
A Computational Model of Cytokine Release Syndrome during 
CAR T-cell Therapy

Zhuoyu Zhang,
Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 
11201, USA

Lunan Liu,
Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 
11201, USA

Chao Ma,
Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 
11201, USA

Weiqiang Chen
Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 
11201, USA

Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA

Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA

Abstract

Cytokine release syndrome (CRS) is a lethal adverse event in chimeric antigen receptor (CAR) 

T-cell therapy, hindering this promising therapy for cancers, such as B-cell acute lymphoblastic 

leukemia (B-ALL). Clinical management of CRS requires a better understanding of its underlying 

mechanisms. In this study, a computational model of CRS during CAR T-cell therapy is built to 

depict how the cellular interactions among CAR T-cells, B-ALL cells, and bystander monocytes, 

as well as the accompanying molecular interactions among various inflammatory cytokines, 

influence the severity of CRS. The model successfully defines the factors related to severe 

CRS and studied the effects of immunomodulatory therapy on CRS. The use of the model is 

also demonstrated as a precision medicine tool to optimize the treatment scheme, including 

personalized choice of CAR T-cell products and control of switchable CAR T-cell activity, for a 

more efficient and safer immunotherapy. This new computational oncology model can serve as a 

precision medicine tool to guide the clinical management of CRS during CAR T cell therapy.
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Cytokine release syndrome (CRS) is a lethal adverse event in chimeric antigen receptor (CAR) 

T-cell therapy for B-cell acute lymphoblastic leukemia. A computational model of CRS during 

CAR T-cell therapy is established using clinical data to faithfully recapitulate the whole picture of 

cellular and molecular interactions in CRS, which can be used for guiding clinical management of 

CRS.
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1. Introduction

CAR (chimeric antigen receptor) T-cell therapy is a promising immunotherapy for B-

cell acute lymphoblastic leukemia (B-ALL); however, its major adverse effect, cytokine 

release syndrome (CRS), frequently occurs and compromises its therapeutic potential [1]. 

Clinically, CRS is a systemic inflammatory reaction that includes fever, coagulopathy, renal 

insufficiency, and hypotension, and is caused by excessive pro-inflammatory cytokines in 

blood serum, typically within the first 14 d after CAR T-cell infusion [2]. CRS is commonly 

observed in 70–80% of patients receiving CAR T-cell therapy, and approximately 30% 

experience severe CRS [2–3]. Thus, addressing CRS is an important requirement for the safer 

utilization of CAR T-cell therapy.

Clinical monitoring of CRS is typical during CAR T-cell therapy, whereby a series of 

factors correlated with CRS and the corresponding statistical relationships can be used 

to guide clinical practice [4]. For example, statistical methods have demonstrated that the 

risk of experiencing severe CRS is affected by the tumor burden of patients and CAR 
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T-cell dose [3b, 4–5], and is characterized by clinical laboratory parameters, such as body 

temperature and cytokine concentrations in blood serum [4, 5b]. These statistical methods 

fit the parameters and the risk of CRS into a regression expression [4, 5b] or decision tree 
[4, 5b] without a complete understanding of the underlying immunological mechanisms, 

and give an estimation of CRS for new patients based on the presumption that they are 

well represented by the previous patients. However, such a representation is doubtful when 

novel or personalized treatments are used, as no precedent comparable data is available. 

Thus, statistical methods are not the ideal choice to allow clinicians to take effective 

preemptive measures against adverse effects, such as CRS in immunotherapy. To assist in 

the development of new preemptive measures, a model must refer to how these measures 

work, namely, looking into the biological mechanism. Recently, computational models 

of immunotherapy have served as valuable tools for dissecting the pathophysiological 

mechanisms of CRS. For instance, quantitative models have been developed to depict the 

release of cytokines such as IFN-γ, IL-6, and IL-10 during CRS [6] and further grade the 

severity of CRS [7]. Various cytokines promote or suppress each other during CRS, forming 

an interaction network [8]; however, such a depiction is lacking in existing models with 

cellular mechanisms. Critically, the cellular mechanisms causing CRS, for example, how 

activated CAR T-cell cells trigger bystander immune cells, such as monocytes in the bone 

marrow, to secrete excessive cytokines that diffuse into the serum and provoke a systemic 

inflammatory response [9], are understudied in current CRS models. Thus, new models that 

can recapitulate key cellular and cytokine networks and dynamics are critical for identifying 

potential risk factors and screening for effective mitigation strategies for severe CRS.

In this study, we developed a computational model of CRS to mechanistically describe the 

critical cellular interactions between CAR T-cells and B-ALL cells, as well as bystander 

monocytes, which are a prominent source of cytokines in CRS [10] in the bone marrow 

during immunotherapy treatment. Based on existing clinical data, we in silico studied 

how these cellular interactions trigger the activation of monocytes and cause the release 

of excessive cytokines, and how the molecular network among cytokines regulates CRS. 

Our novel computational CRS model based on the cellular-molecular interactions provides 

a practical tool for understanding, estimating, mitigating, and managing CRS clinically. 

Based on the model, we estimated the probabilities of patients experiencing severe CRS 

and studied how anti-IL-6R immunomodulatory therapy can mitigate CRS severity. We also 

demonstrated that our model can be used to guide clinical practice, for example, the choice 

of 4-1BB or CD28 costimulatory CAR T-cell products and control of switchable CAR T-cell 

activity for more efficient and safer immunotherapy.

2. Results

2.1. Computational modeling of CRS on cellular and molecular levels

During CAR T-cell therapy, infused CAR T-cells are activated by B-ALL cells, with 

enhanced expansion and tumor elimination activities. Activated CAR T-cells trigger 

bystander immune cells such as monocytes in the bone marrow to secrete excessive 

cytokines that diffuse into the blood circulation and provoke the systemic inflammatory 

response of CRS [9]. To capture the cellular-level interactions among CAR T-cells, B-ALL 
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cells, and monocytes and the molecular-level cytokine dynamics during CAR T-cell therapy, 

a multicompartmental model was established using ordinary differential equations (ODEs) 

(Fig 1; Details see ‘Formulation of the model’ in Methods). The cellular interaction model 

features the growth, activation, and apoptosis of CAR T-cells, the expansion and loss of the 

CD19 antigen on B-ALL cells, B-ALL elimination by CAR T-cells, and the stimulation of 

monocytes by the lysis activity of CAR T-cells. Furthermore, we modeled the release of 

nine key cytokines (TNF-α, IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, and IL-12) from 

activated CAR T-cells and monocytes. We assumed that the release rates of these cytokines 

into the serum were associated with the number of activated CAR T-cells and monocytes. 

Moreover, we accounted for the alteration of secretion and degradation of one cytokine due 

to the presence and change in other cytokines by describing the systemic response with an 

interactive feedback network. Such an interaction was previously modeled based on serum 

cytokine measurements in a clinical trial in which a single dose stimulation of a medicine 

induced a cytokine storm in adults [8b]. Using the computational model, we mapped the 

serum cytokine concentrations to the probability of severe CRS (see next subsection) to 

provide a complete modeling of CRS.

The model was calibrated as a nonlinear mixed effect (NLME) model based on the clinical 

data of 17 patients (see ‘Collection of clinical data’ in Methods). To ensure robustness, we 

kept the number of parameters as low as possible (nine parameters vs. 17 patients), and 

we calibrated the population level parameters to represent the general population to avoid 

overfitting. This population-level calibration provided an estimation of the probabilistic 

distribution of parameters of the population and individual patients (see ‘Model Calibration’ 

in Methods). Then, we applied the Monte Carlo method to obtain an estimation of the 

time series profile of the characteristic cytokines IL-6, IL-2, and IL-1 in CRS, which was 

consistent with clinical measurements (Fig 2A–C), justifying our use of the population 

level parameters in further development of the model. Additionally, as a trade-off with 

model robustness under limited data availability and quality, we did not target fitting our 

model to match individual patient results (Supplementary Fig S2), but aimed to obtain 

the overall trends of these real-time results (Fig 2D–G) during CRS. We defined an 

equivalent monocyte number, which was assumed to be proportional to the number of 

activated monocytes in the bone marrow (see Equation (7) in Methods). After calibration, 

we inspected the real-time dynamic results provided by the model, such as the numbers of 

CAR T-cells and equivalent monocytes in the bone marrow (Fig 2D), cytokine release rates 

in the bone marrow (Fig 2E) and serum (Fig 2F), and concentrations of different cytokines 

in the serum (Fig 2G) of individual patients. Notably, the distinct IL-6 release rate profiles of 

patients #1 and #2 in the bone marrow (Fig 2E) and serum (Fig 2F), arising from the distinct 

setting of the two clinical trials, and the fact that patient #1 is a pediatric patient, whereas 

#2 is not, justified our choice to trade off individual fitting closeness to compensate for the 

data source availability and quality. In contrast, the similarity between patients #2 and #3, 

obtained from the same clinical trial, demonstrated that our strategy preserved the robustness 

of the model, as expected.
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2.2. Risk factors of severe CRS

A high tumor burden is clinically associated with a higher risk of CRS [3b, 5]. The proposed 

model captured the correlation between the initial tumor burden and the peak concentrations 

of cytokines, such as IFN-γ, IL-8, and IL-6, validating the clinical observations (Fig 3A). 

Our simulation results also showed that the amount of CAR T-cells and monocytes in the 

first 7 d after CAR T-cell infusion, defined as the area-under-curve of time series amount of 

CAR T-cells and monocytes from day 0 to day 7 (AUC7), were positively correlated with 

the initial tumor burden, reflecting the stimulation of B-ALL cells to CAR T-cell cells and 

monocytes (Fig 3B).

In our model, we estimated the probability of severe CRS, which is equivalent to grade 3 

or above CRS graded based on clinical symptoms, by calculating the difference between 

the concentrations of various cytokines with their typical values for severe or mild CRS 

(equivalent to grade 2 or below CRS) (see ‘Estimation of the probability of severe CRS’ 

in Methods). To validate the estimation, considering that the number of clinical samples 

is limited, we generated virtual patient cohorts based on lognormal distribution of the 

population level secretion coefficients of cytokine calibrated from clinical data to simulate 

the distribution of outputs of interest, such as the probability of severe CRS (see ‘Monte 

Carlo simulation of virtual patient cohorts’ in Methods).

The modeling results showed that the probability of severe CRS was positively correlated 

with the AUC7 of CAR T-cells and equivalent monocytes (Fig 3C). In addition, the 

probability of severe CRS increased with increasing initial tumor burden (Fig 3D) and peak 

concentration of IL-6 (Fig 3E), recapitulating the experimentally observed proportion of 

severe CRS among a collection of 155 patients (95 with IL-6 data and 60 with tumor burden 

data) (see ‘Collection of clinical data’ in Methods). This clinical observation was confirmed 

by our sensitivity analysis of the model, which indicated the key role of the initial tumor 

burden (nP0) and the release rate of IL-6 (μM,IL6) in invoking CRS (Fig 3F).

In addition, the simulation results indicated that as the initial tumor burden increased, the 

IL-6 concentration peaked earlier (Fig 4A). The peak concentration of IL-6 in the serum 

was negatively correlated with the time for IL-6 to reach a peak (Fig 4B). This implies that 

if a patient with a high tumor burden has an increase in IL-6 at an early stage, the patient 

may have more severe CRS, and additional measures may be necessary to mitigate the CRS 

risk. We further found that the release rate of IL-6 from equivalent monocytes and the initial 

number of B-ALL cells were two key risk factors that synergistically induced severe CRS 

(Fig 4C).

A more comprehensive evaluation of CRS risk needs to include cytokines other than IL-6 
[4, 5b]. Thus, we proposed a CRS factor, FCRS, that depends only on the release rate 

of each cytokine, the killing efficiency of CAR T-cells, and the initial tumor burden to 

depict the extent of CRS (see ‘CRS factor’ in Methods). Based on the fitting results of 

individual patients, a positive correlation between FCRS and the probability of severe CRS 

was observed (Fig 5A). A similar trend was verified by simulation results of a virtual patient 

cohort based on the Monte Carlo method (Fig 5B). As the initial tumor burden and the 

release rate of IL-6 from equivalent monocytes, μM,IL6, increased, FCRS also increased (Fig 
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5C), showing the same trend as the probability of severe CRS (Fig 4C), further confirming 

the consistency of the findings. Therefore, FCRS is a valuable patient-specific CRS function 

factor capable of providing implications for the risk of developing severe CRS and the 

necessity of mitigation measures against CRS for a B-ALL patient in the early stage of CAR 

T-cell therapy.

2.3. In Silico modeling of CRS mitigation

One common measure to mitigate CRS is the use of tocilizumab, a monoclonal antibody 

targeting the IL-6 receptor, IL-6R [11]. To mechanistically understand such treatment, we 

included the competitive binding process of tocilizumab and IL-6 to IL-6R (see ‘Modeling 

of tocilizumab effect’ in Methods) into our computational model: tocilizumab decreases the 

number of IL-6 and IL-6R complexes formed by binding with free IL-6R. Our simulated 

results demonstrated a decrease in the probability of severe CRS by 0.25 with preemptive 

tocilizumab starting from the day of CAR T-cell infusion, which was consistent with the 

trend shown in clinical trials [12] (Fig 6A). Based on the simulation of virtual patient 

cohorts, it was shown that the reduced CRS severity is largely due to the decreased 

effective bioavailability of IL-6, which is defined as the equivalent concentration of IL-6 

affected by the competition between tocilizumab and IL-6 in binding with IL-6R (Fig 6B). 

The characteristics of CAR T-cell therapy after tocilizumab application were depicted and 

compared with those of the control group (Fig 6C–F). The concentration of IL-6 increased 

after adding tocilizumab because of the negative feedback after IL-6R was bound to the drug 

(Fig 6C). The risk of severe CRS after tocilizumab application decreased in various initial 

tumor burdens (Fig 6D) and peak IL-6 concentrations (Fig 6E). The decreased slope of the 

linear correlation between the probability of severe CRS and the CRS factor confirmed the 

tendency of a lower risk of CRS with the application of tocilizumab (Fig 6F).

2.4. In-silico selection of CAR T-cell products

Current CAR T-cell products targeting CD19 for B-ALL have a costimulatory domain of 

either 4-1BB or CD28, whereas 4-1BB products respond slower than CD28 products, but 

more persistently [13]. This slower response may help reduce the risk of severe CRS but 

has also raised concerns about tumor escape from CAR T-cell treatments. We modeled 

this difference between the two CAR T-cell products by tuning CAR T-cell activation, 

proliferation, and death rates. Since there are no published clinical data quantifying the 

extent to which 4-1BB products respond more slowly than CD28 products, we tested 

through the range of two, five, or ten times slower responses (for example, two times slower 

response means the CAR T-cell activation, proliferation, and death rates were all divided by 

a factor of two). By testing in a virtual cohort, we found that the slower the response, the 

later the probability of severe CRS would peak, and the lower the peak would be (Fig 7A). 

This indicated that the 4-1BB CAR T-cell product, which had a relatively slower CAR T-cell 

response, demonstrated later and milder CRS symptoms compared to the CD28 CAR T-cell 

products, in accordance with clinical observations [13]. However, such an improvement in 

terms of CRS came at the cost of delayed tumor elimination (Fig 7B). Moreover, as we 

examined two patients with different initial tumor burdens and cytokine release rates treated 

with the same 4-1BB CAR T-cell product (assumed to be five times slower CAR T-cell 

response), we found distinct treatment outcomes and CRS responses. Our simulation results 
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showed that patient #1 presented a significant improvement in severe CRS probability (blue 

lines in Fig 7B), whereas patient #2 presented only minor improvement. This indicated that 

the optimal choice of CAR T-cell products, such as CD28, 4-1BB, or other novel products 

under development, may vary between patients. In this instance, our model is valuable for 

personalized precision medicine. We demonstrated this concept by determining the change 

in D60 tumor burden (efficacy of product) and peak probability of severe CRS (safety of 

product) with control and five times slower CAR T-cells in a virtual cohort (Fig 7C). With 

our model, we were able to identify patients who benefited from a reduction in severe CRS 

probability without compromising efficacy, and those who benefitted little, but showed a 

large decrease in efficacy.

2.5. Optimizing the treatment scheme of switchable CAR T-cell products

For better management of the safety of CAR T-cell therapy, novel CAR T-cell products 

with switchable activity have been developed. After infusion, these CAR T-cells can be 

switched on and off through external signals, such as small molecules or optical signals 

(Fig 8A) [14]. Currently, such products are still under development, and periodic switching 

has been experimentally tested [14a]. It is also possible to switch off the activity once 

the clinical assay determines that the risk of CRS reaches a certain level and resumes 

CAR T-cell activity after the risk decreases, that is, switching is conditionally triggered. 

Generally, periodic switching can be characterized by the period and duty cycle, whereas a 

conditionally triggered switching can be characterized by the time needed from taking the 

sample to decision of switching (denoted “assay lag” here), and the threshold of the assay 

indices to switch on or off (Fig 8B). With our model, we simulated the tumor burden and 

the probability of severe CRS in a patient, with periodic switching or conditionally triggered 

switching (Fig 8C). By varying the duty cycle and the period of the switching (Fig 8D), we 

found that the duty cycle influenced the outcome most significantly; a suitable duty cycle 

balances the efficacy (by D30 tumor burden) and safety (by peak severe CRS probability). 

More frequent switching with a shorter period also slightly improved the peak severe CRS 

probability without compromising efficacy. In addition, by simulating different assay lags 

and severe CRS probability cut-offs, we found that both factors significantly influenced the 

outcome (Fig 8E). A suitable cutoff would reduce the risk of CRS without compromising 

anti-tumor efficacy, and the shorter the assay lag, the greater the benefit. By plotting both 

methods with the D30 tumor burden and peak probability of severe CRS, we found that 

the triggered scheme has the potential to outperform the periodic scheme. This urges rapid 

feedback monitoring of indices such as cytokines, for flexible and timely switching of CAR 

T-cells, when the developing switchable CAR T-cell products come into clinical use.

3. Discussion

In this study, a mechanistic model of CRS was built to depict the key cellular mechanisms 

and cytokine responses that drive and influence CRS severity. The inclusion of cellular 

level information together with the cytokine interaction network in our model enabled it to 

describe the pathogenesis of CRS in detail, making it superior to current phenomenological 

approaches that rely on clinical laboratory parameters such as body temperature and 

blood cytokine concentrations. This computational model was calibrated with clinical 
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data collected from various clinical trials and validated the clinical observations that the 

initial tumor burden and IL-6 level are two major factors that positively correlate with the 

severity of CRS. We established that the cellular interactions among B-ALL, CAR T-cells, 

and monocytes in the bone marrow and their associated excessive secretion of cytokines, 

including IL-6, are responsible for CRS progression. By defining the CRS factor, FCRS, 

based on the parameters of initial tumor burden, killing efficiency of CAR T-cell, and 

release rates of key cytokines, our model was able to accurately estimate the probability of 

severe CRS for individual patients. Moreover, we successfully simulated CRS intervention 

using a monoclonal antibody, tocilizumab, targeting IL-6R as a proof of concept. Such a 

clinical input-informed CRS model can thus guide the clinical management of CRS during 

CAR T-cell therapy, screen effective and personalized mitigation strategies for patients with 

severe CRS, and serve as a precision medicine tool to help select more suitable CAR T-cell 

products and optimize treatment schemes for individual patients.

Limited data availability and quality posed a challenge to the robustness of our model. 

During the development of our model, we merged data from various clinical trials to enlarge 

the dataset to compensate for the challenge that there was only limited clinical cytokine data 

available in current CAR T-cell therapy trials. However, the data originated from various 

clinical trials with different settings, including differences in age, CAR T-cell type, source 

and dose, and pretreatment. This gave rise to the concern of overfitting of parameters with a 

small number of patients available and the large noise from differences in conditions among 

clinical trials. In general, we kept our model robust by limiting the number of parameters 

to fit to avoid an overfitting problem. For example, in the modeling of cytokine release 

from the bone marrow, we directly associated cytokine release with the number of cells 

in the bone marrow. This simplification was possible because the process of excessive 

cytokines entering the blood is fast, owing to the low volume and high vessel density of 

the bone marrow. Such simplification reduced the number of free parameters in the model 

(otherwise dedicated parameters should have been included to depict the volume of the bone 

marrow, the rate of the transport of cytokines from bone marrow, and the nonlinear terms 

of the secretion, such as Michaelis-Menten terms), providing the model with a more robust 

structure. Similarly, when defining the CRS factor, the weights of different cytokine release 

rates should ideally be calibrated with clinical data; however, that calibration requires data 

of all related cytokine concentrations in comparable clinical trials, preferably with cellular 

cytokine secretion measured by phenotyping. However, few clinical trials with all cytokine 

concentrations have been published to date. Therefore, we had to simplify our definition 

and assign the weights of cytokine release rates by empirical experience, such as assigning 

a higher weight to IL-6 for its pivotal role. By determining the probability of severe CRS 

and other factors, we showed that although this definition was imperfect, it was a functional 

prototype of a comprehensive factor that can estimate the risk of CRS for each patient before 

the start of therapy.

Although many types of cytokines in CRS have been studied in previous computational 

models [6, 8a], the extent to which each cytokine group contributes to CRS has not been well 

defined. A mathematical model was recently proposed to study the interaction of multiple 

cytokines in CRS [7]. Similarly, our model established a cytokine interaction network of 

nine cytokines for more accurate estimation of the risk of developing severe CRS. In the 
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model, the estimation of severe CRS probability was influenced by the scope of cytokines 

considered, which was limited to the few types of cytokines in current studies. This is 

largely because of the lack of relevant clinical data. In addition to the current measured 

cytokine concentrations in serum, a large-scale and single-cell profiling of dynamic cytokine 

secretion and the phenotype of immune cells in bone marrow [15] may better validate 

our model to depict the mechanism underlying CRS. Because our model is structured in 

matrix form, it can be expanded easily to include more cytokines and mitigations when 

more sufficient clinical data become available in the future. For example, IL-1 has recently 

attracted attention as an important cytokine in CRS [16] and as a potential target for CRS 

mitigation (for example, Anakinra [17]). However, as IL-1 has not been a routinely measured 

cytokine for CRS before its importance has been recognized, there is limited serum data 

and response to mitigation data of IL-1 for B-ALL available to date, which is insufficient 

to build and validate a model. As the data accumulate in ongoing clinical trials (e.g., 

NCT04148430), we will be able to add mitigations such as Anakinra in our model and 

compare the IL-1 response with the experiment. Furthermore, whereas current models of 

CRS on CAR T-cell therapy mainly use data collected from single clinical trials [6] or 

animal model studies [8a] and various CRS grading standards have been proposed based 

on different clinical symptoms [18], our model incorporated clinical data from various trials 

and estimated the occurrence of CRS with quantitative standards, providing a broader 

implication for CRS pathogenesis.

CRS, typically interchangeable with the term ‘cytokine storm’, is observed in several 

scenarios apart from CAR T-cell therapy. Our method that combines both the cytokine 

interaction model and the cellular model may not be limited to CAR T-cell therapy. By 

modifying the cellular interactions with immune cells, host cells, and viruses, our modeling 

framework can be adapted to the scenario of viral infection, such as the cytokine storm 

during the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 

Similarly, our modeling of mitigation can also be generalized to assist in comparing the use 

of mitigations, such as tocilizumab in CAR T-cell-induced CRS and SARS-CoV-2-induced 

CRS [19].

In conclusion, we built a computational model depicting the cellular mechanism and 

cytokine response of CRS to estimate the severity of CRS, studied the effect of 

immunomodulatory therapy, and used the model to optimize the treatment scheme to 

balance the risk of CRS and the efficacy of therapy. We believe that this model can provide 

insights into the cause of occurrence and the estimation of CRS during CAR T-cell therapy, 

as well as other cytokine-related toxicities such as the cytokine storm observed during 

SARS-CoV-2 infection in the pandemic.

4. Methods

4.1. Collection of clinical data

Time-series clinical data of cytokine concentrations of TNF-α, IFN-γ, IL-1, IL-2, IL-6, 

and IL-10, used for the calibration of the model, as shown in Figure 2, were acquired 

from multiple references[20] using plot digitalization (Table 1). Cytokine concentrations 

were subtracted from baseline concentrations (the concentration on day 0 or the lowest 
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concentration if the clinical data decreased over time). The simulation results were zero-

clipped (Fig S1). The data of grade or CRS severity with initial tumor burden and/or 

peak serum IL-6 concentration, used for validation of the probability of CRS, as shown 

in Figure 3D&E, were acquired from multiple references using plot digitalization (Table 

2). As shown in Figure 3A, IFN-γ data from [20a] were used for calibration, and IL-6 and 

IL-8 data from [20b] were used for validation. All plot digitalizations were performed using 

WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/) [21].

4.2. Formulation of the model

4.2.1. Modeling the cellular interactions between CAR T-cells and B-ALL 
cells—The modeling of the cellular dynamics of CAR T-cells and B-ALL cells can be 

found in our previous study [10]. Briefly, the study addressed the growth and apoptosis of 

activated and non-activated CAR T-cells, CD19+, and CD19− B-ALL cells; elimination of 

B-ALL cells by CAR T-cells; activation of CAR T-cells; and loss of CD19 in B-ALL cells, 

as described by Equations (1)–(4).

dnp
dt = rP 1 − nP

nC
nP − e np

nP + KP
nTA (1)

dnTA
dt = rTA

nP
np + Kr

nTA + kA
nP

np + KA
nTN − lTAnTA (2)

dnTN
dt = − kA

np
nP + KA

nTN − lTNnTN (3)

dnN
dt = rN 1 − nN

nC
nN + kmnP − e

kb

nN
nN + KN

nTA (4)

The number of cells in the bone marrow was denoted nP and nN for CD19+ and CD19− 

B-ALL cells, respectively, and nTA and nTN for activated and non-activated CAR T-cells, 

respectively. The growth of B-ALL cells was determined using the logistic growth Equation 

(1), with growth rates of rP and rN for CD19+ and CD19− B-ALL cells, respectively, and 

the maximal capacity of nc. The proliferation of activated CAR T-cells was determined using 

Equation (2), with the maximal growth rate rTA with B-ALL cell stimulation in a Michaelis-

Menten form with constant Kr. CAR T-cell activation was determined with a maximal 

activation rate kA and B-ALL cell stimulation with a constant KA. The natural death of 

CAR T-cell was determined using Equation (3), with death rates lTA and lTN for activated 

and nonactivated cells, respectively. B-ALL cell elimination by CAR T-cells was determined 

using Equation (4), with maximal elimination rates e and e/kb, with Menten-Michaelis 

constants KP and KN for CD19+ and CD19− B-ALL cells, respectively. The parameters in 

Equations (1)–(4) are cited from our previous study [10].
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4.2.2. Modeling bone marrow cytokine response—The release of cytokines from 

the bone marrow is caused by immune activities induced by CAR T-cell therapy in the bone 

marrow. First, it was assumed that the rate of cytokine release by CAR T-cells in the bone 

marrow is proportional to the number of CAR T-cells as follows:

dci
dt BM,T

= μT, inTA (5)

where nTA is the number of activated CAR T-cells. CAR T-cells release cytokine i at a rate 

of μT,i. The number of CAR T-cells in the bone marrow was derived from Equations (1)–(4). 

‘BM’ represents ‘bone marrow’, ‘T’ represents ‘T-cells’, and ‘M’ represents ‘macrophages’.

Monocytes have been suggested to be a major source of cytokines released during CRS. The 

cytokines released by monocytes was modeled as follows:

dci
dt BM,M

= μM, inmono (6)

where μM,i is the release rate of cytokine type i, and nmono is the number of monocytes. 

It has also been reported that the release of cytokines is stimulated by certain molecules 

produced during CAR T-cell killing of B-ALL cells [20j]. Thus, the number of monocytes 

releasing cytokines was assumed to be proportional to the rate of CAR T-cell-mediated 

killing of B-ALL cells. Similar to a previous model [22], the number of equivalent monocytes 

is expressed as follows:

nmono,equiv = e nP
nP + KP

+ e
kb

nN
nN + KN

nTA (7)

where we associated the equivalent monocytes with the killing activity (terms including the 

killing rate, e), and the activation of CAR T-cells (the number of activated CAR T-cells, 

nTA).

Activated T-cells have been reported to release TNF-α [23], IFN-γ [24], and IL-2 
[25], and monocytes release TNF-α [26], IL-1 [27], IL-6 [28], IL-8 [29], IL-10 [30], 

and IL-12 [31]. Therefore, we only counted these cytokines with release coefficients 

μT, TNFα, μT, IFNγ, μT, IL2, μM, TNFα, μM, IL1, μM, IL6, μM, IL8, μM, IL10, and μM, IL12 .

4.2.3. Modeling serum cytokine response—The CRS cytokine interaction network 

model was modified from a previous method [7]. Specifically, the concentration of cytokines 

derived from the interaction in the serum is expressed as follows:

d2ci
dt2

I
= si

dci
dt I

+ ∑
j

αijcj (8)

where i and j are indices for the species of cytokines, and ci is the serum concentration 

of cytokine i. Cytokine j leads to a response to cytokine i by a coefficient of αij, and the 

change rate of cytokine i exhibits feedback on itself with a coefficient si. The coefficients si 
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and αij were obtained from an original study [7]. The ‘I’ subscription was used to mark the 

interaction of cytokines.

Considering the cytokine responses from both the release in bone marrow and the interaction 

in serum, the final equation for cytokine concentration in serum could be expressed by 

substituting Equation (7) into (6), and then adding Equations (5), (6), and (8), as follows:

d2ci
dt2 = d2ci

dt2
I
+ d

dt
dci
dt BM,T

+ d
dt

dci
dt BM,M

= si
dci
dt I

+ ∑
j

αijcj + μT, i
d
dtnTA

+ μM, i
d
dt e nP

nP + KP
+ e

kb

nN
nN + KN

nTA

(9)

It has been shown that the cytokines released by CAR T-cells and monocytes in the bone 

marrow diffused into the serum and elevated the concentration of cytokines in the serum, 

where cytokines interact with each other. These processes are summed up in Equation (9) 

to depict the overall concentration of cytokines in the serum. The parameters si and αij for 

cytokine dynamics in serum were obtained from Yiu’s original model [7]. The secretion rates 

of cytokines by cells from the bone marrow (μ…) were fitted with Equations (1)–(4).

4.3. Model Calibration

The calibration of the NLME model was performed using the stochastic approximation 

of expectation maximization (SAEM) algorithm provided by Monolix software (2020R1; 

Lixoft, France). The initial tumor burden was described as a regressor and cytokine data 

were described as observations. To prevent overfitting, the population standard deviation 

was assumed to be 1.25 for all cytokine secretion coefficients. We adopted population-level 

fitting results at the cellular level (Table 3) from our previous study [10] that were calibrated 

based on clinical data. In addition, the molecular-level parameters were fitted (Tables 4 and 

5).

4.4. Estimation of the probability of severe CRS

Clinically, the severity of CRS is described by grade, which is evaluated by clinical 

symptoms such as body temperature and categorized into four or five grades according 

to various grading standards [18]. To make the clinical data graded by different standards 

available in our model, we divided CRS into two levels: severe CRS, which is equivalent to 

level 3 or above CRS graded based on clinical symptoms, and mild CRS, which is equivalent 

to level 2 or below CRS according to references [32].

Similar to the method in [7], we estimated the probability of severe CRS by comparing the 

concentrations of different types of cytokines with corresponding typical values of severe 

or mild cases of CRS. The probability of severe CRS increases when the concentrations of 

cytokines are closer to the typical values of severe CRS but far from mild CRS. When the 

concentration of cytokines was lower than the typical value of the concentration of mild 

CRS, the probability of severe CRS was set to 0. When the concentration of cytokines was 
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higher than the typical concentration of severe CRS, the probability of severe CRS was set 

to 1. The model was constructed using a piecewise but continuous function to express the 

probability of severe CRS (g) as follows:

g ci =

0, γ < γm

g0 ci , γm ≤ γ < γs

min 1, g0
cs

c ci , γ ≥ γs
(10)

where

g0 ci = γ − γm

γs − γm
2

γ
γs + γs

γ

∑iγiγis

γγs = γ − γm

γs − γm
2∑iγiγis

γ 2 + γs 2 (11)

γ = ∑
i

γi
2, γm = ∑

i
γim

2, γs = ∑
i

γis
2,

γi =
ci

cim
, γis =

cis

cim
, γim = 1

Here, i denotes cytokine species (TNF-α, IL-6, IL-8, or IL-10), ci is the concentration of 

cytokine i in the serum, and Ci
S and Ci

m are reference cytokine concentrations for severe 

and mild CRS cases, respectively. ci was compared with the severe and mild CRS reference 

concentrations to determine how close the cytokine profile was to the two cases, thus 

providing an estimation of the probability of severe CRS. Considering the distinct order of 

magnitude and biological significance of different cytokines, γi, γis, and γim were defined as 

the normalized cytokine concentration against the reference concentration of mild CRS; γ, 

γs, and γm are the vector magnitudes of the concentrations.

In the estimation, the reference concentration of cytokines for mild CRS Ci
m was set as 

the cut-off to define the probability of severe CRS as 0. In the expression of g0, the first 

bracket denotes the extent to which the total concentration of cytokines deviates from the 

mild case in the sense that a higher overall concentration leads to a more severe reaction. 

The second bracket denotes the closeness between the magnitude of the concentration of 

cytokines and that of the severe case, whereas the third bracket denotes the closeness in 

the angle between Euclidean vectors, both in the sense that a cytokine profile similar to the 

severe case indicates severe CRS.

The reference cytokine concentration was defined to reflect the typical concentrations of 

cytokines in severe or mild CRS patients. The reference concentrations of the four cytokines 

included in the estimation were selected from Fig 6A–D of [5b] and are listed in Table 6. 
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Specifically, the reference value was selected as the doubled peak concentrations of the 

≥Grade 4 CRS lines, and the mild reference was selected as half the concentrations of the 

Grade 0 CRS lines.

4.5. CRS Factor

We performed a local partial derivative-based sensitivity analysis instead of using 

regression-based or variance-based global methods as the global methods were not reliable 

because the sensitivity of each parameter varies drastically at different regions of the 

parameter space. For example, there are low sensitivity to cytokine secretion rates when 

there is not enough initial tumor burden to provoke a strong inflammation, but when the 

initial tumor burden is high enough, the sensitivity to secretion rate of IL-6 is prominent. 

With such heterogeneity, a rational local condition is more meaningful. The local condition 

was selected as the population level parameter, with the average tumor burden of the 

calibration cohort (used in Fig 2). Through this sensitivity analysis we found that the 

secretion coefficient of the IL-6 cytokine by monocytes and the tumor burden are most 

important in driving CRS (Fig 3C). The CRS process is a consequence of the killing of 

tumor cells by CAR T-cells, which is determined by the B-ALL cell elimination rate of 

CAR T-cells (e). Additionally, clinical experience has suggested that the initial tumor burden 
[3b, 5] and various cytokines including IL-6 [33] and others [2, 34] such as TNF-α, IFN-γ, 

IL-1, IL-2, IL-6, IL-8, IL-10, and IL-12 influence the risk of CRS or related toxicity in CAR 

T-cell therapy. Thus, we defined the CRS factor, FCRS, in Equation (14) based on the B-ALL 

cell elimination rate of CAR T-cell, e, the number of initial B-ALL cells, nP0, and the release 

rates of various cytokines (μT,TNFα, μT,IFNγ, μT,IL2, μM,TNFα, μM,IL1, μM,IL6, μM,IL8, μM,IL10, 

and μM,IL12) from CAR T-cells and monocytes. Ideally, release rates should be weighted 

based on the importance of each cytokine, as determined by clinical data. However, as 

clinical data measuring and comparing all these factors are limited, weights were empirically 

assigned based on the importance of each cytokine. As IL-6 plays a pivotal role in CRS, 

we weighted μM,IL6 by a factor of 5, where factor 5 was roughly selected by comparing 

the sensitivity of μM,IL6 with the second most sensitive factor: μM,IL10. It was not selected 

with precision because changing it to approximately 4–8 did not significantly affect the 

correlation of FCRS with the probability of severe CRS. For the other cytokines, we assigned 

their uniform release rates to 1. Our choice of weights yielded a better correlation with the 

probability of severe CRS than the choice of IL-6 alone (Fig S3). The CRS factor FCRS 

overall represents the probability of severe CRS as follows:

FCRS = 1
e μT, TNFα + μT, IFNγ + μT, IL2

+ μM, TNFα + μM, IL1 + 5μM, IL6 + μM, IL8 + μM, IL10 + μM, IL12 nP0
(12)

4.6. Monte Carlo simulation of virtual patient cohorts

Virtual patient cohorts were generated using MATLAB code (MATLAB R2021a) using the 

population mode and deviation of parameters of interest (that is, the secretion coefficients), 

calculated from the calibration of the NLME model using the SAEM algorithm (Table 4) 

while keeping the parameters for cellular interaction shown in Table 3 fixed. Thus, the 
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secretion coefficients of cytokines were distributed randomly to simulate variations among 

the general population. The distribution was set as a lognormal distribution in accordance 

with the assumption of the NLME model, that is, the distribution of the lognormal was 

generated with the populational mode (Table 4) and deviation (1.25) from the Monolix 

software. A cohort of virtual patients was then generated using pseudorandom numbers 

simulating the distribution for each plot in Fig 3, 5, and 6. The measurement error estimated 

from the calibration was also simulated for comparison with calibration data points.

4.7. Modeling of tocilizumab effect

The biological function of IL-6 is mediated by its binding of IL-6 to its receptor, IL-6R. 

Binding can be assumed to be proportional to the concentrations of IL-6 and IL-6R, since 

IL-6R forms a complex with IL-6 once bound, as follows:

cIL6R−IL6 = cIL6 cIL6R−free (13)

where cIL6 is the concentration of IL-6, cIL6R_free is the concentration of free IL-6R, and 

cIL6_IL6 is the concentration of the bound form of the IL6-IL6R complex.

Tocilizumab is a monoclonal antibody that binds IL-6R to block its binding to IL-6. The 

binding of IL-6R to tocilizumab is an antigen-antibody binding process, which can be 

described as follows:

cIL6R_free = KD
cTCZ + KD

cIL6R−all (14)

where cIL6R_all is the concentration of total IL-6R and cTCZ is the concentration of 

tocilizumab. KD is the dissociation constant for tocilizumab on IL-6R as used from [35] and 

set to 0.37 μg/mL. The tocilizumab concentration was determined using a pharmacokinetic 

model.

Collectively,

cIL6R_IL6 = cIL6
KD

cTCZ + KD
cIL6R_all (15)

Therefore, we defined an equivalent bioavailability of IL-6, denoted as γIL6, in place of IL-6 

concentration, for comparison between the control and tocilizumab treatment groups. In the 

absence of tocilizumab, the bioavailability of IL-6 depends on its concentration, represented 

as follows:

γIL6 = cIL6
KD

cTCZ + KD
(16)

The pharmacokinetics of tocilizumab was adapted from [36], which consists of a 

bicompartmental model that considers a central volume V1 and a peripheral volume V2. 
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Intravenously injected tocilizumab starts from the central volume and distributes to the 

peripheral volume to take effect, as follows:

d
dt cTCZ,central = − CL

V 1
cTCZ,central − V M

V 1

cTCZ,central
KM + cTCZ,central

− Q
V 1

cTCZ,central + Q
V 1

cTCZ

d
dt cTCZ = Q

V 2
cTCZ,central

− Q
V 2

cTCZ

(17)

The parameters in the equation can be found in [36]. Tocilizumab is typically used at a dose 

of 8 mg/kg, which is approximately 160 μg/mL in serum concentration. Thus, we used an 8 

mg/kg Q2W IV dose starting on the day of infusion in our simulation, as this is a common 

choice of dose according to [35–36].

4.8. Modeling of different CAR T-cell products and switchable CAR T-cells

To model a slower CAR T-cell response, the parameters for CAR T-cell response (rP, kA, 

and lTA, but not e) were divided by a factor of two, five, or ten for a two, five, and ten times 

slower response, respectively. The killing rate (e) was not changed because the literature 

suggested no significant difference in anticancer activity [13b].

To model the switchable CAR T-cells, kA and e was set to 0 for the “OFF” state and their 

original values for the “ON” state, as the activation and killing process required recognition 

of tumor cells by the switchable CAR molecule.

4.9. Statistical Analysis

P-values were calculated using the Student’s t-test with Prism 9 software (GraphPad 

Software Inc., CA, USA). Statistical significance was set at p < 0.05, and sample sizes 

are indicated in all figure legends. Error bars denote mean ± standard deviation (SD) in 

histograms. In figures with a central line and band, the band denotes quartile boundaries and 

the line denotes median. Only in Fig 5A and B and Fig 6F the line denotes the linear fitting 

and the band denotes the 95% confidence interval determined by the fitting.
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Fig 1. A scheme of the CRS model showing key cellular and cytokine interactions in the bone 
marrow and serum.
For the cytokine interaction network scheme on the right panel, red ends denote promotion, 

whereas blue ends denote inhibition. Briefly, activated CAR T-cells kill B-ALL cells through 

cytotoxic activity, and this killing process stimulates monocytes in the microenvironment. 

The monocytes secrete multiple cytokines in response, whereas the activated CAR T-cells 

also secrete cytokines. These cytokines, from local inflammation in bone marrow, then enter 

blood circulation in excessive amounts and induce systematic reaction, leading the body 

to respond with altered cytokine secretion and degradation, which is seen as interactions 

among cytokines. The excessive cytokines from bone marrow, with such interactions, 

accounts for the high cytokine level in the serum, which demonstrates CRS.

Zhang et al. Page 20

Adv Ther (Weinh). Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. Calibration and simulation results of the CRS model.
(A–C) Calibration results and simulation using Monte Carlo method to estimate the 

distribution of IL-6 time series of the population. Black lines show median, color bands 

show prediction intervals with different probabilities, and dots show clinical observations. 

Patient number = 17. (D–F) Simulated time series of CAR T-cell and equivalent monocyte 

number in bone marrow (D), and cytokine release rates in bone marrow (E) and serum 

(F). Negative release rate in F means clearance of cytokines. (G) Experimental (dot) and 

simulated (line) time series results of concentrations of different cytokines in serum.
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Fig 3. Factors affecting the cytokine dynamics and probability of severe CRS.
(A) The relationship between tumor burden and peak concentration of cytokines (IFN-γ, 

IL-6, and IL-8) of the population through a virtual patient cohort generated using Monte 

Carlo simulation. Data of IFN-γ were from the previous calibration process, and data of 

IL-6 and IL-8 were for validation. Solid lines represent the median of simulated results, 

whereas dotted lines denote quartile boundaries. Cohort size = 2000. (B) The relationship 

between AUC7 of CAR T-cells and equivalent monocytes and the tumor burden. (C) The 

relationship of the probability of severe CRS and AUC7 of CAR T-cells and monocytes 

of the population through a virtual patient cohort generated using Monte Carlo simulation. 

Solid lines show the median and bands show quartile boundaries. Cohort size = 4000. (D, 

E) Variation of the probability of severe CRS of the population through a virtual patient 

cohort (size = 1000) generated using Monte Carlo simulation as tumor burden (D) and peak 

concentration of IL-6 (E) change, validated against clinical data (patient number = 60(D), 

95(E)). Solid lines show the median and dotted lines show quartile boundaries. Histogram 

shows clinical data in different tumor burden intervals; error bars denote standard mean ± 

standard deviation (SD). (F) Sensitivity analysis of parameters illustrated by changing each 

parameter +10%. Bars show the corresponding changes of the probability of severe CRS.
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Fig 4. Influence of IL-6 on the development of severe CRS.
(A) Negative correlation between the day of IL-6 reaching peak and initial tumor burden. 

(B) Negative correlation between the peak IL-6 concentration and the day of IL-6 reaching 

peak. (C) Variation of the probability of severe CRS as the initial number of B-ALL cells 

(equivalent to tumor burden) and the release rate of monocytes of IL-6, μM,IL6 change.
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Fig 5. The patient-specific CRS factor predicts the probability of severe CRS.
(A) The CRS factor, FCRS, shows linear correlation to the probability of severe CRS. Dots 

show data of individual patients and line shows linear fit. Band denotes 95% confidence 

interval. Patient number = 17. (B) Monte Carlo simulation of a virtual patient cohort showed 

similar correlation between FCRS and estimated probability of CRS. Dots show virtual 

patients and line shows linear fit. Band denotes 95% confidence interval. For A and B, the 

probability of severe CRS saturated with too large FCRS, trivially not obedient to the linear 

correlation, which was neither included by the plot nor used in linear correlation. Cohort 

size = 100. (C) The variation of CRS Factor FCRS as the initial number of B-ALL cell 

(equivalent to tumor burden) and the release rate of IL-6 from monocytes, μIL6,M changed.
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Fig 6. Mitigation of CRS with tocilizumab.
(A) Simulated probability of CRS in the control and tocilizumab treatment groups. 

Simulation was conducted among a virtual cohort (size = 1500) with high tumor burden 

of 40–95% to match the high tumor burden cohorts (≥ 40%) in clinical trials [12] (patient 

number = 15 (tocilizumab) and 26 (control)). Error bars denote mean ± SD. P-values were 

calculated using Student’s t-test. *p<0.05. (B) Comparison of simulated bioavailability and 

(C) concentration of IL-6 between the control and tocilizumab treatment groups. Lines 

denote median and bands denote quartile boundaries. Cohort size = 200. (D, E) Variation of 

probability of severe CRS as tumor burden (D) and peak concentration of IL-6 (E) changed, 

and comparison between the control and tocilizumab treatment groups. Solid lines show 

median and dotted lines show quartile boundaries. Cohort size = 400. (F) Monte Carlo 

simulation of two virtual patient cohorts show decreased probability of severe CRS with 

tocilizumab treatment compared to the control group. Dots show virtual patients, lines show 

linear fit, and bands denote 95% confidence interval. Cohort size = 100.
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Fig 7. In-silico modeling and comparison of 4-1BB and CD28 CAR T-cell products.
(A) Peak probability of severe CRS and the day of the peak, for a virtual cohort of 200 

virtual patients, with CAR T-cell response two, five, and ten times slower. Cohort size = 200. 

(B) Time series of tumor burden and probability of severe CRS of patients #1 and #2, with 

control or five times slower CAR T-cell response. (C) In a virtual cohort of 200 patients, the 

peak probability of severe CRS and the tumor burden at day 60 with control or five times 

slower CAR T-cell response. Lines link individual virtual patients. Cohort size = 200.
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Fig 8. In-silico modeling of the treatment schemes and outcomes of switchable CAR T-cell 
products.
(A) Scheme of switchable CAR T-cells. (B) Two possible switching schemes. (C) Tumor 

burden and probability of severe CRS responding to switching of the CAR T-cells through 

two different schemes (patient #2). (D) Tumor burden at day 30 and peak CRS probability of 

the periodic switching scheme, as the duty cycle and the period changed. (E) Tumor burden 

at day 30 and peak CRS probability of the conditionally triggered scheme, as the severe CRS 

probability threshold and the assay lag changed. (F) Peak probability of severe CRS and 

D30 tumor burden, as the factors of the two controlling schemes were varied.

Zhang et al. Page 27

Adv Ther (Weinh). Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 28

Table 1.

Data for calibration of the model

Patient number Cytokine Source

1 TNF-α, IFN-γ, IL-1, IL-2, IL-6, IL-10 [20c] Fig 1B #2

2–4 IFN-γ, IL-2, IL-6 [20a] Fig 2A MSK-ALL04 ~ 06

5 TNF-α, IFN-γ, IL-2, IL-6, IL-10 [20d] Fig 3A #11

6–15 IL-6, IL-10 [20e] Fig 4 1 ~ 10

16, 17 IL-6 [20f] Fig 4 A, G P1, P7
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Table 2.

Validation data for the CRS reported against tumor burden and IL6

Data Patient Source

Burden, IL6 CPL-02 ~ 11, 15, 17 [20g] Supplementary Table 3, 5

IL6 (All) [20h] Supplementary Fig 2B

IL6 (All) [20i] Supplementary Fig 2

Burden #1, 4, 6, 7, 10 [20f] Table 1

Burden (All) [20j] Table 1, Supplementary Table 1

Burden, IL6 (All) [20b] Supplementary Fig 3, 4
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Table 3.

Population-level fitted parameters and initial values of CAR T-cells and B-ALL cells (cellular level modeling)

Parameter Description Unit Value

rP Growth rate of CD19+ B-ALL cells day−1 0.071

rTA Growth rate of activated CAR T-cells day−1 1.5

lTA Apoptosis rate of activated CAR T-cells day−1 0.11

lTN Apoptosis rate of non-activated CAR T-cells day−1 2e-7

nC B-ALL cell-carrying capacity 2585.74

e Killing rate of activated CAR T-cells day−1 19.34

KP Saturation constant to CAR T-cell killing rate 11040.05

K r Saturation constant to CAR T-cell growth rate 1360.54

KA Saturation constant to CAR T-cell activation rate 11883.73

kA Activation rate of CAR T-cells day−1 0.58

rN Growth rate of CD19− B-ALL cells day−1 0.1

km Mutation factor day−1 1.5e-7

kb Bystander killing scaling factor 7.9

KN Saturation rate of CD19− B-ALL cells to killing efficacy 16956.03

nP0 Initial value of CD19+ B-ALL cells ×109 cells 1467.01

nN0 Initial value of CD19− B-ALL cells ×109 cells 19.89

nTN0 Initial value of non-activated CAR T-cells ×109 cells 8.97
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Table 4.

Population-level fitted release rates of various cytokines (molecular level modeling)

Parameter Description Unit Value

μT,TNFα Release rate of TNF-α from CAR T-cells into serum pg mL−1 day−1(109 cell)−1 0.0004

μT,IFNγ Release rate of IFN-γ from CAR T-cells into serum pg mL−1 day−1(109 cell)−1 0.0116

μT,IL2 Release rate of IL-2 from CAR T-cells into serum pg mL−1 day−1(109 cell)−1 0.0015

μM, TNFα Release rate of TNF-α from monocytes stimulated by tumor lysis into serum pg mL−1 (109 cell)−1 0.4618

μM,IL1 Release rate of IL-1 from monocytes stimulated by tumor lysis into serum pg mL−1 (109 cell)−1 0.4133

μM,IL6 Release rate of IL-6 from monocytes stimulated by tumor lysis into serum pg mL−1 (109 cell)−1 1.8253

μM,IL8 Release rate of IL-8 from monocytes stimulated by tumor lysis into serum pg mL−1 (109 cell)−1 0.5683

μM,IL10 Release rate of IL-10 from monocytes stimulated by tumor lysis into serum pg mL−1 (109 cell)−1 6.1396

μM,IL12 Release rate of IL-12 from monocytes stimulated by tumor lysis into serum pg mL−1 (109 cell)−1 1.8594
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Table 5.

Individual-level fitted release rates of various cytokines (molecular level modeling)

Pat. No. μ T,TNFα μ T,IFNγ μ T,IL2 μ M, TNFα μ M,IL1 μ M,IL6 μ M,IL8 μ M,IL10 μ M,IL12

1 0.000446 0.003592 0.001152 0.275235 0.119008 1.85297 0.536542 1.87497 2.01872

2 0.000394 0.011354 0.001517 0.473093 0.373535 1.65234 0.466915 15.6379 4.67181

3 0.000395 0.01175 0.001519 0.432445 0.4088 0.411243 0.792654 5.58148 1.8618

4 0.000395 0.011613 0.001527 0.461807 0.413271 1.82473 0.568253 6.13907 1.85965

5 0.000294 0.012866 0.002191 0.618077 4.35899 3.26738 1.06832 0.43901 17.3246

6 0.000395 0.011612 0.001527 0.461257 0.413134 1.81435 0.568487 108.931 1.86407

7 0.000372 0.013243 0.001336 0.402073 0.347817 0.973329 0.66982 14.2192 1.95262

8 0.000396 0.011674 0.001522 0.455337 0.384914 0.771902 0.560472 1.9066 1.73366

9 0.000395 0.01161 0.001527 0.462083 0.414387 84.4419 0.568791 118.87 1.8536

10 0.000382 0.016063 0.001523 0.971001 0.349997 0.686622 0.431895 0.142302 0.851897

11 0.000404 0.013388 0.001484 0.484646 0.477202 0.619983 0.617316 1.12084 2.4544

12 0.000395 0.011611 0.001527 0.462529 0.415349 51.5049 0.568627 106.164 1.86779

13 0.000395 0.011612 0.001527 0.461877 0.413437 1.84092 0.568305 6.17834 1.85983

14 0.000395 0.011641 0.001527 0.44469 0.385164 0.715483 0.5659 6.9142 1.80477

15 0.000395 0.011614 0.001527 0.461835 0.413313 1.82805 0.568284 6.10506 1.85932

16 0.000395 0.011613 0.001527 0.461825 0.413327 1.83195 0.568292 6.1365 1.8595

17 0.000395 0.011514 0.001518 0.423723 0.390628 1.00856 0.552313 11.6701 1.85441
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Table 6.

Reference cytokine concentration (pg/mL)

TNF-α IL-6 IL-8 IL-10

Severe 250 2820 790 561

Mild 0.3138 2.475 8.842 3.124
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