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Since breast cancer deaths aremainly due tometastasis, predicting the risk that a primary tumor will develop
metastasis after a first diagnosis is a central issue that could be addressed by artificial intelligence. To over-
come the problem posed by limited availability of standardized datasets, algorithms should include biolog-
ical insight.
The risk of metastasis in breast
cancer
Cancer is one of the leading causes of

death in the western world and it is

increasing in the developing world. Within

cancers, breast cancer takes a terrible toll

on women, with 500,000 deaths reported

each year. Nowadays, people do not die

from the primary tumor but instead die

from secondary tumors calledmetastasis,

which account for 90%of tumor mortality.

According to World Health Organization

(WHO) statistics, about one-third of these

cancer fatalities could have been avoided

through earlier detection and treatment. A

critical barrier to develop effective drugs

to treat cancer metastasis is the high het-

erogeneity of tumor cells implying that

each cell of a specific tumor is slightly

different from the others.1 Plasticity is

one of the emerging properties of tumor

cells that helps them to escape from a

drug’s effects, leading to the develop-

ment of drug resistance. We discussed

this point in a recent book focused on

phenotypic switching where we high-

lighted three important issues2: (1) the

impact of the environment on the plas-

ticity of the tumor cells; (2) the correlation

between senescence and plasticity; and

(3) the role of phenotypic switching in

inducing collective cell migration. Envi-

ronment-modulated cancer cell plasticity

was clearly shown in different types of tu-

mors, including breast cancer.3 This im-

plies the possibility to have dormant can-

cer cells if the surrounding environment

permits it. On the other hand, treatment

with specific drugs could help selecting
This is an o
cell subpopulations that will remain

dormant, leading to drug resistance. An

additional mechanism is provided by se-

nescent cells that can contribute to keep

the cells viable for an extended period ex-

hibiting a senescence-associated secre-

tory phenotype, characterized by the

release of many factors including proin-

flammatory cytokines and chemokines,

highlighting again the complex interaction

between cells and environment. Further-

more, senescent cells can revert their

phenotype, resuming their growth.4

Finally, since cell migration is a key aspect

of aggressiveness, plasticity of cancer in-

vasion and metastasis depends on the

ability of cancer cells to switch between

collective and single-cell dissemination

through the regulation of cadherin-medi-

ated cell-cell junctions.5

The strong heterogeneity and plasticity

of breast cancer represents a serious

issue for an effective treatment, since

most currently available drugs are de-

signed to target general biological as-

pects of the tumors, without considering

the specificity of each tumor in each pa-

tient. Predicting the individual risk of

aggressiveness of primary breast cancer

would allow physicians to choose the

best therapeutic strategy, limiting over-

treatment and side effects that are detri-

mental for the patient’s quality of life.

There is therefore a pressing need to

develop predictive tools for personalized

therapies that could be more sustainable

and economically affordable. This aspect

appears particularly urgent in the context

of immunotherapy that is very effective
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sive. Clearly it is very important to identify

in advance the patients that are most

likely to respond. In this respect, artificial

intelligence (AI) holds great promise to

reach the goal of stratifying breast cancer

patients according to the aggressiveness

of their specific tumor, their individual risk

of metastasis, and their likelihood to

respond to a given therapy.

Can AI predict the future?
We can identify two main pathways for the

application of AI to breast cancer diagnos-

tics, the first relying on image analysis and

the second on molecular data. State-of-

the-art deep learning algorithms, when

trained with large datasets of annotated

images, enable very precise image classi-

fication and can easily be deployed on his-

tological images. In the context of breast

cancer, deep learning methods are able

to reliably assess whether a histological

image is referring to a normal tissue, a

benign tumor, in situ carcinoma, or an inva-

sive carcinoma.6 While these tools show

great promise in assisting the pathologist

in the diagnosis after biopsy, we are still

far from an accurate classification of the

metastatic risk or to predict the likelihood

to respond to a specific treatment. It is

not clear if it will ever be possible to extract

such a fine-grained information from im-

ages alone, even if we increase the training

set by collecting more images. Tissue

morphology might not display enough fea-

tures to enable a precise prediction of

clinical outcome and images might suffer

from technical biases due to preparation
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protocols that might vary among institu-

tions. Furthermore, in order to apply these

methods, it will be necessary to build up

large and accessible databases of digital

images for training the algorithm. Efforts

along these lines are underway in many

western countries but we are still far from

reaching this goal globally.

While there is a large literature investi-

gating genomic mutations, we focus here

on gene expression data, which represent

(in our opinion) a more promising area of

study. Since tumor cells are plastic, gene

expression data provide a detailed finger-

print of the tumor at a particular moment

in time. One can thus conceive that the

expression level of all the genes could

encode important information on the

phenotype of cancer cells which could be

exploited to make predictions. Molecular

subtyping of breast cancer is already well

established and is based on the expres-

sion of of estrogen receptor (ER), proges-

teron receptor (PR), the human epidermal

growth factor receptor 2 (HER2), and the

proliferation marker Ki67. Combination of

these factors leads to four standard

subtypes: Luminal A (ER+ and/or PR+,

HER2�, Ki67low), Luminal B (ER+ and/or

PR+, HER2�, Ki67high), HER2 positive

(HER2+), and triple negative (ER�, PR�,
HER2�). While standard clinical guidelines

are associated with each of these sub-

types, a large heterogeneity is present

within each subtype. Due to the growing

availability of transcriptomic data for

breast cancer, AI methods have increas-

ingly been used to better stratify patients

within each molecular subtype.

Early studies applied machine learning

methods to the whole transcriptome with

the aim of identifying patients with higher

risk of tumor relapse and low rate of sur-

vival.7,8 The studies focused on the

Luminal A subtype and identified a list of

genes that, according to the algorithms,

best correlated with clinical outcome in

the training set. The list was then used to

establish a classifier that could be used

to screen new patients after validation in

a test set. In a similar spirit, a widespread

approach to stratify triple-negative breast

cancer is based on K-means clustering of

whole transcriptomic data, resulting in the

establishment of 6 subgroups showing

differential response to treatment but

limited differences in terms of relapse-

free survival.9
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Unfortunately, these kinds of brute force

algorithms suffer from serious problems

mainly due to the relative shortage of data

available for training. A transcriptome con-

tains roughly Ng = 20,000 genes and each

of them represents potentially a relevant

feature to predict clinical outcome. The

number of samples (Ns) used to train the

machine learning algorithm is, however,

typically much smaller than Ng, ranging

most of the times to a few hundred for

each breast cancer subtype. This problem

is well known as the ‘‘curse of dimension-

ality.’’ When the dimensionality of the ob-

jects under study increases, the available

data become effectively sparse. Reliable

results can often be obtained only with a

training set that is much larger than the

dimensionality of the object in order to

ensure that there are several samples for

each combination of gene values. In prac-

tice, we would need to train a classifier us-

ing tens of thousands of gene expression

data to obtain a reliable classification.10

A concrete and vivid example of the

problems caused by the high dimension-

ality of transcriptomic data is provided by

earlier classification attempts of Luminal A

patients based on machine learning,7,8

which we mentioned above. As pointed

out by Drier et al.,11 the gene lists obtained

bytwo independentstudiesusing two inde-

pendentpatientgroupsbutsimilarmachine

learning algorithms showed no overlap.

This observation calls intoquestion the reli-

abilityof themethodologyused toestablish

the gene lists in the first place. It turns out

that the limitedsuccess that thesemethods

still achieve in stratifying the patient’s clin-

ical outcome results frombasic differences

in the proliferation capabilities of the tu-

mors.Proliferationcorrelateswith theactiv-

ity of many genes in the transcriptome and

therefore the activity of virtually any set of

genes can be used to stratify patients. In

the case of Luminal A, we do not need AI

to stratify patients—indeed, proliferation-

related marker genes are commonly used

to this end.Unfortunately, a similar strategy

is not applicable to the other breast cancer

subtypes where aggressiveness depends

onmore than cell proliferation.

We should also mention that the issue

of patient stratification is further compli-

cated by the presence of ‘‘batch effects,’’

which prevent the straightforward merg-

ing of datasets obtained in different ex-

periments. Experimental details, such as
r 20, 2022
the protocol followed to collect the sam-

ples and to extract the genetic material

or the platform used to sequence it, can

have an important effect on gene expres-

sion data, hiding the true biological vari-

ability of the dataset. If batch effects are

not removed by suitable algorithms,12 an

AI algorithm may classify the samples ac-

cording to their batch rather than their bio-

logical characteristics, providing results

that would be of little practical use.

Since adding different datasets coming

from different studies is problematic and

the number of available samplesNs is often

limited, an alternative strategy is to reduce

the effective dimension Ng of the transcrip-

tomebyshifting theattention fromgenes to

pathways. A pathway is a relatively small

set of genes working together for a given

biological function. Since the number of

genes in a pathway rarely exceeds Ng =

100, with a number of samples Ns > 100

one can overcome the curse of dimension-

ality. The idea was pioneered by Eytan

Domany and his group who introduced

pathway deregulation scores (PDS) as a

method to identify which pathways are de-

regulated in individual breast cancer pa-

tients.13 The method quantifies the overall

deregulation of each pathway with respect

to a reference sampleby fittinga non-para-

metric, non-linear one-dimensional prin-

cipal curve through the subspace of the

transcriptome defined by the genes of

the pathway. PDS can be computed for

all known pathways, providing a more

coarse-grained picture of the transcrip-

tomeof an individual. Clustering algorithms

where applied to the PDS scores of breast

cancer patients reveal new patient classes

with specific drug response and survival

statistics.12

Guiding artificial intelligence with
biological insight
Fromour discussion, it shouldnowbeclear

that while AI methods based on artificial

neural networks are incredibly powerful in

many domains, including medicine, their

straightforward application to disentangle

cancer heterogeneity faces important chal-

lenges. To fully exploit the potential of AI in

providing reliable breast cancer patient

stratification strategies that can predict

the individual response to a specific treat-

ment or the risk of metastasis and survival,

we would need extremely numerous and

homogeneous data for training. Such data
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are at present unfortunately not available. It

is, however, still possible to make impor-

tant progress with the data we have, but

we should move away from brute-force

black-box type algorithms and exploit the

large trove of biological knowledge accu-

mulated in the past decades to design

smarter and more targeted algorithms for

patient stratification.

We followed this strategy in recent years

by developing ARIADNE, an algorithm to

stratify the aggressiveness of the tumor in

triple-negative breast cancer patients,

based on their gene expression data.14

The biological observation underlying the

algorithm is related to theepithelial-mesen-

chymal transition (EMT), which describes

how polarized epithelial (E) cells transform

intomesenchymal (M) cells by down-regu-

lating intracellular adhesion molecules and

promoting cell polarity. EMT can some-

times give rise to hybrid E/M cells that

display features of both E and M pheno-

types, leading to collective invasive capa-

bility and increased aggressiveness of the

tumor. The EMT is regulated by a complex

network involving several genes (Ng = 72),

that we have recapitulated in silico by a

Boolean network model.15 The model pro-

vides a landscape of all possible cell phe-

notypes that can be used to as a reference

map for gene expression data coming

from individual breast cancer patients.

ARIADNE can perform the projection from

gene expression data to the landscape

andallowsus to identify thepatientswhose

tumor contain a signature of aggressive

hybrid states. Notice that these hybrid

states could not be identified bymeasuring

the expression of a set of genes but only by

considering interactions among genes

within the gene regulatory network.15

Cross validation with clinical data (with Ns

> 500) confirmed that the high-risk triple-

negative breast cancer patients identified

by the ARIADNE algorithm indeed show a

higher risk or relapse and low survival.14

While the algorithm has been validated

with triple-negative breast cancer patients,

the strategy is fully general and could

readily be extended to other breast cancer

subtypesandpotentially alsoother tumors.

Conclusions
Our discussion of recent applications of AI

to breast cancer diagnostics suggests that

the most effective strategies use a combi-

nation of algorithmic ingenuity and biolog-
ical insight. Out-of-the-box AI algorithms

arewidely available and are extremely suc-

cessful inmanydifferent areaswhere large-

scale datasets for training are available.

Straightforward application of these algo-

rithms to stratify breast cancer patients is

hampered by the limited number of avail-

able transcriptomic data. On the other

hand, the deployment of deep learning

algorithms to histological images has

provided a promising diagnostic tool for

early breast cancer detection that is

likely to improve further thanks to the

growing availability of images needed for

training. It is unclear, however, if histologi-

cal images include enough information to

discriminate the future evolution of the tu-

mor. Combining images with gene expres-

siondatamight lead to interesting develop-

ments in the near future.
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