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Abstract

The question of whether there are excess radiation-associated health risks at low dose is 

controversial. We present evidence of excess cancer risks in a number of (largely pediatrically 

or in utero exposed) groups exposed to low doses of radiation (<0.1 Gy). Moreover, the available 

data on biological mechanisms do not provide support for the idea of a low-dose threshold or 

hormesis for any of these endpoints. There are emerging data suggesting risks of cardiovascular 

disease and cataract at low doses, but this is less well established. This large body of evidence 

does not suggest and, indeed, is not statistically compatible with any very large threshold in dose 

(>10 mGy), or with possible beneficial effects from exposures. The presented data suggest that 

exposure to low-dose radiation causes excess cancer risks and quite possibly also excess risks of 

various non-cancer endpoints.

INTRODUCTION

The detrimental tissue-reaction (deterministic) and stochastic effects associated with 

moderate- and high-dose ionizing low-linear energy transfer (LET) radiation (e.g., X rays, 

γ rays) exposure are well known (1). Much more controversial are the health effects at low 

doses (<0.1 Gy) or low dose rates (<5 mGy/h) (2, 3). In contrast to tissue-reaction effects, 

for stochastic effects scientific committees generally assume that at low doses there is a 

positive linear component to the dose response and that there is no threshold, or beneficial 

effect (1). However, as we review below there is also accumulating direct evidence of excess 

risk2 of cancer and various other health endpoints in a number of populations exposed at 

moderate and low doses.

1Address for correspondence: Radiation Epidemiology Branch, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 
20892-9778; mark.little@nih.gov. 
2For clarity, here we define excess risk. Risk is an individual attribute that is most often measured at the level of a population. It 
can be determined as the fraction of a population developing a well-defined medical condition (e.g., cancer, cardiovascular disease) 
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The health risks of low-level exposure to ionizing radiation have been assumed to be 

associated primarily with cancer (1). However, evidence has recently emerged of an 

association between lower doses (<0.5 Gy) and late-presenting cardiovascular disease 

(CVD) (all circulatory disease) (4-6). There is also accumulating evidence from various 

occupational groups exposed at low dose rate of excess risks of cataract (7, 8). The possible 

associated mechanisms are necessarily somewhat uncertain for both endpoints, although 

some plausible hypotheses have been advanced (9-11).

Nevertheless, the issue of low-dose radiation risk is controversial, and there have been 

claims that low dose risks are markedly overestimated by the use of linear extrapolation 

from moderate dose exposed groups (12) and there are also those claiming that linear 

extrapolation substantially underestimates low dose risk (13-16).

A related question to that of the existence or non-existence of low-dose risk is whether 

the risk at low doses is approximately linear with dose, an assumption which underlies the 

linear-no-threshold (LNT) model commonly assumed by expert advisory bodies (2). LNT 

is recognized to be an approximation, made for practicality in the context of radiological 

protection, although one for which there is some radiobiological basis, based on DNA 

damage considerations, as we demonstrate below; as we argue there is also a considerable 

body of evidence that it is not excessively conservative, indeed that there is considerable 

evidence of cancer risk at low dose (<0.1 Gy), and emerging evidence of certain types of 

non-cancer risk at somewhat higher levels of dose (<0.5 Gy). The present paper briefly 

summarizes a large number of comprehensive reviews of the low-dose epidemiologic 

literature (17, 18) as well as more specialist and mostly systematic reviews (5, 19-23); 

there have been similar reviews of radiobiologic data (24), albeit not so narrowly focused on 

low doses. This commentary does not address the question of possible genetic risks.

Radio-Epidemiological Findings

Detrimental tissue-reaction effects (deterministic effects) and cancer initiation and 

development (which, along with assumed hereditary effects constitute stochastic radiation 

effects) associated with moderate- and high-dose low-LET ionizing radiation (e.g., X ray) 

exposure are well known (1). There is abundant evidence that moderate doses (0.1–1 Gy) 

and high doses (>1 Gy) (19) of sparsely ionizing low-LET radiation (e.g., X rays, γ rays), 

particularly when received at a high dose-rate, are associated with elevated cancer risks (1, 

2, 25, 26). Reduced statistical power means that less is known about the risks arising from 

exposures at low doses (<0.1 Gy) and low dose rates (<5 mGy/h). Many regulatory bodies 

assume that at sufficiently low doses there is an increasing linear component to the dose 

response for stochastic effects, i.e., that there is a positive correlation of risk with dose, with 

no threshold, or beneficial effect of radiation exposure (2). However, there is accumulating 

direct evidence of excess risk of cancer in a number of populations exposed to low doses. 

Some of these data are summarized in Table 1. We review some of this evidence below. A 

more comprehensive review of the findings from various radio-epidemiological studies of 

cancer is provided by Rühm et al (27).

over a given interval of time. Excess risk refers to that proportion of the risk which is greater in magnitude than the usual baseline 
(background rate) which can sometimes be attributed to a particular causal factor, e.g., radiation exposure.
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One of the most important sources of information on radiation risks is a study of the 

survivors of the atomic bombings of Hiroshima and Nagasaki, a cohort of about 120,000 

persons identified via information collected from the 1950 Japanese national census and 

assembled in the early- to mid-1950s, i.e., 5–10 years after the bombings. Despite what is 

often thought, the mean dose in the Japanese atomic bomb survivor Life Span Study (LSS) 

cohort is quite low, about 0.1 Gy, with many analyses restricted to 4 Gy or less (28, 29). 

The most recent analyses of the Japanese atomic bomb survivor LSS incidence data suggest 

that there is significant excess risk of all solid cancers for assessed doses of less than 0.1 

Gy (29). A combined analysis of data for leukemia and myeloid neoplasms among groups 

exposed in childhood in the LSS and elsewhere found evidence of significant excess risk 

of all myeloid malignant neoplasms under 100 mSv,3 and for acute lymphoblastic leukemia 

under 20 mSv (30) (see also Table 1).

Another important source of information on radiation risks is studies of radiation workers, 

i.e., of those exposed to radiation in the course of their work in the nuclear industry or 

elsewhere. One of the most important such studies is the International Nuclear Workers 

Study (INWORKS), which included over 300,000 workers with a mean cumulative exposure 

of 20.9 mGy (31). Although not a low-dose study (the maximum cumulative dose is about 

1.3 Gy), the exposures are all at low dose rate and yield significant excess risks of solid 

cancer and leukemia (31, 32).

Many of the low-dose studies cited in Table 1 yield significant excess risk for various 

cancer endpoints, strongly suggesting that risk at low doses is not zero. It is also clear from 

comparison of the excess relative risks per Gy (ERR/Gy) given in Table 1 that they are 

consistent with each other and with ERR/Gy that can be derived from the LSS. They would 

not be consistent with risks several orders of magnitude higher than those derived from the 

LSS, as has been suggested by various researchers (13-16).

In particular, there is evidence of excess risk of most types of childhood cancer associated 

with radiation exposures of the order of 10–20 mGy from diagnostic X-ray exposure in the 

Oxford Survey of Childhood Cancers and in various other groups exposed in utero (20, 33, 

34) (see Table 1). While these data are not yet universally accepted, Wakeford and Little 

note “the consistency of the childhood cancer risk coefficients derived from the Oxford 

Survey and from the Japanese cohort irradiated in utero supports a causal explanation of 

the association between childhood cancer and an antenatal X-ray examination found in 

case-control studies. This implies that doses to the foetus in utero of the order of 10 mSv 

discernibly increase the risk of childhood cancer” (33). There are also a number of studies of 

childhood cancer and natural background radiation exposure, at doses of the order of 10–20 

mGy, suggesting excess risk for leukemia and brain cancer (35, 36). At slightly higher doses, 

increased risks of leukemia and brain cancer have been observed in pediatrically-exposed 

groups given multiple computed tomography (CT) examinations, at doses of about 60 mGy 

to the respective tissues (active bone marrow, brain) (37-40). Again, the excess risks in all 

these studies are consistent with each other and with those observed among the Japanese 

atomic bomb survivors (33, 35-39).

3In many studies where most dose deposition originates with photon absorption, mSv and mGy may be taken as equivalent.
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The health risks of low-level exposure to ionizing radiation are most commonly assumed 

to be associated primarily with cancer (1). However, there is evidence of excess CVD risk 

in a number of moderate dose (<5 Gy) exposed groups, including the Japanese atomic 

bomb survivors (41, 42). Evidence has recently emerged of an association between lower 

doses (<0.5 Gy) and CVD, in particular in a number of groups of nuclear workers (43, 

44). This has been reinforced by conclusions of a number of recent (systematic and non-

systematic) reviews, all suggesting an excess radiation-associated CVD risk at occupational 

and environmental dose levels (<0.5 Gy) (4, 5, 45) (see also Table 2). However, the 

presence and magnitude of the excess CVD risk at low doses is still relatively controversial, 

largely due to the difficulties in accurately assessing the role of confounding exposures 

and other contributory risk factors for CVD. Interstudy heterogeneity complicates a causal 

interpretation of the observed risks, so that much remains unknown as to the shape of the 

dose response (4, 5, 46), if indeed the observed trends represent causal relationships.

Although there are long-established risks of cataract at high doses (47), there is now a 

considerable body of evidence of excess risk of cataract at moderate levels of dose (<5 Gy) 

(7, 48), and some large and well powered occupational studies suggesting excess risk at <0.1 

Gy (8) (see also Table 3). The cataract risks derived from various studies are reasonably 

consistent with each other (Table 3). However, most of the studies [all except Little et al. (8)] 

are not at exposure levels that can truly be defined as low dose (<0.1 Gy), although many are 

at low dose rate (7, 8, 49-51).

Radiobiological Considerations

There are data, reviewed elsewhere (52), suggesting an increase in stable chromosome 

aberrations and other markers of biological damage in the peripheral blood lymphocytes of 

nuclear workers and other groups with protracted radiation exposures. Chromosome changes 

play a major role in carcinogenesis (the process by which normal cells are transformed into 

cancer cells) and there is mounting evidence that the presence of increased frequencies of 

chromosome aberrations in peripheral blood lymphocytes in healthy individuals could be a 

surrogate for the specific changes associated with carcinogenesis and, therefore, indicative 

of cancer risk (53-57).

Cancer is thought to result from mutagenic damage to a single cell, specifically to its nuclear 

DNA, which in principle could be caused by clustered single-strand breaks (SSB) which 

result in a double-strand break (DSB) of the DNA, as well as DNA-replication processing 

of SSBs that lead to DNA DSB (58); this argues against the existence of a threshold of 

dose below which cancer risk is not elevated, as discussed elsewhere (52). A more recent 

evaluation of the biological mechanisms relevant for low dose radiation cancer risk inference 

concluded that “There remains good justification for the use of a non-threshold model for 

risk inference for radiation protection purposes, given the present robust knowledge on the 

role of mutation and chromosomal aberrations in carcinogenesis” and, in relation to the 

potential targets in addition to nuclear DNA, “The potential contributions of phenomena 

such as transmissible genomic instability, bystander phenomena, induction of abscopal 

effects and adaptive response remain unclear.” (24). As shown in Table 4, for orthovoltage 

(250 kV) X rays with various degrees of standard filtration irradiating cells having a mean 

Simon et al. Page 4

Radiat Res. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4–10 μm diameter nucleus (a reasonable range), a radiation dose of 1 mGy (0.001 Gy) 

corresponds to between 0.051 to 0.53 electron tracks traversing the cell nucleus (59). Table 4 

also demonstrates that the number of electron tracks per cell nucleus are slightly lower, with 

a range of 0.046 to 0.39, for the lower radiation energy (65 kV) X rays that were likely used 

obstetrically in the 1950s (59). This suggests that at low doses (0.01 Gy or less spread over a 

year), it is unlikely that temporally and spatially separate electron tracks could cooperatively 

produce DNA damage (60), so that in this very low-dose region, DNA damage at a cellular 

level would be proportional to dose.

Cells have substantial repair mechanisms. It is known that the efficiency of cellular 

repair processes varies with dose and dose rate (61, 62), and this may be the reason 

for the curvature that is observed in the cancer dose response at higher levels of dose 

[e.g., for leukemia (63) and some solid cancers (28)] and dose rate effects observed in 

epidemiological (1) and animal (61, 64, 65) data. However, none of these repair processes 

are 100% efficient, so after mutagenic damage there is a non-zero probability of a damaged 

cell surviving with unrepaired damage, that may manifest later as cancer. Here, we point out 

that not all radiation protection theory is based on a simple linear relationship, indeed the 

idea of non-linearity in biological response is clearly implied by use of concepts such as the 

dose and dose rate effectiveness factor (DDREF) (2) and, thus, is actually more complex 

than implied by some (12).

Some Considerations on Interpretation of Epidemiologic Studies

Not all epidemiological studies have equal degrees of validity or generalizability and, for 

that very reason, academic, research, and other expert institutions like the National Academy 

of Sciences (NAS), the International Agency for Research on Cancer (IARC/WHO), the 

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 

routinely examine the evidence on radiation-associated health risk and produce a group 

consensus opinion that weighs the strengths and limitations of the many published studies 

that contribute to the total knowledge base on radiation health risks. Conclusions about 

the nature of radiation-associated health risk should not be drawn from single studies, 

but by the overall weight of evidence. In this kind of evaluation, study findings are 

weighted by specific criteria including type of study (cohort, case-control, randomized 

trial, correlational), population (sample) size, degree of control of bias and confounding, 

statistical methods used for analysis, use of pooled- or meta-analyses, uncertainties in 

diagnoses and estimated exposures, and the degree to which specific and well-known criteria 

for causality have been satisfied. Readers are referred to, for example, discussions on these 

issues by NAS (25), IARC (26) and UNSCEAR (1). Focusing on just a few studies can 

easily lead to unreliable conclusions, whether in the direction of underestimating risk (12) or 

substantially overestimating risk (13-16); that neither extreme position is tenable is strongly 

suggested by review of the totality of epidemiological data, as for example shown in part 

in Table 1. The requirement to understand the theoretical bases as well as the limitations of 

epidemiology cannot be over-emphasized for those attempting to derive conclusions about 

the existence as well as the magnitude of radiation health risks.
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CONCLUSIONS

Based on the data and explanations we have provided, we believe that the arguments 

proposed by some that LNT overestimates low-dose cancer risk (12, 66) are likely to be 

grossly invalid. Likewise, the overall body of epidemiologic data are clearly inconsistent 

with cancer risks substantially higher than those implied by LNT, as has been suggested by 

others (13-16).

We have presented evidence that excess cancer risks have been noted in a number of (largely 

pediatrically or in utero exposed) groups exposed to low radiation doses (<0.1 Gy) (19, 20). 

The available data on biological mechanisms do not provide general support for the idea of 

a low-dose threshold or hormesis for any of these endpoints (24, 61, 62). This large body 

of evidence does not suggest and, indeed, is not statistically compatible with any very large 

threshold in dose (>10 mGy), or with possible beneficial effects from exposures.
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