mice by 16 wk of age, when multiple nonmotor deficits are observed 

in this model.

Neurochemical changes in MitoPark mice

Depression-like behaviors in toxin-based models of PD have been predominantly associated 

with reductions in hippocampal serotonin and striatal dopamine (Santiago et al., 2010). 

However, no significant changes were observed in hippocampal neurotransmitters (Fig. 

7A), indicating that observed changes in depressive behavior are instead possibly due to 

neurogenesis or plasticity modifications. As anticipated, strong reductions in dopamine and 

its metabolites were observed in the striatum of MitoPark mice, corresponding to the motor 

phenotype of the model (Fig. 7B). In our study, levels of dopamine and serotonin were 

reduced in the olfactory bulbs of 24-wk MitoPark mice (Fig. 7C), which may help explain 

the hyposmia in this model. However, Branch et. al. reported a dopamine reduction in the 

olfactory bulb that did not occur until a later age (Branch et al., 2016). Because DOPAC 

also increased (Fig. 7C), we examined whether enhanced dopamine turnover occurred in the 

olfactory bulbs of MitoPark mice. Indeed, a similar decrease in dopamine occurred despite 

an increase in DOPAC in 24-wk MitoPark brainstem samples (Figure 7D). Since oligomeric 

protein did not significantly increase in the olfactory bulb (Fig. 5I–J), the hyposmia most 

likely resulted from neurochemical changes rather than protein aggregation. Future studies 

should explore the role of specific olfactory receptors in this model at various stages to 

better elucidate the mechanism of hyposmia in MitoPark mice.

Discussion

MitoPark mice recapitulate several features of PD in humans, including a progressive course 

of the phenotypic manifestations and neurodegeneration, protein inclusions in nigral tissues, 

motor deficits that are ameliorated by L-DOPA administration, an altered response to L-

DOPA treatment, and adult-onset of disease. However, the full range of nonmotor deficits in 

the MitoPark model has not been characterized. In this study, we demonstrate that similar 

to human PD, many nonmotor behavioral impairments including olfactory dysfunction, 

learning and memory deficits, and anxiety- and depressive-like problems are also evident 

in MitoPark mice prior to or concurrent with the occurrence of motor deficits (Summary in 

Figure 8).
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We found that while some behavioral impairments in MitoPark mice occur before the onset 

of motor dysfunction (i.e., learning and olfactory deficits), many did not appear until after. 

The temporal overlap between certain nonmotor deficits and motor dysfunction is likely 

due to the fast onset of the motor phenotype once the MitoPark mice reach 12 wk of 

age. For this reason, it is particularly important to consider parallel motor task parameters 

when interpreting the neurobehavioral results. For example, tasks which require horizontal 

movements (i.e. elevated plus, novel scent test) should be observed alongside open field 

test data which suggest motor deficits at 14 wk of age; whereas motor ability assessed 

during MWM trials as average swimming speed (m/s) suggested no significant impairment 

in swimming. Interestingly, dual task performance has been shown in certain situations 

to improve performance for PD patients, thought to be due to increased production of 

catecholamines and arousal of additional brain regions (Altmann et al., 2015; Hazamy et 

al., 2017). Similarly, paradoxical kinesia can enhance motor performance during a perceived 

stressful event, such as an earthquake, and has also been observed to occur in PD (Bonanni 

et al., 2010). These phenomena could potentially explain the enhanced ability of MitoPark 

mice to swim during MWM during times when their locomotor activity is diminished in 

other types of motor tasks.

Accordingly, we chose the MWM for spatial learning and memory assessment over Barnes 

maze since the average swim speed of mice (Supplementary Fig. 2) remained unchanged 

while horizontal activity in the open-field test was progressively affected from an early 

age. However, this has its own set of considerations including an increased potential for 

stress response during both the MWM and subsequent tests performed (Harrison et al., 

2009) as well as task repetition potentially influencing performance in later testing periods. 

To minimize any effects of stress, parameters such as water temperature, lighting, and the 

duration of task acclimation prior to testing were held consistent between genotypes and 

time points. Moreover, when compared to other published studies, our data were in line with 

values reported in naive mice (Can et al., 2012a; Komada et al., 2008; Taylor et al., 2010) 

or have even been previously identified in MitoPark mice and confirmed independently by 

another research group (Cong et al., 2016; Langley et al., 2018; Li et al., 2013; Paß et al., 

2020). Therefore, we do not believe this to have significantly affected our interpretation. 

Ideally, completely naive cohorts of MitoPark mice should be subjected to each behavioral 

test and at each time point. However, this requires a large number of the transgenic mouse 

model.

For example, our cognitive function data are also supported by a recent study showing 

spatial learning and memory deficits in the Barnes maze and object recognition deficits 

that preceded the appearance of motor deficits in these animals (Fifel and Cooper, 2014; 

Li et al., 2013). However, our study expanded their findings by showing various ages 

of mice, sex differences, and progressive worsening. An important caveat of our model 

assessment is that it was not designed to discriminate temporal differences between male 

and female mice regarding the onset and incidence of nonmotor symptoms. Future time-

course experiments could help to better associate the initial pathological findings with the 

onset of behavioral deficits to add to our nonmotor study in which both males and females 

were already symptomatic prior to their initial behavioral assessments at 8 wk. In terms of 

sex differences, role environmental and occupational exposures such as metal and pesticide 
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exposures should be considered since the chemical exposure is a major risk factor for PD 

pathogenesis (Erikson and Aschner, 2019; Harischandra et al., 2019; Horning et al., 2015). 

It is noteworthy to mention that chemical industrial occupation is a male dominated field, 

suggesting that this may play role in higher incidence of PD in males than females.

The olfactory system provides sensory information from our environment that can be key 

to determining palatability of food and identifying the presence of dangerous fumes and 

other indicators of toxins (Doty, 2012). The prevalence of hyposmia is about 90% in 

sporadic PD cases, and 68% of patients surveyed described alterations in their quality of 

life due to impaired olfactory function (Doty, 2012). Olfactory disturbances do not occur 

in all neurodegenerative diseases, making this nonmotor symptom particularly valuable in 

differential diagnosis (Doty, 2009). Dopaminergic cells can be found in the periglomerular 

layer of the olfactory bulb, but do no degenerate in PD (Doty, 2012; Huisman et al., 2008; 

Tong et al., 2000). Unlike the SN and VTA, tyrosine hydroxylase (TH) actually increases 

in the olfactory bulb (OB) of patients with PD and in experimental PD animal models 

(Belzunegui et al., 2007; Doty, 2012; Huisman et al., 2008; Lelan et al., 2011; Yamada et al., 

2004). In an intranasal MPTP model, dopaminergic and noradrenergic deficits were seen in 

the brain, but dopamine therapy does not help the olfactory deficits in PD patients (Prediger 

et al., 2010). Interestingly, although dopaminergic therapy does not improve olfaction in 

PD patients, we observe olfactory deficits in this model of mitochondrial dysfunction in 

dopaminergic cells, implicating the complex role dopamine has in the olfactory system prior 

to the onset of motor impairment. Non-dopaminergic neurotransmitter systems are thought 

to contribute to or cause olfactory loss in PD (Doty, 2012). Thy1-aSyn mice were shown 

to have olfactory deficits following social recognition deficits, indicating the deficits are not 

exclusively due to olfaction impairment in this model (Magen et al., 2015).

Although the social discrimination scent test revealed changes slightly before the novel scent 

test in MitoPark mice, simple scent discrimination versus any social recognition deficits 

cannot be deciphered from our data. Changes in response to social stimuli in young adult 

MitoPark mice should be explored in future studies. Corroborating our findings in the novel 

and social discrimination tests, Pass et al. (2020) recently identified differences in the novel 

scent test but not the buried food detection test. Interestingly, different scents were used 

in our study versus their study, so the lack of detecting buried food could show decreased 

interest in eating (Ghaisas et al., 2019) or lack of motivation to dig to retrieve the food rather 

than the ability to discriminate between odors. Since no changes in neurogenesis or olfactory 

bulb neurotransmitter or protein aggregation levels were observed prior to dopamine loss in 

this model, changes in other components involved in olfactory discrimination should also be 

explored including odor receptors in the nasal epithelium, individual glomerular and mitral 

layers of the olfactory bulb, piriform cortex, hippocampus, and thalamus (Chen et al., 2016; 

Griffanti et al., 2016; Ravi et al., 2017).

Animal models and clinical PD studies have shown that reduced dopamine levels correlate 

with the reduced proliferation of cells in neurogenic regions of the brain, which is thought 

to contribute to the nonmotor symptoms observed in PD (Chiu et al., 2015; Kuipers et 

al., 2014; Regensburger et al., 2014). However, for most mouse models of PD, either 

nonmotor behavioral impairments do not emerge or else nonmotor performance was never 
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characterized, thereby limiting our understanding of the therapeutic potential that can be 

gleaned from current genetic and toxin-based models (Taylor et al., 2010). Interestingly, 

mice deficient in monoamine storage capacity display a progressive loss of dopaminergic 

cells in the SN, loss of striatal dopamine, motor deficits, αSyn accumulation and nonmotor 

deficits (Taylor et al., 2009). In the MitoPark model, just the dopaminergic cells are 

targeted rather than other neuronal systems, yet we see a very similar set of nonmotor 

behavioral deficits. This particularly highlights the importance of mitochondrial dysfunction 

in dopaminergic cells in the development of these nonmotor behavioral impairments in 

MitoPark mice as well as nonmotor aspects of PD.

Since the MitoPark mouse model was developed, more detailed pathological features 

have been identified by various groups, some of which may help explain mechanisms 

underlying the nonmotor deficits observed. At 6–10 wk, MitoPark mice exhibit impaired 

electrophysiological parameters in dopaminergic neurons and increased expression of L-type 

calcium channel mRNA and PK2 protein when compared to their littermate controls (Branch 

et al., 2016; Good et al., 2011; Gordon et al., 2016). At 28–30 wk, increased astrocyte 

marker GFAP, greater striatal glutamate release, and white matter MRI changes were 

identified (Farrand et al., 2016). Also at 30 wk, MRI changes indicative of iron accumulation 

were found in the SN (Farrand et al., 2016). Mitochondrial dysfunction is expected to lead to 

oxidative damage in neurodegenerative disorders (Islam, 2017), potentially representing the 

mechanism underlying the occurrence of nonmotor behavioral impairments in the MitoPark 

model. In our previous publications, we have observed a significant loss of mitochondrial 

protein expression by 12 wk in the MitoPark striatum and SN, but no significant changes 

in the oxidative stress marker 4HNE until 24 wk (Langley et al., 2017; Langley et al., 

2018). Neuroinflammation is another mechanism implicated in the pathophysiology of PD 

and nonmotor symptoms, given that inflammatory cytokine levels have been positively 

correlated with nonmotor deficits (Lindqvist et al., 2012; Menza et al., 2010). We recently 

identified morphological changes indicative of microglia activation and increased IBA1+ 

microglia in the SN of 24-wk MitoPark mice, however, this was not yet observed in 12-wk 

MitoPark mice (Langley et al., 2017; Langley et al., 2018).

We also observed strong neurochemical and biochemical changes that corresponded well 

with key nonmotor behavioral impairments in the present study. For example, reduced 

levels of dopamine and serotonin in the olfactory bulb of 24-wk MitoPark mice may help 

explain the hyposmia at later ages in this model (Ferrer et al., 2012; Taylor et al., 2009). 

Delayed dopamine dysfunction was recently observed in female MitoPark mice in another 

study (Chen et al., 2019); however, we did not test neurotransmitter levels in our study 

prior to age 24 wk, when both males and females exhibit severe deficits in both motor and 

cognitive-behavioral tasks. The female mice in our experiments demonstrated impairment in 

sensorimotor coordination on the RotaRod and learning in the MWM later than male mice, 

so delayed dopamine dysfunction could certainly contribute to these behavioral findings.

Many nonmotor deficits closely correlate with Lewy body deposition and begin in the 

prodromal stage of PD, prior to the classical motor deficits used for clinical diagnosis 

(Pellicano et al., 2007; Schneider and Obeso, 2015; Shulman et al., 2001). First, GI and 

olfactory disturbances are observed while αSyn pathology is evident in the olfactory bulb 
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and the motor nucleus of the vagus nerve, which provides parasympathetic innervation to 

the GI tract (Burke et al., 2008). Next, synucleopathy in the hypothalamus, locus coeruleus, 

and raphe nucleus correlates with sleep disorders and neuropsychiatric symptoms such as 

depression and anxiety. Motor symptoms and clinical diagnosis then begin during Braak 

stages 3–4, when the midbrain becomes involved. Finally, cognitive decline and dementia 

are found in association with cortical deposits of αSyn, similar to what is seen in dementia 

with Lewy bodies (Jellinger, 2009).

In addition to protein aggregate deposition, alterations in adult neurogenesis and 

neurochemical changes are implicated in the development of nonmotor symptoms in PD 

(Lamm et al., 2014; Schlachetzki et al., 2016). Recent studies suggest that dopamine 

depletion and changes in αSyn may even synergistically contribute to the altered 

neurogenesis associated with nonmotor deficits (Schlachetzki et al., 2016). Recently, 

when exogenous mutant αSyn was overexpressed in the olfactory bulb of rats, dopamine 

depletion and olfactory deficits were observed followed by spreading to other brain 

regions and subsequent motor coordination deficits, suggesting an interesting prodromal 

model of PD (Niu et al., 2018). In our studies, we did observe increased striatal protein 

aggregation by anti-oligomeric (A11) slot blot analysis but not in the olfactory bulb. Despite 

immunoreactivity to an anti-αSyn antibody, protein inclusions found in dopaminergic 

neurons of MitoPark mice were convincingly determined not to contain αSyn by crossing 

with knockout mice (Ekstrand et al., 2007). Since electrophysiological parameters are 

altered very early in MitoPark mice, we believe that more advanced electrophysiological 

or subcellular fraction studies in additional brain regions may provide a better understanding 

of the more subtle deficits preceding the nigrostriatal dopamine depletion, but were outside 

the scope of this study.

It is estimated that up to 50% of PD patients are affected by mild cognitive impairment, 

while longitudinal studies reveal that dementia will eventually affect 80% (Goldman 

et al., 2018). Among other genetic and environmental risk factors, polymorphisms in 

BDNF and COMT genes have been implicated in PD cognitive impairments (Gao et al., 

2010; Goldman et al., 2018). Within the mesolimbic dopamine circuit, increased BDNF 

through CREB activation mediates susceptibility to stress (Krishnan and Nestler, 2008; 

Vaidya and Duman, 2001). In contrast, stress decreases hippocampal levels of BDNF and 

neurogenesis through CREB activity and cortisol concentrations (Krishnan and Nestler, 

2008). Oxidative stress has also been implicated in a variety of neuropsychiatric disorders, 

with particularly strong evidence in depression and anxiety studies (Balmus et al., 2016; Ng 

et al., 2008). Also, reductions in CREB phosphorylation and BDNF in the hippocampus may 

be associated with the observed cognitive deficits and decreased neurogenesis. Importantly, 

increased BDNF and pCREB resulting from noradrenergic or serotonergic antidepressants 

can promote neurogenesis and improve cognition (Sugimoto et al., 2008; Zhang et al., 

2016b). Conversely, increases in CREB phosphorylation, BDNF, and oxidative damage 

marker 4-HNE in the striatum may be related to the depression-like behavior observed. 

Although animal models and post-mortem studies do indicate adult neurogenesis is affected 

in PD, the exact mechanism of the changes and the correlation with nonmotor deficiencies 

have not been directly explored. Importantly, we have shown that following dopamine 

depletion in MitoPark mice, proliferating cells are significantly reduced in both neurogenic 

Langley et al. Page 15

Exp Neurol. Author manuscript; available in PMC 2022 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



niches of the brain, namely the subventricular and subgranular zones. The possibility that the 

migration or differentiation of the neural stem and progenitor cells is impaired at earlier ages 

in the olfactory bulb should be examined in future studies.

Interestingly, no significant changes in sleep latency were observed (Fig. S2); although, a 

recent paper found that MitoPark mice display circadian rhythm dysfunction following an 

all-light or all-dark cycle (Fifel and Cooper, 2014). A recent systematic review of sleep and 

wakefulness disorders suggests that PD medications can have positive or negative effects 

on sleep symptoms, indicating a particularly complex role of dopaminergic therapies in 

the sleep-related disorders associated with PD (Chahine et al., 2017). Because constipation 

and other GI problems are associated with early stages of PD, further studies should be 

done to comprehensively characterize GI changes in MitoPark mice. GI dysfunction can 

even affect motor symptoms by impairing drug bioavailability and, when left untreated, 

autonomic changes can contribute to falls common in PD patients (Palma and Kaufmann, 

2018). Based on MPTP studies resulting in loss of dopaminergic neurons in the enteric 

nervous system, changes in colon motility should specifically be explored (Anderson et al., 

2007). A recent study in our laboratory has demonstrated that MitoPark mice recapitulate the 

chronology and development of GI dysfunction when compared to their littermate controls 

(Ghaisas et al., 2019). We also showed that oral administration of quercetin, one of the major 

flavonoids in plants, effectively reversed behavioral deficits, striatal dopamine depletion, 

and TH neuronal cell loss in MitoPark mice (Ay et al., 2017), suggesting this model as 

an attractive translational animal model for pre-clinical assessment of the efficacy of new 

anti-Parkinsonian drugs.

Collectively, our study demonstrates that in addition to progressive motor deficits, MitoPark 

mice also exhibit nonmotor deficiencies including olfactory dysfunction, learning and 

memory deficits, and neuropsychological problems. The presence of these nonmotor deficits 

in combination with the progressive motor dysfunction makes the MitoPark mouse model of 

PD particularly valuable for mechanistic and drug discovery studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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αSyn Alpha-synuclein

AMS ANY-maze software

ANOVA Analysis of variance
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CREB cAMP response element-binding protein

DG dentate gyrus

DAT dopamine transporter

DOPAC 3–4-dihydroxyphenylacetic acid

FST forced swim test

GI gastrointestinal

GSM grip strength meter

HPLC high-performance liquid chromatography

HVA homovanillic acid

IHC immunohistochemistry

ISU Iowa State University

LRRK2 leucine-rich repeat kinase 2

L-DOPA1 levodopa

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MWM Morris water maze

OB olfactory bulb

6-OHDA 6-hydroxydopamine

PD Parkinson’s disease

PINK1 PTEN-induced putative kinase 1

qPCR quantitative polymerase chain reaction

RMS rostral migratory stream

SN substantia nigra

SVZ subventricular zone

SGZ subgranular zone

STR striatum

TST tail suspension test

TFAM mitochondrial transcription factor A
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Highlights

• MitoPark mice display clinically-relevant nonmotor behavioral impairments.

• Cognitive and olfactory dysfunction precedes dopaminergic depletion in 

MitoPark mice.

• Behavioral despair and anxiety-like behavior are present in MitoPark mice.

• Altered neurogenesis in MitoPark mice is observed from 16 wk of age.

• Neurochemical and biochemical changes parallel observed behavioral deficits 

in MitoPark mice.
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Figure 1. Progressive Motor Deficits in MitoPark Mice.
A, Schematic of the behavioral test battery and the order in which tests were performed. 

B, Representative VersaPlots of individual mice subjected to the VersaMax open-field 

test showing horizontal (lines) and vertical (red dots) locomotion during a 10-min testing 

interval. Quantification of (C) horizontal and (D) vertical activities as determined by 

VersaMax analyzer during 10-min open-field test. E, Average time (in seconds) spent on 

RotaRod at 20 rpm during 5 trials. F, Grip strength and (G) body weights from 8- to 
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24-wk-old littermate control and MitoPark mice. *, p≤0.05; ***, p<0.001. n=15 LC males, 

n=10 LC females, n=11 MP males, and n=8 MP females.
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Figure 2. Cognitive dysfunction in MitoPark Mice.
A, Schematic describing 6-day Morris water maze (MWM) protocol. B, Representative track 

plots from learning and occupancy plots from retention trials of MWM for one littermate 

control (n=15 males; n=10 females) and one MitoPark (n=11 males; n=8 females) mouse. 

C, 8-, (D) 12-, and (E) 24-wk MWM learning period for male mice. F, 8-, (G) 12-, and 

(H) 24-wk MWM learning period for female mice. I, Representative occupancy plots of 

individual mice during retention trial with arrow indicating the previous platform location. J, 
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Duration of retention trial spent in the quadrant where the platform had been located during 

the learning phase. *, p≤0.05; **, p<0.01; ***, p<0.001.
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Figure 3. Behavioral despair and anxiety-like behavior in MitoPark mice.
MitoPark mice were monitored at 2-wk intervals for neuropsychiatric deficits from 8–24 

weeks of age. A, Tail suspension test (TST) and (B) forced swim test (FST) reveal 

depressive behavior in MitoPark mice at 16 and 14 weeks, respectively, when compared 

to age-matched control mice. n=25 control and n=19 MitoPark mice. C-D, Western 

blotting reveals increased CREB phosphorylation in FST mice versus untested controls 

and increased CREB phosphorylation in MitoPark mice administered desipramine. E, 

Desipramine treatment (Dsp, 5 mg/kg, i.p., 30 min prior to FST, n=7 per group) significantly 

reduced immobility time during the FST in MitoPark mice (#, p <0.01 versus saline-injected 
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MitoPark). F, Representative occupancy plots of closed (red arrow) and open (black arrow) 

arms of elevated plus maze and (G) corresponding time in open arms. *, p≤0.05; **, p<0.01; 

***, p<0.001.
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Figure 4. Olfactory dysfunction in MitoPark mice.
MitoPark mice were monitored at 2-wk intervals for olfactory deficits from 8–24 weeks of 

age. n=25 control and n=19 MitoPark mice. A-B, Occupancy plots and quantification of 

(C-F) time in scented zones are shown. Red arrows indicate scented zones. Olfactory deficits 

as determined by (A, C, E) social discrimination test (SDT) and (B, D, F) novel scent test 

(NST) were present as soon as 14 weeks of age in MitoPark mice versus controls. *, p≤0.05; 

**, p<0.01; ***, p<0.001.
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Figure 5. Biochemical changes parallel the observed behavioral impairments in MitoPark mice.
A-B, Western blots and (C-H) densitometric analysis of proteins related to neuropsychiatric 

and cognitive changes. n=6 control and n=7 MitoPark mice. I, A11 slot blot and (J) 

densitometric analysis from striatum and olfactory bulb tissues from littermate control (n=3) 

and MitoPark mice (n=3). *, p≤0.05; **, p<0.01; ***, p<0.001.
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Figure 6. Altered neurogenesis in MitoPark mice.
(A) Schematic of BrdU treatment paradigm for assessment of neurogenesis in MitoPark 

(MP) and littermate control (LC) mice (n=6 LC and n=6 MP mice at 12 wk; n=8 LC 

and n=8 MP mice at 16 wk). BrdU immunostaining of subventricular zone (SVZ, B) and 

subgranular zone (SGZ, C) reveals no differences at 12 wk of age (D, E). By 16 wk, the 

number of BrdU+ cells is significantly reduced in both the SVZ (F) and SGZ (G). *, p≤0.05; 

**, p<0.01.
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Figure 7. Neurochemical changes in MitoPark mice.
Analysis of monoamine neurotransmitters from the hippocampus (A, n=7 LC and n=7 MP 

mice), striatum (B, n=7 LC and n=7 MP mice), olfactory bulb (C, n=9 LC and n=9 MP 

mice), and brainstem (D, n=4 LC and n=4 MP mice) tissues from MitoPark mice and their 

littermate controls at 24 wk of age. *, p≤0.05; ***, p<0.001.
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Figure 8. Summary of nonmotor behavioral impairments in MitoPark mice.
Asterisks (*) indicate sex-specific differences in a behavioral task. Changes in color shading 

represent additional parameters that were significant in that behavioral task.
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