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Abstract

The aim of this study was to perform a comprehensive literature review regarding the relevant 

hormonal and histological changes observed following Roux-en-Y Gastric bypass (RYGB). We 

aimed to describe the relevant hormonal (Glucagon Like Peptide-1 & 2[GLP-1 & GLP-2], Peptide 

YY [PYY], Bile Acids [BA], Cholecystokinin [CCK], Ghrelin, Glucagon, Gastric Inhibitory 

Polypeptide [GIP], and Amylin) profiles, as well as the histological (mucosal cellular) adaptations 

happening after patients undergo RYGB. Our review compiles the current evidence and further 

helps understand the rationale behind the food intake regulatory adaptations occurring after RYGB 

surgery. We identify gaps in literature where potential for future investigation and therapeutics 

may lie. We performed a comprehensive database search without language restrictions looking 

for RYGB bariatric surgery outcomes in patients with pre and postsurgical bloodwork hormonal 

profiling and/or gut mucosal biopsies. We gathered the relevant study results and described them 

in this review. Where human findings were lacking, we included animal model studies. The 

amalgamation of physiologic, metabolic, and cellular adaptations following RYGB are yet to be 

fully characterized. These constitute a fundamental aspect towards enhancing and individualizing 

obesity therapy.
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Introduction:

In 2017–2018, 42.4% of the adult population in the United States (~88.6 million) was 

reported to have obesity and 9.2% had severe obesity (~19.24 million)(1). It is estimated 

that by 2030, the prevalence of obesity in the US will reach up to 50%(2, 3). In 2018, the 

total annual medical costs attributable to obesity were estimated around $480.7 billion US 

dollars(4). More importantly, obesity is related to the development of obesity associated 

medical problems including coronary artery disease, type II diabetes, and end-stage renal 

disease, etc. Severe obesity increases the risk of these obesity associated medical problems 

even further(1), fostering additional expenses and compromising the population’s health and 

quality of life. Furthermore, obesity and severe obesity have been associated with increased 

all-cause mortality; hazard ratios ranging from 1.18 – 1.29 were found when all-cause 

mortality was compared between subjects with or without obesity(5).

Obesity is considered the result of an imbalance between energy intake and expenditure. The 

gut-brain axis plays a major role in regulating these factors(6, 7), where key factors including 

bile acids, and gut hormones interact with the hypothalamic brain centers (8–10) to regulate 

food intake. Following bariatric surgery, significant changes in bile acids and gut hormones 

have been described in patients with obesity when compared to their pre-surgical baseline 
(11, 12). In fact, alterations to levels of bile acids and gut hormones after metabolic surgery 

have recently been recognized as one of the mechanisms behind successful weight-loss 

outcomes(13).

Currently, numerous of bariatric surgical procedures are regularly preformed, with diverse 

outcome variability existing between the different operations, most likely due to differences 

in homeostatic adaptations following each procedure. Here, we review the adaptations 

following RYGB due to it having the best long-lasting consistent data and patient outcomes.

RYGB procedure description and evidence on basic variations: a small (<30ml) 

proximal gastric pouch consisting of gastric cardia is created by separating it from the 

remainder of the stomach. The small bowel is then divided at 50 to 100 centimeters distal 

to the ligament of Treitz. An alimentary “Roux-limb” (RL) is created by anastomosing 

the most distal segment of divided small bowel to the gastric pouch (gastro-jejunostomy). 

The “biliary limb” is then created by anastomosing the remaining segmented small bowel 

end to the jejunum (jejuno-jejunostomy) at a 75 to 150 centimeter distance from the gastro-

jejunostomy. (Figure 1)

The anatomical alterations to the gastrointestinal tract, surgically induced by RYGB surgery, 

promote homeostatic physiologic adaptations including reduced food intake, and altered gut 

hormone secretion, subsequently contributing to weight loss and weight loss maintenance 
(14). Variations in limb lengths have shown to effect surgical outcomes. Shorter common 
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channels (CC) lead to higher chances of nutritional deficiencies with little to no effect 

on weight loss (15). On the other hand a longer biliopancreatic limb (BPL) seems to be 

related to better glycemic control and diabetes remission but not to nutritional complications 
(16). Furthermore longer BPL also seems to be related to better weight loss outcomes in 

patients with a BMI>50kg/m2 although evidence on the relationship between weight loss 

and BPL length is somewhat controversial (16). Total alimentary limb length (TALL) is not 

commonly measured or reported in RYGB studies. Some studies have shown correlation 

between shorter TALL and improved weight loss, however, several others have reported 

<400cm TALL with <200cm CC lead to protein malnutrition and possible limb lengthening 

procedures(17).

After RYGB, patients decrease their food intake following a series of changes in gut 

anatomy and physiology. We aimed to describe current evidence of cellular and hormonal 

adaptations following RYGB to provide a mechanistic explanation and rationale behind 

changes in food intake, sustained weight-loss outcomes, and to identify gaps in knowledge 

in the available literature. To the best of our knowledge, no previous reviews have focused 

on adaptations in a mucosal/cellular level and hormonal changes to establish possible 

associations and areas of interest for future research. We found that current evidence 

indicates that the increase in postprandial satiety hormones following RYGB is key to obtain 

appropriate weight loss outcomes. However, more information about enteroendocrine cell 

(EEC) adaptations, and gut hormone synergism during food intake regulation is needed. We 

did not perform a systematic review or meta-analysis. We also did not perform a search for 

specific mechanisms behind enhanced glycemic control as these were out of the scope of 

this review.

Methods:

We searched PubMed, Scopus, MEDLINE, Google Scholar databases (June 7, 2021, to 

Feb 1, 2022) with no language restrictions, for randomized clinical trials, case-control 

studies, case series, and case reports reporting bariatric surgery outcomes (Roux-En-Y 

Gastric Bypass [RYGB]), in patients with pre and postsurgical bloodwork profiling (GLP-1, 

GLP-2, PYY, CCK, Ghrelin, Oxyntomodulin [OXM], VIP) with or without gut mucosal 

biopsies. We used a range of terms including but not limited to “bariatric surgery, gastric 

bypass, Roux-en-Y gastric bypass, gut hormones, CCK, VIP, OXM, Oxyntomodulin, GLP, 

GLP-1, GLP-2, PYY, PYY3–36, Ghrelin, Bile acids, CDCA, taurocholic acid, conjugated 

bile acids, mucosal biopsies, histological adaptations, permeability, mucosal permeability, 

enteroendocrine, enteroendocrine cells”. We compiled the relevant findings in these studies 

and described them in this review. To further explain mechanism of action, we broadened 

our search and included studies with animal models where evidence in human experiments 

was lacking; human studies that aim to provide mechanistic explanations behind adaptations 

to bariatric and metabolic surgery usually have methodological limitations, and/or small 

sample sizes. Moreover, some of these studies assessed the outcomes of different 

bariatric interventions altogether. The results of these studies are widely variable due to 

methodological and aim variability.
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Histological Adaptations:

The gut mucosa is the barrier and mediator between the gut luminal content and the 

basement membrane. There, paracrine, endocrine, and neuronal signals are sent following 

mucosal cellular stimuli and gut transit. EEC are directly stimulated by intraluminal gut 

content, which in turn induces gut hormone secretion. These hormones play an essential 

role in food intake regulation and digestion(18). Surgically induced changes in intraluminal 

content, and potential EEC adaptations could account for changes in gut hormone profiles 

following RYGB. We specifically searched for data on EEC changes, Chromogranin A, 

PYY and GLP mucosal staining, as well as postsurgical gastrointestinal tract biopsies.

Some studies have observed increased GLP-1 positive cells in the gastric fundus (19), 

and GLP-1 and Glucagon expression in the stomach, BP and AL(20). Apparently GCG 
(glucagon coding gene) increases in the BP and AL after RYGB. However, the significance 

of gastric GLP-1 expressing cells in the context of obesity is still uncertain, and the absence 

of a control group hinders the ability to compare these findings to other weight loss 

interventions. In humans, RYGB produces an increase in Ki67 (mitotic index) positive cells 

close to the bottom of the Lieberkuhn crypts of the AL(21), and a decrease of total mucosal 

surface (hypotrophy) (21, 22). Tight junction protein expression in the mucosal surface also 

changes possibly decreasing mucosal permeability(22). However, these findings are contrary 

to what has been observed in murine models. When compared with sham procedure, RYGB 

produces a noticeable alimentary limb mucosal hypertrophy greater than two-fold in the 

RYGB rats. RYGB doubles the total and regional L-cell numbers in murine models (23), and 

increases terminal ileum Ki67(24) when compared to sham procedures; these findings are yet 

to be evaluated in human models.

LITERATURE GAP:

Due to the discrepancies between human and animal physiology, it is often difficult 

to predict human physiology based solely on results from animal experiments. It is 

unclear whether the observed discrepancies are due to core physiological difference 

between species, location of said taken biopsies, or the postsurgical time when they were 

taken. Recognizing discrepancies and similarities in adaptations following bariatric surgery 

between species is important identify adaptations in variables (those that are preserved 

between species) as a consequence of RYGB. It is important to describe these changes 

in EEC specially in human models, to characterize the surgically induced satiety hormone 

secretion pathway and find new ways to enhance current obesity therapies.

Hormonal Adaptations

GI satiety hormones

GI satiety hormones GLP, PYY, and OXM are secreted by L-type EECs (L cells) and 

function to reduce food intake through their action as anorexigenic signals at hypothalamic 

arcuate and paraventricular nuclei as well as by altering gut motility through the ileal 

break mechanism. Previous literature has established the elevation of these L cell secreted 

hormones in circulation (25) in patients after undergoing RYGB (26). Sole infusion of these 
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hormones (GLP-1, PYY, and OXM) grants inferior weight loss than RYGB (27) suggesting 

that these outcomes are not solely due to elevated hormone levels. Factors like speed 

and degree to which hormones peak, associated to the anatomical alterations and other 

adaptations surely impact weight loss.

Following RYGB surgery GI physiology is also altered. Gastric pouch emptying findings 

are controversial, some studies show faster gastric emptying for liquids and slower gastric 

emptying for solids(28–30). Others show overall fast pouch nutrient emptying into the 

jejunum being related to elevated postprandial gut hormones (31). These discrepancies might 

be due to differences in gastro-jejunal anastomosis (GJ) diameter, and/or pouch size. They 

could also be due to differences in pouch emptying measurement techniques following 

RYGB(32). While there is a trend and an association(33), GJ diameter and pouch size do not 

in and of themselves seem to be causal agents of poor weight loss responses(32, 34, 35). More 

robust longitudinal studies comparing postop pouch size, GJ diameter, and pouch emptying, 

with long term follow up measurements of these same variables (under standardized 

techniques) are needed to evaluate and clarify the impact of these on weight loss outcomes, 

weight regain, and hormonal and metabolic adaptations following RYGB.

Despite the changes in gastrointestinal motility being variable, RYGB consistently induces 

postprandial elevation of satiety hormones, increased satiety (mainly through the arcuate and 

paraventricular nuclei of the hypothalamus), thus, causing early postprandial satiety and/or 

reducing hunger.

GLP-1: GLP-1 is secreted by intestinal L cells in a biphasic pattern (15–30 & 90–120 

minutes postprandial) when stimulated by luminal contents. Protein, fat, and glucose (36) are 

strong GLP-1 stimulating agents, as shown by their direct administration of these into highly 

perfused intestinal lumen (37–39). Aside from its commonly known incretin effect, GLP-1 

acts upon food intake regulation via central and peripheral effects (40). Intravenous infusions 

of GLP-1 significantly decrease food intake in lean subjects, subjects with obesity, and with 

type 2 diabetes mellitus in a dose dependent fashion (41–44).

Following RYGB, fasting plasma GLP-1 has been shown to be either normal, or elevated in 

human models (24, 45). Human postprandial GLP-1 levels have been shown to be elevated 

up to 40 months after RYGB when compared to pre-surgical measurements (24, 26, 45–56). A 

recent meta-analysis showed that peak postprandial GLP-1, 30 minutes after a meal is the 

most consistent elevated measurement after RYGB(45). Furthermore, GLP-1 has also been 

shown to be significantly elevated in RYGB in comparison to other weight-loss interventions 

including diet and adjustable gastric banding.

Direct delivery of nutrients into the proximal jejunum is associated to these differences in 

postprandial GLP-1 levels. Postprandial GLP-1 reaches higher levels when administered 

through an oral route in patients who had RYGB, when compared to a gastrostomy route 

into the gastric remanent (57). Some murine models have shown similar findings and 

reversal of the increased postprandial GLP-1 detection with nutrient administration through 

a gastrostomy route (58–60). This route dependent difference in GLP-1 secretion has been 

suggested to be the result of a rapid gastric-pouch emptying of nutrients into the Roux limb 
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(11). This might not be the only mechanism by which GLP-1 elevates following RYGB, as 

other bariatric procedures also increase the speed of nutrient delivery into the small bowel 

but don’t display the same increase in postprandial GLP-1 or weight loss and metabolic 

outcomes (61).

Following RYGB, human studies have shown that an attenuated increase of postprandial 

Peptide YY (PYY) and GLP-1 secretion is associated to poor weight-loss response or 

maintenance (14). Animal models have demonstrated how responsiveness to GLP-1 receptor 

agonists could predict some metabolic benefits secondary to RYGB (62). Somatostatin 

secretion from D-type EECs inhibits GLP-1 and PYY3–36 secretion. Administration of 

somatostatin analogues in RYGB patients has shown to decrease fullness ratings and 

increase meal size(14), while reduced hunger and early satiety are associated with elevated 

satiety hormones.

Orexigenic nuclei and the insula have decreased activation with visual food stimuli and 

food ingestion respectively in patients with a history of RYGB (63). In humans, inhibition 

of GLP-1 receptors with Exendin 9–39 after RYGB increases activation of orexigenic 

nuclei with visual stimuli, as well as increased activation of the insula following food 

intake(63). Weight loss outcomes and maintenance are likely the result of varied food 

intake regulatory mechanisms. Increased satiety hormone secretion seems to be fundamental 

towards obtaining optimal weight loss outcomes.

GLP-2: Glucagon-like peptide 2 (GLP-2) delays gastric motility, induces cellular 

proliferation, regulates apoptosis, intestinal nutrient absorption, and permeability in the 

gastrointestinal tract(64). Among hormonal adaptations, an overall increase of GLP-2 has 

been suggested to occur following RYGB. Animal models have shown a two-fold increase 

in immunohistochemically marked GLP-2-possitive cells in the alimentary limb (23) as well 

as increased plasmatic fasting GLP-2 (24) after RYGB. Despite these results, discrepancies 

between animal studies’ results and human physiology represent a major barrier. Human 

experiments have demonstrated no significant differences in postoperative fasting levels of 

GLP-2 with when compared to pre-surgical levels(24). Postprandial levels on the other hand 

have been shown to be elevated significantly as early as 2–6 weeks after surgery and persist 

elevated for up to 12 months (24, 65, 66).

Postprandial increased GLP-2 levels could be related to the observed decrease in intestinal 

permeability. However, these GLP-2 findings do not correlate with the hypotrophic mucosal 

changes described previously. There is still much to learn on how GLP-2 adaptations 

following RYGB affect gut physiology and weight-loss outcomes.

PYY: PYY is secreted by gut L-type EECs; it slows gastric emptying through the ileal 

break mechanism (i.e. slowing of gastric emptying secondary to ileal EEC secretion of 

PYY), increases postprandial satiety, and regulates energy expenditure (67). Food intake 

regulating actions elicited from PYY have been shown to be primarily mediated by PYY3–36 
(68, 69). Several murine based studies have shown PYY’s effect upon the Central Nervous 

System (CNS). Through injection of Neuropeptide y 2 Receptor (NPY2R) agonists and 

antagonists into the CNS as well as peripherally, PYY3–36’s central and peripheral effect 
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reducing food intake has been showcased (70–72). Even stimulation of tongue NPY2R 

receptors with PYY3–36 has shown reduced food intake in murine models (73). Peripherally 

injected PYY3–36 in human experiments corroborates these findings. Supraphysiological 

doses produce reduced meal sizes, whilst lower doses have only displayed increased fullness 
(68, 74). It is possible that its functions upon food intake regulation, are potentiated due to 

synergism with other gut hormones like GLP-1.

Similarly to GLP-1 the nutrient route (oral vs. gastrostomy) after RYGB seems to be 

intimately related to evaluated postprandial PYY secretion (57). Postprandial plasma levels 

of PYY also rises in patients following RYGB (14, 46, 47, 75, 76). More so, studies have 

described a potential relationship between postprandial PYY with good and poor weight loss 

responders, where higher levels of postprandial PYY were associated to good responders 
(14, 77).

Despite these reports, there has been a lack of consistency regarding reported postprandial 

PYY curve patterns, and Areas Under the Curve (AUCs) after RYGB surgery (26, 48). Further 

studies with standardized blood sample timing-recollection techniques, meals, and PYY3–36 

measuring techniques are needed to comprehensively describe this gut hormone’s pre and 

postprandial pattern after RYGB.

OXM: This satiety hormone is derived from proglucagon and is secreted alongside GLP-1 

following food intake. OXM influences energy balance by reducing hunger and energy 

intake while increasing energy expenditure. It stimulates GLP-1 and glucagon receptors thus 

regulating gastric motility and secretion, energy balance, and glucose homeostasis(78, 79). 

Subcutaneous administration of OXM induces weight loss in humans (80, 81).

Following RYGB patients display elevated postprandial OXM(82). Overall resting energy 

expenditure is decreased, but when analyzed from an objective perspective correcting for 

anthropometrics or body composition it has been shown to display more efficient pattern 
(83) as well as a relationship to weight loss, both of which might be related to the increase 

in OXM. Postprandial OXM levels have been described as a predictor of weight loss after 

RYGB; when associated to GLP-1, PYY, Glicentin, and Ghrelin they predict 60% of the 

variations in weight loss and 19% of the variations in food intake (84). These findings 

highlight the importance of enhanced satiety hormone secretion for weight loss outcomes 

after RYGB.

Bile Acids: BA are considered important mediators of food intake regulation. Conjugated 

BA have been identified as secretagogues inducing GLP1- and PYY secretion by EEC (85).

Bile acid pathway: 95%(86, 87) of BA reuptake happens through the apical Na+-dependent 

bile salt transporter (ASBT) in the distal ileum (88). Remaining luminal BA undergo 

deconjugation and dehydroxylation by colonic bacteria. Passive colonic reabsorption of 

BA recovers some of the remaining bile salts (5%) (89). At this level, reabsorbed BAs act 

as endogenous ligands for farnesoid X receptors (FXR) and G-protein-coupled bile acid 

receptor 1 or Takeda G-protein-coupled receptor 5 (GPBAR1 or TGR5) in the enterocyte 
(86). These two receptors are stimulated intracellularly, inducing production of fibroblast 
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growth factor 19 (FGF-19) and GLP-1, respectively. There are several other bile acid 

receptors that are less well studied but could very well be important mediators of these 

same effects.

Decreased FGF-19 levels are present in patients with obesity and diabetes (85). FGF-19 

(equivalent to FGF-15 in rodents) generates negative feedback into the hepatocytes 

suppressing CYP7A1 in human hepatocytes and repressing BA biosynthesis(90)(91). FGF-19 

is related to increased mitochondrial activity, protein synthesis, and decreased adiposity 
(90). Three months after RYGB, FXR induced FGF-19 has shown to be elevated in human 

models(92). FGF-19 has also been showed to be correlated to increased BA, PYY, and the 

incretin effect (93, 94).

TGR5 has been observed in human colonic mucosal biopsies that were also GLP-1 positive 
(85). After ex-vivo stimulation with taurocholic acid, colonocytes have shown increased 

GLP-1 and PYY mRNA expression as well as GLP-1 release(85). Stimulation of TGR5 

results in a rapid increase of these gut hormones, reduced appetite, and improvement in 

insulin sensitivity (95, 96). (Figure 2)

BA & RYGB: Ahmad et al. saw that the prandial and postprandial BA levels in patients 

with obesity were decreased when compared to lean, and that the prandial and postprandial 

rise in BA was restored by RYGB in humans(93, 97). After RYGB surgery in humans, 

total(12), fasting(98), prandial and postprandial plasmatic BA levels increase significantly 

and stay elevated for years (99), while stool bile acids decrease. Colonocytes express BA 

signaling machinery directly linked to gut hormone secretion (85). Patients with obesity 

and diabetes have showed a deficiency of this machinery (85). Comparisons with other 

weight loss interventions(98) suggest that the elevation in serum bile acids could possibly be 

independent to weight loss. Multiple animal models have been employed to try and explain 

the changes in BA metabolism following bariatric surgery. Bile diversion procedures in diet 

induced obesity mice models showed that direct bile delivery into the terminal ileum in the 

absence of stomach or intestinal remodeling, leads to weight loss, fat malabsorption, and 

improved glucose tolerance(100). The same bile diversion procedure increases incretin tone 

with no weight loss effect on lean mice with low-fat diet; thus, suggesting BA involvement 

in food intake and satiety gut hormone homeostasis. These observations following bile 

diversion, are inhibited by the administration of exendin-9 (GLP-1 Receptor antagonist) as 

well as in GLP-1 receptor knockout mice, and in TGR5 intact but FXR null mice. These 

findings reveal the importance of the FXR signaling towards the established incretin effect, 

whilst showcasing BA mediation of clinically important metabolic outcomes seen following 

RYGB.

Human and murine models have shown that the BA adaptations following RYGB are 

not immediate and are probably a consequence of the metabolic adaptations of the 

surgery(101, 102). The increase in plasmatic BA levels seems to be secondary to surgically 

induced BA exposure to the small bowel and probably not due to increased liver production, 

or increased enterohepatic circulation (102).
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Secondly, TGR5 (GBPAR1) and BA have both been identified in astrocytes and neurons 

of the human brain, suggesting involvement in CNS function(103). Animal models have 

identified BA receptors to addiction centers and key reward signaling centers while 

establishing their role as hormonal mediators regulating the dopaminergic reward pathway 
(104). These results are supported by translational studies revealing attenuated alcohol 

consumption following RYGB in humans and rats which has been correlated to GLP-1 

secretion (105). Additional studies are needed to further elucidate BA’s function (if any) in 

CNS food intake regulation.

It is yet to be determined if changes in BA impact food intake directly or through hormone 

mediators. Studies evaluating correlation, and causality are needed to assess the degree of 

influence BA have on “in vivo” gut hormone secretion, glycemic control, and metabolic 

markers. Randomized clinical trials exploring its potential ability to work as a therapeutic 

adjuvant in obesity therapy could provide the very much needed evidence.

Cholecystokinin (CCK):

CCK induces contraction of the gallbladder, relaxation of the sphincter of Oddi, and 

inhibition of gastric emptying by relaxing the gastric fundus(106). CCK has an important 

neuroendocrine role in food intake regulation. In human models, intravenous CCK infusions 

at physiological concentrations have shown to reduce meal size (107, 108). Furthermore, 

intravenous infusions of CCK receptor-A (CCKAR) antagonists increase meal size, pre-meal 

hunger, and reduces fullness (109). In vagotomized rat models, infusion of a CCKAR 

antagonists that crossed the blood brain barrier decreased food intake in contrast of 

immunoglobulin bound CCKAR antagonists (can’t cross the blood brain barrier) which 

didn’t decrease food intake(110, 111).

The vast majority of CCK producing cells remain in the bypassed duodenum and proximal 

jejunum after RYGB surgery. Despite the anatomical modification, normal (112, 113) or 

elevated postprandial CCK plasma levels have been shown as early as 1 week and up to a 

year after surgery in human models (26, 66). Interestingly, the most pronounced elevation of 

CCK was showed at 3 months and up to a year postop., speculated to be secondary to CCK 

secreting cell proliferation (26).

Ghrelin:

Ghrelin is an orexigenic hormone who inhibits insulin secretion, decreases energy 

expenditure, lipolysis, and increases adipogenesis among many other functions (i.e., bone 

metabolism, muscle cell differentiation, oncogenesis)(114). The highest density of ghrelin 

secreting cells is located in the stomach; however, ghrelin secreting cells have also been 

identified in the duodenum, ileum, cecum and colon.

Patients with obesity may have elevated fasting ghrelin plasma levels(26). Evidence suggests 

an inhibited postprandial plasmatic ghrelin drop in patients with obesity when compared to 

lean subjects (26, 115, 116). Following RYGB, fasting and postprandial ghrelin plasma levels 

have been shown to be reduced immediately after surgery(26, 47, 117–119). It’s important to 

note that there has been significant difficulty reproducing the results from Cummings, et 
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al. 2002 NEJM(117). Studies with greater follow-up longevity show more controversy in 

plasmatic ghrelin values following gastric bypass (120), It is clear that following RYGB, 

there might be some acute decreases in ghrelin; but there have also been reports of studies 

where ghrelin levels return to, or approach baseline years after RYGB. Despite returning 

to elevated fasting levels, some patients who undergo RYGB seem to regain the previously 

absent postprandial ghrelin drop (26). A recent meta-analysis showed overall short-term 

decrease and long-term increase in fasting ghrelin following RYGB (121). Furthermore, 

weight regain has been associated with increased pre and postoperative ghrelin levels(122).

LITERATURE GAP:

Compiling and comparing study results characterizing changes in the hormonal profile 

following RYGB is limited by differences in methodological measurements of each 

hormone, and the actual panel hormones being observed (usually secondary to what 

each investigating team considered relevant). Ghrelin results in particular have had a 

historical difficulty in being reproduced due to high variability in the commercially 

available assays(123, 124). Subsequently no study simultaneously assesses through time 

the amalgamation of hormonal and histological adaptations that synergically change food 

intake regulating signals after RYGB. A thorough mechanistic explanation supporting why 

hormonal profiles change, particularly why satiety hormones rise following RYGB surgery 

is yet to be described. Total PYY increases have been described but there is still uncertainty 

about the curve or secretion pattern due to contradictory evidence. There is a vast knowledge 

gap regarding the determination of bile acids as direct or indirect mediators of food intake 

regulation. Finally, a pathway that differentiates post RYGB adaptations from the ones 

happening in every other weight loss intervention, hasn’t been fully characterized.

Other GI hormones:

Due to the results of current anti-obesity medication trials(125–127), we decided to investigate 

other hormones that might be related to the outstanding results following RYGB. This was 

done with the purpose of further elucidating the hormonal adaptations and their relationship 

to weight loss outcomes.

Glucagon:

Glucagon, classically classified as a contra-regulatory hormone is secreted from the 

pancreatic α-cells in response to low blood glucose. Glucagon has a plethora of 

functions throughout human physiology. It is most commonly known for promoting 

liver gluconeogenesis and glycogenolysis (128), but glucagon is also involved in energy 

balance regulation (food intake and energy expenditure) (129, 130), lipid metabolism(131), 

and insulin secretion(132). Glucagon levels increase postprandially after food ingestion in 

humans (133, 134). Animal models have displayed increased food intake with antibody 

mediated glucagon inhibition (135) and decreased food intake with GLP-1/Glucagon dual 

stimulation (136, 137).. These findings point towards the importance of glucagon in food 

intake regulation.
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Following RYGB there is a continuous increase in glucagon up to 6 months after 

surgery(138). Postprandial glucagon secretion also seems to be increased following 

RYGB(139, 140). Despite of this increase in secretion, there seems to be some degree 

of secretion dysregulation evidenced by the lack of difference in postprandial glucagon 

secretion between RYGB postoperative patients with and without hypoglycemia(139, 141). 

When comparing before and after RYGB, there are reports of increased GCG (glucagon 

coding gene) expression from BPL and RL biopsies 3 months after RYGB (20). It’s 

important to mention that this study did not have a control group to differentiate from other 

weight loss interventions. Further studies are needed to accurately characterize the GCG 

gene expression throughout the GI tract following RYGB.

Gastric Inhibitory Polypeptide (GIP):

GIP is one of the first incretin hormones to be described, GIP stimulates insulin secretion 

in healthy patients and patients with diabetes (142–144). Furthermore, animal models, 

and cell experiments have shown that GIP stimulates lipogenesis(145–147), and beta cell 

proliferation(148, 149). More recently, novel animal models have identified GIP receptors 

in energy regulating CNS related centers(150), and that high central doses (151) and acute 

intra-cerebroventricular (152) doses of GIP lead to decreased food intake and induced weight 

loss which is blunted in GIPR knockout mice.

In general, evidence suggests that fasting and postprandial GIP levels tend to decrease 

following RYGB(153); this phenomenon is particularly marked in patients with diabetes. 

Weight loss, pouch volume, BPL and RL length, don’t seem to be significant predictors of 

the decrease in GIP following RYGB.

Amylin:

Amylin is a hormone primarily expressed and produced by the β pancreatic cells. Its 

secretion is stimulated by glucose, amino acids, and fatty acids(154–156). Amylin is co-

secreted along with insulin, incretins like GLP-1 stimulate its release (157). Multiple animal 

and human models have studied the function of this hormone and described its role as a 

signal of satiation (158). In rats, it has been shown to control meal size (159, 160) thus acting 

as a satiation signal at the level of the area postrema (161) as well as other energy regulating 

brain centers. Human studies have shown fasting(162) and postprandial amylin to be elevated 

in obesity(163–165).

In patients without diabetes, two and four weeks after RYGB postprandial amylin levels 

don’t seem to display any significant change (166, 167). Despite this, in patients with diabetes 

there seems to be a decrease in amylin one year after RYGB (168, 169). Contrast to what is 

seen in humans, mice models demonstrate increased postprandial amylin secretion following 

RYGB(170).

Amylin seems to play a significant role in food intake regulation as a satiation signaling 

hormone. It is not clear weather amylin levels are increased in obesity due to the general 

increase in food intake, or due to signaling pathway dysregulation (or both). Evidence on the 

effects of RYGB on amylin secretion is lacking, it is not clear whether the changes in amylin 
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are due to weight loss, time, or having pre-existing diabetes. Furthermore, the inter-species 

discrepancies in amylin adaptations following RYGB are not clearly elucidated either.

Limitations:

The nature of this literature review doesn’t permit a statistical comparison between study 

results which poses limitations towards drawing conclusions or compiling data. Comparing 

results is also limited by methodological differences between studies. For example, a lack 

of standardized post-prandial time points for bloodwork measurements are limitations for 

comparisons between gut hormone levels. Finally, this is not a systematic review and 

therefore it is subject to bias from our points of view as writers and gaps in literature.

Conclusion:

Current human studies show mucosal hypotrophy and decreased permeability of the 

alimentary limb following RYGB. Mucosal changes after RYGB at a cellular level regarding 

morphology, EEC count and function (mRNA and/or protein expression) are yet to be 

appropriately described.

GLP-1 and GLP-2 plasmatic levels have been shown to be postprandially elevated following 

RYGB. Their close relationship to gastric motility and food intake regulation (GLP-1) are 

most likely to be implicated with the sustained weight-loss effects of RYGB. Postprandial 

levels of PYY are elevated after RYGB. Accurate characterization of postprandial PYY, 

particularly PYY3–36 curves after RYGB surgery is yet to be demonstrated. There is a 

correlation between degree of gut hormone (GLP-1 and PYY) increase and successful 

weight loss outcomes following RYGB. BA levels have been shown to be more than two-

fold significantly elevated after RYGB surgery. Their level of influence on gut hormone 

secretion, and food intake regulation in humans is yet to be described. Evidence from 

animal models suggest pivotal importance of BA as mediators of satiety gut hormone 

secretion following RYGB, and the neuronal reward seeking behavioral pathway. Post-

prandial plasmatic CCK levels are also increased following RYGB despite the majority of 

CCK secreting cells being isolated from direct nutrient stimuli. This could be due to CCK 

secreting cell proliferation. Studies describing this change in CCK-secreting cell population 

in humans, and its synergistic effect on food intake regulation could birth new hypothesis 

about its role and possible therapeutic implications in weight loss therapies. Plasmatic 

ghrelin levels after RYGB have shown variable results. Restoring the post-prandial ghrelin 

drop could be one of the mechanisms behind RYGB induced reduced food intake. (Figure 3)

Expert Opinion

It’s important to note that surgeons still do not have a very good appreciation of why patients 

are able to lose so much weight following RYGB surgery, when all other techniques for 

weight loss generally fail in the long term. Physiologic adaptations significantly account for 

the weight-loss response following RYGB. Changes in EEC density and function from a 

cellular perspective have not been demonstrated. Almost all the current evidence examining 

gastric bypass is correlative and descriptive, as there are extremely few mechanistic studies. 
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How cellular adaptations relate to new hormonal postprandial curves could open the field to 

new therapeutic targets.

EEC have a major impact on gut physiology and food intake regulation. However, our 

understanding of their physiology in complex states like disease, and post-weight loss 

intervention status is largely hindered by the relative rarity of EECs, and inaccessibility of 

methods to isolate and study live cells directly extracted from the gut. Using flow cytometry 

and single cell technology so isolate EEC from cryopreserved biopsies, and novel methods 

to determine intracellular signaling pathways, could reveal cellular alterations behind weight 

loss variability following surgery, as well as new therapeutic targets to treat obesity.

Obesity is one of the multiple diseases associated to leaky gut (171–173). Although one study 

has shown changes in permeability following RYGB, the generalizability of these findings, 

and direct impact of said changes is yet to be determined.

Although poorly understood, mucosal mechano- and chemoreceptors interact closely and 

paracellularly with EEC(13). Studying the mechanism by which suspected EEC changes 

affect the interaction between EEC and the and the nervous enteric system could reveal new 

information regarding satiety perception and peripheral gut-neural signaling.

Transecting or preserving vagal branches during the fashioning of the gastric pouch 

apparently has no impact on weight loss. Due to low gastric pressures following RYGB, 

it is unlikely to be a determinant factor in signaling the sensation of fullness. On the other 

hand, rodent models have shown increased sensitivity in celiac branches of the vagus after 

RYGB which might contribute to reduced meal size. Determining whether vagal signals 

impact satiety signaling following RYGB in humans, and the mechanism by which it would 

do so, is an important step to fully characterize adaptations following surgery and develop 

new hypothesis for potential therapies.

It is important to identify and understand the complex mechanisms by which these 

homeostatic changes happen after this life-saving procedure. An initial approach towards 

their identification is recognizing the mechanistic repercussions of bariatric surgery 

happening in both humans and animal models which likely indicate preserved variables 

within both species being altered as a possible effect of the operation. Subsequent studies 

implementing novel techniques to characterize the gaps in the adaptative pathway are 

required to fully elucidate it in human models.
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Highlights:

• Postprandial satiety gut hormones increase after RYGB, aiding in weight-loss.

• Current studies lack information on enteroendocrine cell adaptations 

following RYGB.

• Most of the evidence in humans is correlative and descriptive not mechanistic.

• Animal studies provide valuable insight, but mechanistic human studies are 

needed.
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Figure 1: 
visual description of anatomical changes following RYGB.
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Figure 2: 
Bile Acids and satiety hormones pathway graphic description. Created with BioRender.com
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Figure 3: 
Diagram summary of hormonal changes following RYGB and their interaction with brain-

gut-axis. Created with BioRender.com
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