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Heat shock proteins (Hsps), including Hsp90 and Hsp70, are intra- and

extracellular molecules implicated in cellular homeostasis and immune

processes and are induced by cell stress such as inflammation and infection.

Autoimmune bullous disorders (AIBDs) and COVID-19 represent potentially

life-threatening inflammatory and infectious diseases, respectively. A

significant portion of AIBDs remain refractory to currently available

immunosuppressive therapies, which may represent a risk factor for COVID-

19, and suffer from treatment side-effects. Despite advances in vaccination,

there is still a need to develop new therapeutic approaches targeting SARS-

CoV-2, especially considering vaccine hesitancy, logistical distribution

challenges, and breakthrough infections. In this mini review, we briefly

summarize the role of targeting Hsp90/70 as a promising double-edged

sword in the therapy of AIBDs and COVID-19.
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Introduction

The expression of heat shock proteins (Hsps), including Hsp90 and Hsp70, can be

up-regulated by various stress factors including inflammation and infection. As

chaperones, they classically interact with protein substrates and (co-)chaperones to

maintain cellular homeostasis by participating in correct protein folding or stability, as

well as cell differentiation, survival, and death. In addition, both intra- and extracellular

Hsps have an integral role in inflammatory responses through active involvement in a

wide range of immune processes (1).

Autoimmune bullous diseases (AIBDs), comprising pemphigus and pemphigoid, are

potentially life-threatening blistering disorders of the skin and/or mucosa mediated by
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autoantibodies against desmosomal and hemidesmosomal

structures, respectively. Patients usually require long-term

potent immunosuppressive treatments including systemic

corticosteroids and adjuvant immunomodulators. A significant

portion of cases remain refractory to currently available

therapies and suffer from treatment side-effects (2, 3).

COVID-19 is a disease caused by the novel coronavirus

SARS-CoV-2 which has led to a global devastating pandemic

since March 2020. The clinical presentation ranges from mild or

even asymptomatic courses to critical symptoms such as

respiratory failure and multi-organ dysfunction. Despite

advances in vaccination, there is still a need to develop new

therapeutic approaches targeting SARS-CoV-2, especially

considering vaccine hesitancy, logistical distribution

challenges, and breakthrough infections (4).

Patients with AIBDs have faced considerable challenges during

the COVID-19 outbreak, taking into account that their

immunosuppressive treatments, particularly the B-cell depleting

agent rituximab (a first-line drug approved for pemphigus), may

predispose themtomore severeCOVID-19andcompromisevaccine

immunogenicity (5, 6). In addition, there have been some reports on

SARS-CoV-2 vaccine-induced/exacerbated AIBD cases (7).

Therefore, an ideal treatment during this pandemic would be a

new medication that covers both AIBDs and COVID-19.

In this mini review, which is dedicated to the memory of our

honourable mentor Professor Detlef Zillikens, we briefly

summarize the role of targeting Hsp90/70 as a promising

double-edged sword in the therapy of AIBDs and COVID-19.
Hsp90/70 and AIBDs

Several lines of evidence suggest that Hsp90 is involved as a

notable pathophysiological factor in AIBDs including epidermolysis

bullosa acquisita (EBA) and bullous pemphigoid. The anti-

inflammatory clinical and molecular effects of anti-Hsp90

treatment were mostly demonstrated in several EBA studies using

corresponding in vivo mouse models, ex vivo human dermal-

epidermal separation cryosection experiments, and in vitro rodent

and human cell culture assays (8, 9). Hsp90 inhibitors, including 17-

DMAG, 17-AAG, and TCBL-145, exhibited activity by potently

affecting inflammatory disease pathways (e.g., suppression of effector

T-cells, B-cells, and neutrophils; down-regulation of NF-kB activity;

blunting of autoantibody, pro-inflammatory cytokine, and reactive

oxygen species production; inhibition of matrix metalloproteinases;

promotion of regulatory B cells) (10–13). With regards to bullous

pemphigoid, human skin biopsy analyses as well as human cell

culture and serology assays revealed that Hsp90 is aberrantly

expressed and secreted in these patients and that its blockade

modulates autoantibody-induced IL-8 production by cultured

keratinocytes (14, 15).

Compared to Hsp90, the role of Hsp70 in AIBDs has been

overall less studied (9). Two recent studies indicated that both
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extracellular Hsp70 and autoantibodies to Hsp70 display pro-

inflammatory activities in the context of EBA development (16,

17). In the first study, the in vivo pathophysiological relevance of

extracellular Hsp70 was demonstrated in mice with

experimental EBA in which elevated blood levels of this

chaperone were recorded. Hsp70-treated animals had a more

pronounced clinical disease severity compared to controls which

was paralleled by increased levels of cutaneous matrix

metalloproteinase 9 and plasma hydrogen peroxide, with the

latter observation being confirmed in an independent EBA-

specific reactive oxygen species release assay. In addition, cell

culture experiments using human naive peripheral blood

mononuclear cells revealed that extracellular Hsp70 stimulated

the secretion of the T-cell-derived pro-inflammatory cytokines

IL-6 and IL-8 (16). In the second study, it was demonstrated that

autoantibodies to Hsp70 may contribute to EBA development

via enhanced neutrophil infiltration to the skin and activation of

the NF-kB signalling pathway in an IFN-g-associated
manner (17).
Hsp90/70 and COVID-19

To initiate infection, SARS-CoV-2 enters the humanhost cell via

binding of its spike protein to cell surface receptors including

angiotensin-converting enzyme 2, followed by endocytosis or

fusion with the surface membrane, viral gene transcription,

translation, and replication (4). Of note, SARS-CoV-2 is dependent

onhostmolecular chaperones,mainlyHsp90/70, toaccomplish these

entries and/or replication steps (18, 19).

Hsp90 has been shown to be over-expressed in the damaged

lungs of COVID-19 subjects (20), and Hsp90 inhibitors

(AT13387 and AUY-922) were able to prevent and repair

SARS-CoV-2 spike protein-induced pulmonary microvascular

endothelial dysfunction (21). Wyler et al. demonstrated that

inhibition of Hsp90 activity by onalespib, ganetespib, or 17-AAG

resulted in a reduction of both SARS-CoV-2 replication and

expression of pro-inflammatory cytokines in primary human

airway epithelial cells (22). Similar results were obtained by

Goswami et al. using the Hsp90 inhibitor SNX-5422 (23). In

addition, in vitro experiments revealed inhibition of SARS-CoV-

2 replication by the Hsp90 inhibitors 17-AAG and tanespimycin,

respectively (24, 25). Lowering of SARS-CoV-2 propagation by

pharmacological Hsp90 inhibition was confirmed by a

computational study of patient RNA sequencing data (26).

Two members of the Hsp70 family, HSPA1L and GRP78,

have been implicated in the modulation of SARS-CoV-2 (27–

30). It has been suggested that SARS-CoV-2-infected cells

epigenetically up-regulate HSPA1L, leading to the over-

production of Hsp70 to facilitate SARS-CoV-2 replication in

host cells (27). In addition, computer modelling predictions and

experimental studies have shown that GRP78 assists in the host

cell recognition of SARS-CoV-2 spikes and viral entry (28–30).
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Role of molecular mimicry

A link between COVID-19 and the development of

autoimmunity has been suggested, which is based on the

assumption that molecular mimicry exists between immunogenic

proteins of SARS-CoV-2 and humanmolecules including Hsps and

autoantigens of AIBDs (31). This hypothesis has been recently

disproven by two studies showing that autoantibodies to Hsp90/

70/60 are not altered in anti-SARS-CoV-2 IgG-seropositive humans

and that these circulating anti-SARS-CoV-2 antibodies do not cross-

react with pemphigus or pemphigoid autoantigens (32, 33).
Conclusions

Hsps90/70 are involved in AIBDs and COVID-19 in many

different ways and, thus, can be important therapeutic targets for

both conditions, an ideal scenario during this pandemic (Figure 1).

However, several questions remainopen. Independent reports on the

role of Hsps90/70 in either AIBDs or COVID-19 do not ultimately

imply a direct correlation between these stress proteins and both

diseases, which is hampered by the fact that all information is limited

to preclinical studies so far (9, 18, 19). In addition, the family ofHsps

is large, and the interaction between each other and their client

proteins is complex (1). Thus, targeting one of theHspsmay lead to a

ripple effect. As an example, inhibition of Hsp90 classically results in

the activation of heat shock factor 1 and, consecutively, the over-
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expression of intracellular Hsp70. In contrast to extracellular Hsp70,

intracellular Hsp70 has mostly anti-inflammatory properties by

blocking NF-kB activation, a desirable effect for both AIBDs and

COVID-19 (i.e., cytokine storm) (34). On the other hand, over-

production of intracellular Hsp70 could potentially facilitate SARS-

CoV-2 replication. Therefore, further exploration of the net effects of

especially clinically available Hsp90 blockers in basic studies and

clinical trials is needed.
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FIGURE 1

Proposed mode of action of targeting Hsp90/70 in AIBDs and COVID-19 based on current scientific evidence. AIBD data are derived from
studies on epidermolysis bullosa acquisita and bullous pemphigoid. Although Hsp70 has been involved in the depicted pathophysiological
factors/processes of AIBDs and COVID-19, data on the effects of true Hsp70 inhibition are limited to experiments on SARS-CoV-2 cell entry so
far and remain speculative otherwise. The red and blue colours of arrows correspond to Hsp90 and Hsp70, respectively.
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14. Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P,
et al. Aberrant expression and secretion of heat shock protein 90 in patients with
bullous pemphigoid. PloS One (2013) 8:e70496. doi: 10.1371/journal.pone.0070496

15. Tukaj S, Grüner D, Zillikens D, Kasperkiewicz M. Hsp90 blockade
modulates bullous pemphigoid IgG-induced IL-8 production by keratinocytes.
Cell Stress Chaperones. (2014) 19:887–94. doi: 10.1007/s12192-014-0513-8

16. Tukaj S, Mantej J, Sitko K, Bednarek M, Zillikens D, Ludwig RJ, et al.
Evidence for a role of extracellular heat shock protein 70 in epidermolysis bullosa
acquisita. Exp Dermatol (2022) 31:528–34. doi: 10.1111/exd.14495

17. Tukaj S, Mantej J, Sitko K, Zillikens D, Ludwig RJ, Bieber K, et al.
Pathological relevance of anti-Hsp70 IgG autoantibodies in epidermolysis
bullosa acquisita. Front Immunol (2022) 13:877958. doi: 10.3389/
fimmu.2022.877958
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