Table 3.
Training parameters of ANN models.
Parameter | Value |
---|---|
Training Algorithm | Levenberg–Marquardt algorithm (LM) algorithm particle swarm optimization (PSO) algorithm Grey Wolf Optimization (GWO) Algorithm algorithm |
Normalization | Minmax in the range 0.10–0.90, 0.00–1.00 -1.00-1.00 |
Number of Hidden Layers | 1 |
Number of Neurons per Hidden Layer | 1 to 50 by step 1 |
Control random number generation | 10 different random generation |
Maximum number of Epochs | 250 |
Cost Function | Mean Square Error (MSE) Sum Square Error (SSE) |
Transfer Functions | Hyperbolic Tangent Sigmoid transfer function (HTS) Log-sigmoid transfer function (LS) Linear transfer function (Li) Positive linear transfer function (PLi) Symmetric saturating linear transfer function (SSL) Soft max transfer function (SM) Competitive transfer function (Co) Triangular basis transfer function (TB) Radial basis transfer function (RB) Normalized radial basis transfer function (NRB) |