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abstract

High-dimensional -omics data such as genomic, transcriptomic, and metabolomic data offer great promise in
advancing precision medicine. In particular, such data have enabled the investigation of complex diseases such
as cancer at an unprecedented scale and in multiple dimensions. However, a number of analytical challenges
complicate analysis of high-dimensional -omics data. One is the growing recognition that complex diseases such
as cancer are multifactorial and may be attributed to harmful changes on multiple -omics levels and on the
pathway level. When individual genes in an important pathway have relatively weak signals, it can be challenging
to detect them on their own, but the aggregated signal in the pathway can be considerably stronger and hence
easier to detect with the same sample size. To address these challenges, there is a growing body of literature on
knowledge-guided statistical learning methods for analysis of high-dimensional -omics data that can incorporate
biological knowledge such as functional genomics and functional proteomics. These methods have been shown
to improve predication and classification accuracy and yield biologically more interpretable results compared
with statistical learning methods that do not use biological knowledge. In this review, we survey current
knowledge-guided statistical learning methods, including both supervised learning and unsupervised learning,
and their applications to precision oncology, and we discuss future research directions.
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INTRODUCTION

Rapid advances in technologies have led to generation
of high-dimensional -omics data, such as genomics,
transcriptomics, and metabolomics data, in many
biomedical studies. Such data offer great promise in
advancing precision medicine. They have been used
to build prediction models for disease risk or pro-
gression and for adaptive response to treatment, un-
cover molecular signatures associated with a disease
that provide insights about disease mechanism, and
identify potential therapeutic targets. At the same time,
they also present many analytical challenges. Many
advanced statistical learning methods1 have been
developed to address these analytical challenges. For
example, regularized regression methods have been
developed for building prediction model and identi-
fying important molecular signatures for disease risk
or prognosis. These methods have many appealing
features from a methodologic point of view. In par-
ticular, they achieve simultaneous variable selection
and model estimation and can be used to analyze data
where the sample size is less than the number of
-omics features. However, they also have some im-
portant limitations when used to analyze -omics data
for complex diseases such as cancer. There is growing
recognition that complex diseases are multifactorial

and may be attributed to harmful changes on multiple
-omics levels and on the pathway level. For example,
when expression levels of individual genes in an im-
portant pathway associated with cancer risk have
relatively weak signals, it can be challenging to detect
them on their own, but the aggregated signal in the
pathway can be considerably stronger and hence
easier to detect with the same sample size. The vast
majority of existing statistical learning methods are
entirely data driven and fail to incorporate biological
knowledge such as functional genomics and func-
tional proteomics that can be represented by a graph
(Table 1).

Extensive research in the past has yielded ever-
deepening knowledge of biological functions of
genes and gene products, which have been shown to
function through pathways and networks. Major efforts
have been undertaken to structure and store accu-
mulated biological knowledge on pathways and net-
works in multiple public or commercial databases,
including, but not limited to, Kyoto Encyclopedia of
Genes and Genomes (KEGG),2 Gene Ontology,19

BioCarta (www.biocarta.com),20 and Cell Signaling
Technology Pathway.11 Such biological knowledge
sheds important insight on regulatory relationships
between genes and gene products that are often
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associated with disease risk or progression. It has been
shown to be highly valuable to incorporate such biological
knowledge into analysis of gene expression data in relation
to disease risk. For example, Costello et al21 demonstrated
that use of biologic pathway information improved drug
sensitivity prediction. In addition, a two-step approach,22

conducting clustering analysis followed by annotating
clusters by a gene set enrichment analysis, has been shown
to improve power in clustering analysis of gene expression
data. Similar biological knowledge is also available for other
types of -omics data, and Table 1 lists representative da-
tabases for such biological knowledge.

Recent methodologic research23-25 has also provided
strong evidence about the advantages of knowledge-
guided statistical learning methods that can incorporate
the aforementioned biological knowledge, compared with
statistical learning methods that do not use such biological
knowledge. Knowledge-guided statistical learning methods
enable selection of important pathways instead of individual
-omics features and improve power in uncovering impor-
tant features, particularly those with weak signals. The
results from such analyses are biologically moremeaningful
and interpretable and can provide insights about molecular
mechanism and underpinning of complex diseases. In
addition, such a strategy can also facilitate the integration of
multimodal -omics data through the incorporation of bi-
ological knowledge about the functional relationship be-
tween different modalities (eg, expression quantitative trait
loci and metabolomic quantitative trait loci). As such, this
knowledge-guided data-driven approach is particularly
powerful and useful for analysis of -omics data in complex
diseases such as cancer.

Knowledge-guided statistical learning methods have wide
applications in precision medicine, including precision
oncology. The knowledge-guided supervised learning
methods can be used to construct prediction models for
disease risk and prognosis, which can then be used to
identify higher risk groups more accurately and tailor in-
terventions to individual patients.26 They can also be used
to uncover molecular signatures that are predictive of
disease risk, disease progression, or patient response to
treatment, which can inform novel targets for therapeutic
development. The knowledge-guided unsupervised
learning methods, such as biclustering, can be used to
identify disease subgroups and important pathways asso-
ciated with each subgroup.27 Identification of subgroups
related to molecular differences offers insights about op-
timizing treatment strategy for each subgroup and is an
important step toward developing a precision medicine
approach for complex diseases such as cancer.

In this review, we survey advances in knowledge-guided
statistical learning methods for analysis of high-
dimensional -omics data in precision medicine, many of
which have been applied to analysis of cancer data. We
organize our presentation in two broadly defined cate-
gories, knowledge-guided supervised statistical learning
methods and knowledge-guided unsupervised statistical
learning methods.

KNOWLEDGE-GUIDED SUPERVISED STATISTICAL
LEARNING METHODS

The majority of the statistical learning tasks on cancer
genomics studies focus on investigating the relationship
between the high-dimensional complex genomic features
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and certain clinical outcomes. Depending on the type of
clinical outcomes, methods have been proposed to
handle binary data (eg, the disease status), continuous
data (eg, time to death), categorical data (eg, cancer
subtypes), and censored data (eg, time to cancer re-
currence). Through this learning procedure, we can
identify important genomic features that are highly as-
sociated with clinical end points, build a prediction rule
that will be crucial for future clinical practice, or even
achieve both simultaneously. Correspondingly, prior
biological or structure knowledge is supposed to be
incorporated within feature selection or the prediction
process to refine the model for a more accurate and
interpretable result.

For ease of illustration, we introduce a few notations without
loss of generality. Suppose a study recruits n patients with
an outcome of interest (eg, disease status) and p predictors
(ie, confounders and genomics features) collected for each
patient. Under high-dimensional case, the number of
predictors is larger than the sample size (ie, p. n), and we
denote the outcome as Y and a collection of -omics pre-
dictors as X. The existing biological knowledge (eg, pathway
information, gene-gene network) among predictors is
represented as a direct or indirect graph among genomics
features, denoted as G. The goal of the supervised learning
is to build a prediction model for Y using X, which also
allows us to assess how X influences Y. A knowledge-
guided supervised learning approach allows the in-
corporation of the information in G. In this section, we
broadly categorize current knowledge-guided supervised
learning methods into two types of approaches, the fre-
quentist approach and the Bayesian approach. Figure 1
provides an example of a knowledge-guided linear re-
gression model in both the frequentist and Bayesian
frameworks.

The main distinction between the frequentist and
Bayesian approaches is their view on probability. In
short, frequentist approaches try to solve the exact value
of probability on the basis of the event they observed,
whereas Bayesian methods do not assume there is fixed
probability of the event but treat this probability itself also
as random. In terms of model fitting, frequentist models
do not assign prior distribution for the unknown pa-
rameters and eventually end up with a point estimate for
them, whereas Bayesian models need such a pre-
specified prior and produce a posterior distribution for
each parameter. The difference in the modeling scheme

TABLE 1. Representative Databases for Various Types of Biological Knowledge
Database Full Name Knowledge

KEGG Kyoto Encyclopedia of Genes and Genomes2 Metabolic pathways

Reactome Reactome Pathway Database3 Metabolic and signaling pathways

Mummichog Mummichog4 Metabolomic pathway

MetaCyc Metabolic Pathways From All Domains of Life6 Metabolic pathways

Invitrogen iPath Invitrogen iPath7 Metabolic pathways

IPKB Ingenuity Pathways Knowledge Base8 Gene regulatory and signaling pathways

BioCyc BioCyc Pathway/Genome Database Collection9 Metabolic pathways

TRANSPATH TRANSPATH10 Gene regulatory and signaling pathways

CST Cell Signaling Technology Pathway11 Signaling pathways

TargetScan TargetScan12 Gene-microRNA regulatory network

miRbase miRBase: The MicroRNA Database13 Gene-microRNA regulatory network

PicTar Probabilistic Identification of Combinations of Target Sites14 Gene-microRNA regulatory network

miRDB miRDB15 Gene-microRNA regulatory network

mirDIP microRNA Data Integration Portal16 Gene-microRNA regulatory network

BioGRID Biological General Repository for Interaction Datasets17 Protein and genetic interactions

ConsensusPathDB ConsensusPathDB18 Integrative database for molecular interactions

X: -omics predictors

Biological knowledge
G = <V , E >

Penalty for    (frequentist)
Prior for    (Bayesian)



yi = xi
’ + ei

FIG 1. Knowledge-guided linear regression model where Y is the
clinical outcome of interest and X is the set of high-dimensional
-omics features or predictors, and G = ,V, E. is the graph con-
taining the biological knowledge about -omics predictors with V
denoting the set of nodes (ie, -omics features) and E denoting the
set of edges. To incorporate G = ,V, E., a penalty for β is used in
a frequentist framework, and a prior distribution for β is used in
a Bayesian framework.
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results in their differences in how to incorporate biological
knowledge, computation, and interpretation of analysis
results.

Frequentist Approach

The majority of knowledge-guided frequentist methods
for analysis of high-dimensional -omics data are based
on a regression framework to study the association
between -omics features X and an outcome of interest Y
[ie, Y ≈ f(X, β)], with β being the set of p unknown re-
gression coefficients to be estimated. Under a high-
dimensional setting, β are typically assumed to be
sparse, with many of them being zero. This essentially
translates to a feature selection process by keeping im-
portant -omics features with nonzero coefficients in the
model while excluding unimportant ones. To induce
sparsity or shrinkage for the regression coefficients,
a penalty function, p(β), is often introduced, leading to the
so-called penalized regression. In the case where bi-
ological knowledge among predictors X is available and
can be represented by a graph G, we can also use p(β) to
incorporate such biological knowledge (Fig 1). Specifi-
cally, when there is an edge between features i and j in G,
a common strategy is to induce similar shrinkage effects
between their corresponding parameters βi and βj.

The work of Li and Li23 represents one of the earliest
attempts to incorporate gene network information into
feature selection for cancer genomics application. The
work tackles the problem of predicting time to death
among patients with glioblastoma using microarray gene
expression markers under a classic linear regression
model. To incorporate the pathway information in KEGG,
they proposed a network-constrained penalty on the
basis of the following two assumptions: first, genes
connected by an edge have similar functions and,
therefore, are expected to have smoothed regression
parameters; and second, the connected genes have
higher probability to be selected or not selected si-
multaneously. The penalty itself consists of an L1-norm
to achieve global sparsity as the usual penalization
procedure does, as well as a quadratic form on the
network Laplacian matrix to induce smoothness across
the biological graph. Using this method, they identified
gene subnetworks that were highly correlated with
survival time of patients with glioblastoma (see Fig 2 in
the article by Li and Li23), and some of these sub-
networks were not identified by other existing learning
methods that did not use pathway information. Although
some of the subnetworks were supported by previously
published work, some have not been reported in the
literature, and these novel gene signatures can inform
the molecular underpinnings of glioblastoma prognosis
or even novel targets for therapeutic development.

After Li and Li,23 a number of extensions have been pro-
posed. To handle binary outcome, Zhang et al28 adopted

the network-constrained penalty under a logistic regression
model that was used to predict a specific breast cancer
subtype on the basis of gene expression data from The
Cancer Genome Atlas (TCGA) consortium while in-
corporating protein-protein interactions. Sun et al29 pro-
posed a Cox regressionmodel with the network-constrained
penalty for survival outcome. Their method was applied to
a breast cancer study to identify genes and subnetworks
that are predictive of survival while incorporating biologic
network from KEGG.

Besides extensions to handle different outcome types,
Pan et al24 proposed a new penalty on the basis of Lr-
norm. It reduces the computational costs with a smaller
number of tuning parameters and allows two connected
genes to both up- and downregulate one another’s ex-
pression while maintaining the grouping effect. A few
subsequent extensions include those by Kim et al30 to
modify the penalty by removing the constraint of a similar
magnitude of the connected biomarkers, which is bi-
ologically more meaningful, and Tian et al31 to use
a multinomial logit model for cancer subtype prediction.
Overall, these works focus on incorporating individual-
level relationships between -omics biomarkers under the
assumption that connected biomarkers are more likely to
affect clinical outcome in a coordinated way.

More recently, for analysis of gene and microRNA
biomarkers, Zhao et al26 proposed a hierarchical group
penalty, which incorporates pathway membership,
gene network, and microRNA-gene regulatory network
information into a semiparametric accelerated failure
time model to predict prostate cancer recurrence after
surgery. Compared with previous works, hierarchical
group penalty further allows a group-level sparsity (ie,
genes in the same pathway are also more likely to be
associated or not associated with clinical outcome at
the same time). Zhao et al26 were among the first to
include both group-level membership and within-group
connectivity and induce sparsity at both the pathway
level and gene level. Another novelty in the work by
Zhao et al26 is the incorporation of the microRNA
regulatory network or, more generally, a partially known
biological graph. The article by Zhao et al26 treats the
unknown component of the biological graph as missing
data and proposes a multiple-imputation approach for
handling missing edges in the graph. The analysis of
prostate cancer data using their method yielded a more
accurate prediction model for prostate cancer re-
currence after prostatectomy, which can be used to
help determine whether adjuvant therapy is needed
after surgery.

A number of other supervised learning methods have also
been proposed to analyze high-dimensional biomedical
data while incorporating biological knowledge, including
support vector machine (SVM)32 for binary classification
and linear discriminant analysis33 for general classification.

Zhao, Chang, and Long

4 © 2019 by American Society of Clinical Oncology



For both methods, similar to the regression setting, bi-
ological knowledge represented by graph is incorporated
into the model using penalty functions, where the sparsity
and grouping effects are also expected. The knowledge-
guided SVM has been used to predict clinical outcome of
patients with glioblastoma using genomic biomarkers.32

Bayesian Approach

Although frequentist models are traditionally considered
canonical, Bayesian approaches have attracted increasing
interest in recent years as a result of their ease in in-
corporating prior information and quantifying uncertainty.
As such, they have played an important role in the de-
velopment of knowledge-guided supervised learning
methods.

When analyzing high-dimensional -omics data, prior dis-
tributions that lead to variable selection or shrinkage are
used in a Bayesianmodel to improve prediction and identify
important features. There is an extensive body of literature
on Bayesian variable selection.34 Different from variable
selection achieved through a penalty in a frequentist par-
adigm, Bayesian variable selection can be achieved in two
ways, namely, selection on the basis of a point-mass
mixture prior or regularization through a shrinkage prior.
The former35 directly includes or excludes a predictor in the
model by introducing a binary selection indicator. However,
the computation to fit such a Bayesian model can become
prohibitively expensive for analysis of high-dimensional
-omics data. A shrinkage prior36 is analogous to a pen-
alty on regression coefficients in a frequentist model and
requires much less computation. Thus, it is more attractive
for high-dimensional data. The downside with a shrinkage
prior is that it does not directly provide results on feature
selection; in addition, a subsequent truncation step, often
ad hoc, is required to obtain the final set of selected
predictors.

Similar to existing frequentist methods, the majority of
knowledge-guided Bayesian supervised learning methods
are developed for regression models. Prior distributions for
β are carefully designed to incorporate biological knowl-
edge represented by a graph G (Fig 1). One earlier work by
Li and Zhang37 proposed to use the Ising model38 com-
bined with the point-mass mixture for incorporating graph
information under a linear regression model. This idea has
been used widely in subsequent applications. As an ex-
tension of the work by Li and Zhang,37 Stingo et al39 pro-
posed a Bayesian hierarchical variable selection regression
model incorporating both pathway membership and gene
network information with application to breast cancer
microarray data. Their method, similar to that of Zhao
et al,26 enables selection of important pathways as well as
important genes within the selected pathways. After the
work by Stingo et al,39 the general idea of Bayesian hier-
archical variable selection at both the group level and in-
dividual level has gained increasing popularity. Zhe et al40

tackled the following limitation of the method from Stingo
et al39: all the pathways that a selected gene belongs to are
also selected, which is overly restrictive and may not always
be meaningful. To remove this restriction as well as reduce
the computation, they proposed a Bayesian joint pathway
and gene selection model that uses a graph Laplacian
matrix to encode biological knowledge and a variational
Bayesian algorithm for model estimation. The analyses of
a gene expression data set using their method yielded
a more accurate prediction model for survival time in pa-
tients with diffuse large B-cell lymphoma than several
existing learning methods that did not use biological
information.

Beyond genomics, Zhang et al41 analyzed molecular in-
version probe data to identify genes and probes that are
associated with clinically relevant subtypes of breast can-
cer. Their method uses information on biological grouping
of gene and probe-within-gene levels to define a hierar-
chical selection procedure through a point-mass mixture
prior for gene selection and a shrinkage prior for probe
selection. As the dimension of -omics data increases, there
is a growing interest in using Bayesian shrinkage priors for
knowledge-guided variable selection and prediction as
a result of potential computational savings. Rockova and
Lesaffre42 developed a Bayesian model for hierarchical
feature selection at the pathway level and gene level on the
basis of Bayesian lasso.36 Subsequently, Chang et al25

developed a novel adaptive structured shrinkage prior to
incorporate biological knowledge in a Bayesian regression
model. They also developed a computationally efficient
expectation-maximization algorithm that is scalable to
analysis of hundreds of thousands or even millions of
predictors. Applied to a TCGA glioblastoma data set, Chang
et al25 identified a set of risk genes along with enriched
pathways that were predictive of patient survival. Kundu
et al43 adopted similar ideas to incorporate gene network
information in an integrative analysis for gene, copy
number, and methylation data. In general, with the com-
putational advantage of the Bayesian shrinkage prior, this
research direction is expected to become even more active
for analysis of large-scale -omics data.

Besides regression, knowledge-guided Bayesian methods
have also been developed for discriminant analysis44 and
SVM45 for analysis of high-dimensional genomics data. In
both of these methods, the combination of a point-mass
mixture prior and an Ising prior has been used to facilitate
a knowledge-guided selection procedure where the gene
network information is obtained from one of the databases
listed in Table 1.

KNOWLEDGE-GUIDED UNSUPERVISED STATISTICAL
LEARNING METHODS

Compared with the rich literature in knowledge-guided
supervised learning methods, there has been fairly lim-
ited work on incorporating biological knowledge in an

Knowledge-Guided Statistical Learning Methods for -Omics Data
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unsupervised learning framework. Unsupervised learning
methods are typically used as a data mining approach to
help explore and visualize large-scale data; see Chapter 14
in Hastie et al.1 The existing knowledge-guided un-
supervised learning methods have been focused in two
areas, namely, clustering analysis and dimension re-
duction, for which either a frequentist or a Bayesian ap-
proach can be used.

Clustering Analysis

The goal of clustering analysis is to group patients on the
basis of their similarities in, for example, genomic features.
In terms of application to cancer -omics, clustering analysis
has been widely used to uncover cancer subtypes, which is
essential to understand tumor heterogeneity and optimize
prevention and treatment strategy accordingly. There has
also been a great deal of interest in incorporating biological
knowledge in clustering to improve subtyping accuracy and
yield biologically more interpretable results. Liu et al46 and
Yu et al47 developed network-assisted biclustering algo-
rithms to simultaneously group patients with cancer and
gene features into meaningful clusters. They mainly used
the number of edges connected with each gene to define
weights in the clustering procedure.

Recently, more advanced integrative clustering methods
have been proposed to jointly analyze multimodality cancer
-omics data while incorporating biological information. Li
et al48 proposed a generalized Bayesian biclustering ap-
proach (Fig 2). Their method is able to jointly handle

different data types (continuous and discrete), which is well
suited to analyze multiomics data sets in cancer, including
gene expression, copy number, RNA sequencing, and
single nucleotide polymorphism. To incorporate biological
knowledge, a Bayesian adaptive structured shrinkage prior
is placed on the factor loading matrix, which encourages
the -omics features connected in a graph to have zero or
nonzero loading simultaneously in the same factor. Their
method was used to conduct biclustering analysis of gene
expression data, DNA methylation data, and DNA copy
number data from a TCGA glioblastoma data set. The
subgroups identified by their method had a higher corre-
lation with survival outcome of patients with glioblastoma
than those identified by other biclustering methods. As
such, these subgroups, if validated, may be clinically more
relevant. Similar in spirit, Min et al49 proposed a generalized
Bayesian factor analysis for integrative clustering of mul-
tiomics data. Different from Li et al,48 a point-mass mixture
prior combined with an Isingmodel was used to incorporate
biological knowledge. To reduce heavy computation, they
developed an efficient variational expectation-maximization
algorithm for estimation, making their method scalable to
the analysis of high-dimensional -omics data.

Dimension Reduction

Dimension reduction methods can be used to project high-
dimensional -omics features into a lower dimension space
either to better understand or visualize the data structure or
to facilitate assessing dependence between two sets of
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FIG 2. Knowledge-guided Bayesian generalized biclustering analysis.48 (A) Integrate data from H -omics
modalities, X1,…, XH. (B) X is linked to loadingW and latent factors Z. (C and D) Prior forW and Z, respectively.
(E) Prior for incorporating biological knowledge. (F) Biclusters identified in the product W*Z provide insight on
disease subgroups and associatedmolecular signatures. This method was used to conduct biclustering analysis
of gene expression data, DNA methylation data, and DNA copy number data from a glioblastoma data set from
The Cancer Genome Atlas. The subgroups identified by the method had a higher correlation with survival
outcome of patients with glioblastoma than those identified by other biclustering methods.
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data. Incorporation of biological knowledge could also play
a vital role in improving the performance of dimension
reduction, and a few recent publications have made at-
tempts in this direction. Li et al27 incorporated biological
knowledge into the sparse principal component analysis,
a popular dimension reduction tool for high-dimensional
data, to identify genes associated with glioblastoma cancer
subtypes. They extended and investigated two network-
based penalties, the grouped penalty by Pan et al24 and the
fused lasso penalty by Tibshirani et al.50 The resulting
sparse principal component analysis algorithm is able to
incorporate biological network information in the principal
component loadings and achieve more accurate and bi-
ologically meaningful dimension reduction. Similarly, bi-
ologic knowledge has also been incorporated into the
canonical correlation analysis51 and the coinertia analysis
(CIA)52 for assessing dependence between two -omics data
sets. Applied to analysis of gene expression data and
protein abundance data in the NCI-60 cell line data set, the
knowledge-guided CIA52 method was able to project the
high-dimensional -omics feature to a lower dimensional
space in which the 10 different types of cancers were
clearly separated (see Fig 1 in article by Min et al52). It
selected a sparse subset of genes and proteins that
may inform key molecular underpinnings that distin-
guish these cancers. Of note, both canonical correlation
analysis and CIA are popular multivariate statistical
methods for integrative analysis and have become popu-
lar in analysis of multimodality -omics data in cancer
studies.

In addition, Liu et al53 developed a knowledge-guided
approach to use expression data and coexpression net-
work information to improve de novo discovery of driver
pathways in cancer on the basis of mutation data. Analyses
of three cancer data sets using their method revealed new
driver pathways that were not uncovered by other methods
including, particularly, driver genes with less frequent
mutations that are muchmore difficult to detect. These new
driver pathways may offer insights about cancer biology
and inform novel targets for screening and for therapeutic
development.

DISCUSSION

Statistical learning methods have been proven powerful for
analysis of high-dimensional -omics data in modern bio-
medical research but have some important limitations. To
address these limitations, the knowledge-guided strategy,
as reviewed here, has drawn increasing interest in recent
years and has been shown to yield biologically more in-
terpretable and meaningful results. Software tools for many
of the methods reviewed earlier have been made publicly
available (Table 2).

Although substantial progress has been made in the de-
velopment of knowledge-guided statistical learning
methods, there is still much room for additional meth-
odologic developments and improvements. One area for
future research is to assess robustness of knowledge-
guided methods to mis-specification of biological knowl-
edge, because in practice, biological knowledge repre-
sented by a graph G is known to be incomplete and include

TABLE 2. Software Tools for Knowledge-Guided Statistical Learning Methods
Software Description Reference (first author)

Supervised

R Graph-constrained regularization for both sparse linear
regression and sparse logistic regression

Li, 200823; Sun, 201429

R Fused lasso Tibshirani, 200550

R Incorporating predictor network in penalized regression with
application to microarray data

Pan, 201024

Matlab Network-based penalized regression with application to genomic data Kim, 201330

R Scalable Bayesian variable selection for structured high-dimensional data Chang, 201825

Matlab Sparse knowledge-guided LDA Safo, 201933

Matlab Incorporating biological information into linear models: a Bayesian approach to
the selection of pathways and genes

Stingo, 201139

Matlab Joint network and node selection for pathway-based genomic data analysis Zhe, 201626

Unsupervised

Matlab Sparse knowledge-guided PCA Li, 201727

Matlab Sparse knowledge-guided CCA Safo, 201851

R Sparse knowledge-guided CIA Min, 201852

Matlab A network-assisted coclustering algorithm to discover cancer
subtypes based on gene expression

Liu, 201446

Abbreviations: CCA, canonical correlation analysis; CIA, coinertia analysis; LDA, linear discriminant analysis; PCA, principal component
analysis.
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false edges. Existing work27 has demonstrated that some
knowledge-guided supervised learning methods are fairly
robust to mis-specified biological knowledge G, but more
research is needed for other types of statistical learning
methods. To further enhance robustness, it is also of sig-
nificant interest to combine knowledge-guided methods
with learning biological knowledge graphs from observed
data, for which there is little research besides that by Zhao
et al.26 In addition, most of the existing knowledge-guided
Bayesian methods may not be scalable to analysis of big
-omics data that can have hundreds of thousands or even
millions of features, and more research on efficient com-
putation algorithms is needed.

Although knowledge-guided statistical learning methods
have drawn growing interest in methodologic communities,

they have not been widely used by cancer researchers,
and the findings from the methods publications reviewed
in this article largely remain to be validated in subsequent
studies. Our hope is that this review will raise the
awareness and spur wider and more frequent applica-
tions of knowledge-guided methods in basic, trans-
lational, and clinical research in order to advance
precision medicine, particularly for complex diseases
such as cancer. This will generate more compelling
evidence on how such methods can catalyze cancer
research and subsequently improve cancer prevention,
screening, and treatment. It will also offer exciting op-
portunities to extensively assess and validate these
methods in real data settings and identify potential
methodologic gaps for additional refinement.
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