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Abstract

Background & Aim: Numerous studies have linked air pollution with cardiovascular diseases. 

Fewer studies examined the associations at low concentration levels or assessed potential 

modifiers. Some investigations only examined hospitalizations, which can miss incident cases. 

This study aims to address these gaps through a nationwide cohort study of Medicare enrollees.

Methods: Our study cohort comprise all Medicare enrollees (≥65 years old) continuously 

enrolled in the fee-for-service program and both Medicare part A and B across the contiguous 
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U.S. from 2000 to 2016. We examined the associations of population-weighted ZIP code-level 

annual average PM2.5, NO2, and warm-season O3 (May-October), with the first diagnoses of 

atrial fibrillation (AF), congestive heart failure (CHF), and stroke. We fit multi-pollutant Cox 

proportional hazards models adjusted for individual demographic characteristics and area-level 

covariates. We further examined these associations at low pollutant concentration levels and 

the potential effect modifications by race/ethnicity and comorbidities (diabetes, hypertension, 

hyperlipidemia).

Results: Elevated PM2.5 and NO2 levels were associated with increased incidence of AF, 

CHF, and stroke. For each 1 μg/m3 increase in annual PM2.5, hazard ratios (HRs) were 1.0059 

(95%CI: 1.0054, 1.0064), 1.0260 (95%CI: 1.0256, 1.0264), and 1.0279 (95%CI: 1.0274, 1.0284), 

respectively. For each1 ppb increase in annual NO2, HRs are 1.0057 (95%CI: 1.0056, 1.0059), 

1.0112 (95%CI: 1.0110, 1.0113), and 1.0095 (95%CI: 1.0093, 1.0096), respectively. For warm-

season O3, each 1 ppb increase was associated with increased incidence of CHF (HR=1.0035, 

95%CI: 1.0033–1.0037) and stroke (HR=1.0026, 95%CI: 1.0023–1.0028). Larger magnitudes of 

HRs were observed when restricted to pollutants levels lower than NAAQS standards. Generally 

higher risks were observed for Black people and diabetics.

Conclusions: Long-term exposure to PM2.5, NO2, and warm-season O3 were associated with 

increased incidence of cardiovascular diseases, even at low pollutant concentration levels. Black 

people and people with diabetes were found to be vulnerable populations.
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1. Introduction

More than 877,500 people die from cardiovascular diseases (CVDs) in the United States 

every year1. Atrial fibrillation (AF), congestive heart failure (CHF), and stroke are three 

common CVDs in the U.S. Both AF and CHF are linked with an elevated risk of stroke, 

which is the fifth leading cause of death in the U.S. according to the Centers for Disease 

Control and Prevention (CDC)1,2.

Previous studies have examined the associations between air pollution and AF, CHF, 

and stroke. PM2.5, NO2, and O3 are three pollutants of major interest. A cohort study 

conducted in Ontario, Canada reported significant associations between 5-year moving 

average PM2.5, NO2, and O3 and stroke and AF, and the associations were observed even 

at concentration levels lower than U.S. NAAQS standards3. Another cohort study examining 

Medicare participants also reported significant associations between 1-year average PM2.5 

and O3 with the hospital admissions for stroke and heart failure4. There are also several 

significant associations reported from other studies5–9. However, many of these findings 

were from single-pollutant models, while associations in multiple-pollutant models were 

less assessed3,5,6. Due to correlations between different air pollutants, the results from 

single-pollutant models could be confounded by other co-existing pollutants. Moreover, 

many previous studies have used hospitalization as the primary measure of morbidity, 

which may only capture severe cases and assess exacerbation rather than incidence of 

Jin et al. Page 2

Environ Int. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the outcomes5,10–15. In particular, the incidence of heart failure or atrial fibrillation 

is rarely accompanied by a hospital admission. In addition, the potential modification 

of these associations by race/ethnicity and different comorbidities, as well as potential 

differing associations at low vs. high pollutant concentration levels, are also worth further 

examination given the current limited and heterogeneous evidence3,5,8,16–19.

To address these knowledge gaps, we investigated the associations between long-term 

exposure to PM2.5, NO2, warm-season O3 and the first diagnoses of AF, CHF, and stroke 

in a nationwide cohort of Medicare enrollees (≥65 years old) across the contiguous U.S. 

We utilized the Medicare Chronic Conditions Data Warehouse (CCW) database to capture 

the first diagnoses of these outcomes and high spatiotemporal resolution exposure models to 

assess the pollutant concentrations at the ZIP code-level. In addition, we assessed potential 

modification by race/ethnicity and comorbidities such as hypertension, hyperlipidemia, and 

diabetes. The associations at low pollutant concentration levels have also been investigated 

separately.

2. Methodology

2.1 Study Population & Outcomes Data

Our study population included all Medicare enrollees (≥65 years old) with continuous 

enrollment in the fee-for-service (FFS) program and both Medicare part A (hospital 

insurance) and part B (medical insurance) from 2000 to 2016 in the contiguous U.S. 

The Medicare denominator file included enrollment records of age, self-reported sex, self-

reported race/ethnicity (classified as White, Black, Asian, Hispanic, Native American, and 

others), Medicaid eligibility, date of death, and the residential ZIP code for each Medicare 

participant. Residential ZIP code, Medicaid eligibility, and age are updated annually. We 

restricted our study population to the aforementioned programs because the CCW database 

relied on these programs to identify incident cases20. The CCW database provides the 

date of the first occurrence of a disease identified using an algorithm that incorporates 

information across all available Medicare claims (such as inpatient and outpatient claims, 

the Carrier File (primarily physician visits), skilled nursing facility, and home health-care 

claims)20.

There were three outcomes of interest in this study: atrial fibrillation (AF), congestive heart 

failure (CHF), and stroke. We created three separate open cohorts for these three outcomes. 

The participants entered the cohort on January 1st of the year after they enrolled in Medicare 

for each calendar year until the first occurrence of the outcome, end of enrollment in either 

of the mentioned programs above, death, or the end of the study in 2016, whichever came 

first. To better estimate incidence, we required a 2-year clean period for each cohort: only 

the participants who were free of the outcome of the interest, in any Medicare claim as noted 

above, in the first two years after their enrollment were included and the follow-up would 

only start after the 2-year clean period.

The Medicare denominator file and the CCW database were both obtained from the Centers 

for Medicare and Medicaid Services (CMS). They were stored, processed, and analyzed 

in the Rollins High-Performance Computing (HPC) Cluster at Emory University, with 
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Health Insurance Portability and Accountability Act (HIPAA) compliance. This study was 

conducted with approval from the institutional review boards of Emory and the Harvard 

School of Public Health.

2.2. Exposure Assessment

We obtained ambient daily PM2.5 (24-hour mean), NO2 (1-hour maximum), and O3 (8-hour 

maximum) level predictions at 1 km×1 km spatial resolution from 2000 to 2016 for the 

contiguous U.S.21–23 Concentrations were estimated from spatial-temporal ensemble models 

integrating three machine learning algorithms (neural networks, random forest, gradient 

boosting). The predictor variables included satellite data, meteorological variables, land-use 

variables, elevation, chemical transport model predictions, etc24–26. These ensemble models 

have demonstrated strong prediction performance with an average annual cross-validation 

R2 value of 0.89, 0.84, and 0.86 for PM2.5, NO2, and O3, respectively24–26.

Based on the daily predictions, we calculated the annual average PM2.5 and NO2 

concentrations and warm-season O3 concentration (defined as the average exposure from 

May to October) for each 1 km×1 km grid from 2000 to 2016. Warm-season O3 is 

commonly used to capture the O3 exposure in studies examining the associations between 

air pollution and health because cold-season O3 concentration is very low and negatively 

correlated with NO2. We may assume that the health risk associated with O3 in the cold 

seasons is negligible.27 The definition of warm season for ozone as May to October has 

also been widely used in previous studies conducted in the U.S28–30. Gridded 30 second (~1 

km) population data were retrieved from the NASA Socioeconomic Data and Applications 

Center (SEDAC) for the years 2000, 2005, 2010, 2015, and 2020, and further linearly 

interpolated for each year from 2000 to 201631. We then calculated the population-weighted 

average annual PM2.5 and NO2 concentrations and warm-season O3 concentrations at the 

ZIP code-level.

We linked these ZIP code-level population-weighted average pollutant concentrations to 

the study cohorts by year and residential ZIP code to assign exposure to each enrollee 

in each year. Giving proportionately greater weight to the air pollution exposure in 

densely populated areas helps in better capturing individual exposures. The main exposure 

metrics used in this study are the annual average population-weighted concentrations of the 

concurrent year.

2.3. Covariates

We obtained individual-level age, self-reported sex, self-reported race/ethnicity, and 

Medicaid eligibility (as a proxy for individual-level socioeconomic status) from the 

Medicare denominator file and obtained the first occurrence records of hyperlipidemia, 

hypertension, and diabetes from the CCW database. The pre-existences of these conditions 

were included in the analysis as potential confounders and potential modifiers.

In addition, we included neighborhood-level demographic, socioeconomic, healthcare-

access-related and meteorological covariates for analysis. The following covariates were 

chosen because they might be associated with both the air pollution and health outcomes of 

interest in our study.
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The demographic and socioeconomic variables were obtained from the U.S. Decennial 

Census (2000, 2010) and the annual American Community Survey (2011–2016) including 

percent of the population age ≥65; percentages of the population self-reported as non-

Hispanic White, non-Hispanic Black, Asian, or Hispanic, separately; percentages of the 

adult population with high school education or greater; percentages of the adult population 

with income below the poverty line; percent of households receiving public assistance; 

percent of housed individuals renting their property; percent of residences with at least three 

housing units in the structure; population density; and median household income32. All the 

demographic and socioeconomic variables were calculated at ZCTA level and translated into 

ZIP codes. Linear interpolation was used to fill in years 2001–2009.

Healthcare access-related variables included the distance to the nearest hospital (non-time-

varying for the year 2010) and the average annual percent of Medicare enrollees having 

at least one ambulatory visit to a primary care clinician obtained from Dartmouth Health 

Atlas Access-to-care variables33. We also included the percent of population who have ever 

been smokers and the mean body mass index (BMI) from BRFSS and the total number 

of active medical doctors per 1000 people, total number of hospitals, and the number of 

beds regularly maintained for inpatients from Area Health Resources Files (AHRF) of U.S. 

Health Resources & Services Administration (HRSA)34. All these variables were matched 

to the ZIP code-level and the data for possible missing years were filled using linear 

interpolation and extrapolation.

We also obtained the 1 km × 1 km gridded monthly maximum and minimum temperature 

data from Daymet and the 4 km × 4 km gridded daily maximum and minimum relative 

humidity data from gridMET35,36. We then calculated the annual average relative humidity, 

summer (June, July, August) mean temperature and winter (consecutive months - December, 

January, February) mean temperature at ZIP code-level. There is evidence suggesting a 

U-shape relationship between daily temperature and human health, where both extreme 

cold and extreme hot weather having harmful effects. This suggests that the relationships 

between seasonal temperature and health may have different shapes in winter and summer37. 

Therefore, we have included both summer mean temperature and winter mean temperature 

for confounding control in our study.

2.4. Statistical Analysis

In the main analyses, we fit tri-pollutant stratified Cox proportional hazards models to 

estimate the impacts of long-term exposures to PM2.5, NO2, and warm-season O3 on AF, 

CHF, and stroke incidence, separately. The exposure metrics used in our study are the annual 

average population-weighted concentrations of the concurrent year. For each outcome, 

we fit a separate model controlling for individual-level Medicaid eligibility, pre-existing 

comorbidities (hypertension, hyperlipidemia, diabetes), and the ZIP code-level covariates 

mentioned in the previous section. Each model was stratified by sex and race/ethnicity, 

and age was the time scale. Three air pollutants of interest were included in the models 

simultaneously. The formula of the Cox proportional hazards models could be presented as:

ℎk(t) = ℎok(t)exp β1 ⋅ PM2.5 + β2 ⋅ NO2 + β3 ⋅ warmO3 + β4′ ⋅ X
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where hk(t) was the expected hazard at time t for stratum k; h0k(t) was the baseline hazard 

for stratum k representing the hazard when all the covariates are equal to 0; β1·PM2.5, 

β2·NO2 and β 3·warm O3 were the exposure metrics and corresponding coefficients; β4′ ⋅ X
were the covariates included for confounding control and the corresponding coefficients. 

The strata represented by k were for sex and race/ethnicity, and the covariates included all 

individual-level and neighborhood- level variables mentioned before.

To explore potential modification by race/ethnicity and pre-existing comorbidities, we 

repeated the main analyses models with additional interaction terms between exposures and 

potential modifiers. The interactions were separately examined for the three air pollutants. 

With three exposures (PM2.5, NO2, warm-season O3) and four potential modifiers (race/

ethnicity, hypertension, hyperlipidemia, diabetes), 12 additional Cox models were fit for 

each outcome.

We also examined the associations at low pollutant concentration levels by restricting 

the cohorts to enrollees who lived in areas with pollutant concentrations below a certain 

threshold throughout the study period. Members of EPA’s Clean Air Scientific Advisory 

Board have suggested that lowering the current NAAQS standards for annual PM2.5 to 

between 8 and 10 μg/m3 could protect the general public and at-risk groups, EPA is currently 

considering lowering its standard to within that range38. Therefore, we set our thresholds for 

PM2.5 as these two values. For NO2 and warm-season O3, the concentrations in our study 

were quite well below the current NAAQS standards, so we set our thresholds for these two 

pollutants as plausible targets for further reduction by consulting the median values of our 

study. Hence, we examined two thresholds for each exposure: 10 μg/m3 and 8 μg/m3 for 

PM2.5, 25 ppb and 18 ppb for NO2, 50 ppb and 40 ppb for warm-season O3. Therefore, six 

additional sub-cohorts and additional Cox models were fit for each outcome. All of these 

thresholds are below the U.S. NAAQS and EU standards. However, for PM2.5 and NO2, 

these thresholds are still higher than the 2021 WHO Air Quality Guidelines39–41.

Three sets of sensitivity analyses were conducted to assess the robustness of the main 

results. First, we repeated the main analyses with a clean period of 3 years instead of the 

original 2-year clean period, that is only the participants free of the outcome of the interest 

in the first three years after enrollment were included in the follow-up, and the follow-up 

would only start after this 3-year period, to better capture the actual first diagnosis of the 

outcomes at the cost of fewer person-years of follow-up and cases. Second, we repeated the 

main analyses with 3-year average pollutants concentrations as exposure metrics (concurrent 

year and two previous years) instead of the 1-year exposure windows (only concurrent year) 

to estimate the associations between long-term exposures and outcomes. Then, we repeated 

the main analyses and estimated the associations with additional quadratic terms for the 

meteorological variables (summer mean temperature, winter mean temperature, relative 

humidity). These sensitivity analyses were conducted for each outcome. Results of the 

sensitivity analyses can be found in the supplementary materials.

We also conducted a regional analysis on 4 U.S. Census Regions (Midwest, Northeast, 

West, South) to see if the associations varied across different regions42. The interaction 

terms between exposures and categorical regional variables were included. We found that 
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Blacks and diabetics had higher risks, but we know that diabetes is more prevalent among 

Blacks43(pp2011−2016). To ensure that the effect measure modifications we identified were 

not confounded by this overlap, we conducted additional sets of analysis assessing the 

effect measure modifications by race among the non-diabetics and the effect measure 

modifications by diabetes among the White racial group. To see whether the modification by 

race/ethnicity could be confounded by different Census regions, we also conducted analysis 

examining potential modification by race/ethnicity controlling for categorical regional 

variables and the interaction terms between exposure and regions.

Moreover, to control for the autocorrelation of exposures and outcomes, we used a 

generalized estimating equation with clusters at ZIP code-level throughout all the models 

conducted44,45. All data work and statistical analyses were run on the Rollins HPC Cluster at 

Emory University using R 4.0.246.

3. Results

Table 1 summarizes the demographic characteristics and exposure of the study cohorts. For 

each cohort we have included over 30 million Medicare enrollees with an average follow-up 

time of approximately 7 years. The cohorts were mainly White (over 88%) and female (over 

58%), with an average age at the beginning of follow-up of approximately 73 years old. 

We observed 4,939,663 cases of AF, 8,234,206 cases of CHF, and 4,865,640 cases of stroke 

from these cohorts during the follow-up periods. The mean concentrations for the pollutants 

of interest were: 10.2 μg/m3 for PM2.5, 19.8 ppb for NO2, and 42.9 ppb for warm-season 

O3. The correlation coefficients for the three pollutants range from 0.2 to 0.4 (Table S1 in 

Supplementary Materials).

Table 2 presents the main results from the full cohorts and low-pollutant-concentration-level 

sub-cohorts. In the full cohorts, we found that the exposures to PM2.5 and NO2 were 

positively associated with increased incidence of AF, CHF, and stroke. For each 1 μg/m3 

increase in annual PM2.5, hazard ratios (HR) were 1.0059 (95% CI: 1.0054–1.0064), 1.0260 

(95% CI: 1.0256–1.0264), and 1.0279 (95% CI: 1.0274–1.0284) for the three corresponding 

outcomes, respectively. For each 1 ppb increase in annual NO2, HRs were 1.0057 (95% CI: 

1.0056–1.0059), 1.0112 (95% CI: 1.0110–1.0113), and 1.0095 (95% CI: 1.0093–1.0096), 

respectively. The exposure to warm-season O3 was only associated with increased incidence 

of CHF and stroke, with HRs of 1.0035 (95% CI: 1.0033–1.0037) and 1.0026 (95% CI: 

1.0023–1.0028) respectively.

The sample size of the low-pollutant-concentration-level sub-cohorts could be found in 

Table S2 in Supplementary Materials. In the first sets of low-pollutant-concentration-level 

sub-cohorts (PM2.5<10 μg/m3, NO2<25 ppb, warm-season O3<50 ppb), the exposures were 

all found to be associated with increased incidence of AF, CHF, and stroke, and the HRs 

were higher than in the full cohorts (Table 2). Moreover, when we further restricted the sub-

cohorts to a lower threshold (PM2.5<8 μg/m3, NO2<18 ppb, warm-season O3<40 ppb), the 

associations persisted and the HRs became even stronger than the first sets of sub-cohorts 

(Table 1).
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The results of potential modifications by race/ethnicity are presented in Figure 1. We found 

that PM2.5 and NO2 had higher HRs on all three outcomes for Black people vs. White 

people, while warm-season O3 had lower HRs for Black people than for White people. For 

Native Americans, the HRs of PM2.5 were generally larger, while for NO2 and warm-season 

O3, the HRs were lower than for White people. For Asians, all the HRs were lower or 

not significantly different compared to White people. Similar trends were also observed for 

Hispanic people, with all HRs were of lower magnitudes than White people.

Figure 2 summarizes the estimated modification by the three pre-existing comorbidities: 

diabetes, hypertension, and hyperlipidemia. The HRs between PM2.5 and NO2 and all three 

outcomes were found to be of higher magnitudes for people with diabetes, while no clear 

modification pattern was observed for warm-season O3. For people with hypertension, 

we found a higher HR between NO2 and stroke, while all other estimates were of 

lower magnitudes or not significantly different compared to people without hypertension. 

Moreover, we found lower HRs between all exposures and all three outcomes for people 

with hyperlipidemia than for those without.

The results of the sensitivity analyses are presented in Table S3, S4, and S5 of 

Supplementary Materials. First, when assessing exposures as 3-year moving average of air 

pollutants, we still found positive associations between PM2.5 and NO2 and AF, CHF, and 

stroke, and positive associations between warm-season O3 and CHF and stroke (Table S3). 

The general pattern that the HRs of PM2.5 and NO2 were of lower magnitudes for AF and 

higher for CHF and stroke persisted in the results of sensitivity analyses. Second, for the 

three sub-cohorts with a more stringent clean period excluding anyone who had a diagnosis 

for the outcome in their first 3 years of follow-up, the models also yielded similar results 

to the main analyses (Table S4). Third, with additional quadratic terms of meteorological 

variables, we still observed similar association estimates with the main analyses (Table S5), 

which indicated that the linear terms included in the main analyses should be adequate 

to control the confounding by meteorological factors. In general, the results of the main 

analyses were robust to these three sets of sensitivity analyses we have conducted.

Results of the additional regional analysis and effect measure modification analysis are 

presented in Figure S1, S2, S3, and S4 of Supplementary Materials. Among the four U.S. 

Census Regions, people living in the West region had lower HRs associated with PM2.5 

and NO2 across all three outcomes compared to people living in other three regions. For 

the additional effect measure modification analysis, we found that among the non-diabetics, 

the Black people still had higher HRs associated with PM2.5 and NO2 across all three 

outcomes, and among the White people, the diabetics also still had higher risks associated 

with PM2.5 and NO2 across all three outcomes. This indicated that the pre-existing diabetes 

and race/ethnicity could modify the associations without the intersectionality between these 

two factors. We also found that after controlling for regional variables, the general patterns 

of the potential modification by race/ethnicity is consistent with what we observed from the 

models without regional variables.
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4. Discussion

In this study, we have examined the association between PM2.5, NO2, and warm-season O3 

and the incidences of AF, CHF, and stroke in the Medicare population. Associations between 

PM2.5, NO2 and the first incidences of AF, CHF, and stroke, as well as associations between 

warm-season O3 and first incidences of CHF and stroke have been found from the multi-

pollutant models. When we restricted the data to low pollutant concentration levels, we still 

found associations between all pollutants and all outcomes, and these associations were even 

stronger than those in the full range of exposure. We also found that these associations were 

modified by race/ethnicity and comorbidities, with evidence that Black people and people 

with pre-existing diabetes are more susceptible to PM2.5 and NO2. All the associations were 

observed from models controlling for the individual-level characteristics, neighborhood-

level socioeconomic and demographic factors, and meteorological variables. Both summer 

and winter mean temperatures were included because of the U-shape relationship observed 

between daily temperature and human health indicated that warmer temperature is protective 

in the winter but harmful in the summer37.

There are several different methods to capture the incidence of non-fatal cardiovascular 

diseases that have been used previously. Many previous studies examining both short-term 

and long-term associations have used hospitalization data to capture the outcomes5,10–14,47. 

However, for AF and CHF, hospitalizations generally do not mark the onset of the diseases, 

but rather an exacerbation. Some studies try to include more records like emergency 

department visits, outpatient records, and physician diagnoses to better approximate the 

incidence of the outcomes3,6,7,16,48–51. Other incident outcome assessment methods, such as 

self-reported information, interviews, and hospital discharge data, have also been used17–19. 

However, most of these methods are still not accurate enough or the studies are conducted in 

non-representative cohorts not immediately generalizable to the broader population.

In our study, we have utilized the CCW database to systematically capture the incidence of 

the outcomes among all Medicare enrollees continuously enrolled in the FFS program and 

both Medicare part A and part B across the contiguous U.S. from 2000 to 2016. The CCW 

database utilizes algorithms incorporating claims indicating an individual received service 

for specific conditions. The algorithms combine all the records from inpatient, outpatient, 

skilled nursing facilities, home health claims, and carrier claims (primarily doctor visits)20. 

Compared to the hospital database used by many previous studies, this database, together 

with our two-year washout period, better captures the incidence of the outcomes. Compared 

to other cohort studies, we observed far more events, used a more generalizable population 

of people aged 65+, and did not rely on self-reports. We believe this is one of the largest 

nationwide studies that can accurately capture the first incidence of health outcomes to 

examine the association between air pollution and cardiovascular diseases.

Larger magnitudes of hazard ratios at lower concentrations were observed in our study, 

which is also common among previous studies of air pollution. For example, a meta-

regression of 135 coefficients from studies linking long-term PM2.5 and mortality reported 

that the slope of the concentration-response curve increased continuously as the focus 

shifted to studies with lower concentrations52. Another recent paper also confirmed that 
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for PM2.5 and other pollutants like NO2 and O3, similar increases at lower concentrations 

were reported53. Most of those deaths reported in previous studies were from cardiovascular 

disease, which is consistent with our findings for the CVD incidences. Opinions on why 

larger effect sizes were observed at lower concentrations are differing. There is one opinion 

that if the sensitivity of humans to air pollution were normally distributed, then the 

concentration-response associations would be expected to look like a cumulative normal 

curve, which does level off at higher exposures.

Evidence for potential modification by race/ethnicity were mixed for warm-season O3 in 

our study. However, for PM2.5 and NO2, we found strong evidence of effect modification 

for Black people with higher hazard ratios across all outcomes compared to White, despite 

controlling for multiple measures of socioeconomic status. This suggests that those assessed 

metrics do not adequately capture all the factors that make Blacks more susceptible to 

air pollution. For example, some studies have shown that psychosocial stress modifies the 

effects of air pollution54,55. Some unmeasured spatial components may also increase the 

vulnerability of the Black racial group. Moreover, our study also found that the associations 

between all three pollutants and all three outcomes were generally at a lower magnitude for 

Asians and Hispanics compared to White people. The reasons for the lower risks found for 

Asians and Hispanics are worth more explorations in the future studies. It may also be due 

to the psychosocial stress since the higher individual incomes for Asian and the supportive 

family structure for Hispanic may lead to lower stress for these groups. Moreover, the 

relatively small sample size of Asian (1.2%), Hispanic (1.6%), and Native American (0.3%) 

population suggests caution for result interpretation, especially for the Native American 

population whose confidence intervals were much wider than other race/ethnicity categories. 

Previous studies examining potential modification by race/ethnicity in associations between 

air pollution and cardiovascular diseases have yielded quite heterogeneous results, there 

was not a general consistent trend on whether a specific racial group was having higher or 

lower risks compared to the other groups8,56,57. Our study added to the evidence of greater 

susceptibility to the adverse effects of air pollution among the Black population. This also 

echoed the needs for the focus on environmental justice since we found that Blacks are more 

susceptible to the potential harmful effects from environmental pollutions. With literature 

indicating that people of color in the U.S. are exposed to higher levels of air pollution, this 

could be a double disadvantage for the Black racial group who have higher exposure levels 

and are more likely to be harmed by air pollution58.

In addition to race/ethnicity, we also examined the potential modifications by pre-existing 

comorbidities including hypertension, hyperlipidemia, and diabetes. For the interaction 

terms of these comorbidities, we found strong evidence that people with diabetes were 

more susceptible to air pollution than people without diabetes. However, for people with 

hypertension, the results were mixed across different air pollutants and outcomes, and 

for people with hyperlipidemia, there was strong evidence suggesting that they are less 

susceptible than people without hyperlipidemia. One possible reason for the “protective 

effects” of hyperlipidemia may be that the medications (particularly statins) used to 

treat hyperlipidemia could block the association between air pollution and cardiovascular 

diseases59,60. Several mechanisms have been proposed on how air pollution could induce 

cardiovascular effects. One mechanism is through air pollution-induced inflammation, and 
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there are already many studies demonstrating that air pollutants are associated with an 

increased inflammatory response56,61–63. HMG-CoA reductase inhibitors, also known as 

statins, are a class of medications widely used in the treatment of hyperlipidemia, and 

have been found to inhibit inflammatory responses and demonstrate a protective effect 

against air pollution64,65. There is epidemiological evidence suggesting that people taking 

statins may be less susceptible to air pollution than people not taking statins62,63. Hence, 

participants with hyperlipidemia in our study may be protected against air pollution by 

way of treatment. Some previous studies have also examined the potential modifications 

by diabetes, hypertension, and hyperlipidemia of the associations between air pollution 

and cardiovascular diseases in both short-term and long-term time scales. Diabetes and 

hypertension have been studied in greater detail, with mixed findings reporting higher risks, 

lower risks, and also no signs of significant interactions for people with comorbidities across 

different air pollutants and cardiovascular events6,7,12–14,16,18,49,66. Hyperlipidemia as a 

modifier has been less studied previously. One case-crossover study on AF hospitalizations 

reported that patients with hyperlipidemia may be more susceptible to short-term exposure 

to PM 12. Unfortunately, there is no medication records in the Medicare denominator file 

and CCW data we have, so we are unable to conduct further analysis on this possible 

explanation, and we believe it is a potential research direction worth more exploration in the 

future.

Several previous studies have reported evidence of associations between air pollution and 

cardiovascular diseases. For the Medicare population, there are other studies reporting 

significant associations between PM2.5, NO2, and O3 and stroke and heart failure4,9. A 

pooled analysis based on the ELAPSE (Effects of Low-Level Air Pollution: A Study in 

Europe) project reported significant associations between annual average PM2.5 and NO2 

and stroke, but null association for warm-season O3 19. A separate study based on the 

Danish Nurse Cohort reported a positive but non-significant association between 1-year 

average PM2.5 and AF and a significant association between 3-year average PM2.5 and AF, 

with null findings for NO2 50. There are also two cohort studies conducted in Ontario, 

Canada reporting significant associations between the long-term exposures to all three air 

pollutants (PM2.5, NO2, O3) and all three outcomes of interests3,16. Furthermore, some 

other studies have reported mixed results5,7,18,48,66. Our study is generally consistent with 

findings of associations for all air pollutants and outcomes except for O3, which is also 

more heterogeneous in previous studies. Moreover, our findings of consistent and even 

stronger associations between air pollution and cardiovascular diseases at lower pollutant 

concentration levels are also consistent with several previous studies3,8,17,19. However, 

heterogeneity still exists in the shape of associations at low pollutant concentration levels in 

many other studies3,5,16. Our study provides evidence that there is no sign of a threshold of 

air pollution’s health effects and that there are greater marginal benefits to further reducing 

air pollution.

Besides the traditional air pollutants being examined by previous literature, some studies 

also noted that noise could be a potential important confounder for the health-air pollution 

relationship, and noise itself could also become an exposure of interest. Based on Danish 

Nurse Cohort, there are two studies suggesting that noise could be an important co-pollutant 

with air pollution related to mortality and stroke incidence, and they also reported similar 
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direction of effect modifications for diabetics and no effect modification for persons with 

hypertension for road traffic noise, which is typically highly correlated with pollutants from 

traffic emissions such as NO2
67,68. We think these findings are somewhat supportive of our 

results. In our study, we did not have noise as an exposure, and this is a limitation of our 

study. However, the exploration of the role of noise in the associations between air pollution 

and cardiovascular diseases incidence could be a potential research direction in the future.

Our study examined the associations between PM2.5, NO2, warm-season O3 and incident 

AF, CHF, and stroke in tri-pollutant models. As one of the largest studies examining 

the associations between air pollution and cardiovascular diseases, our study incorporated 

nearly 20 million participants with hundreds of millions of follow-up years and millions 

of incidence cases for analyses. This large population-based cohort across the whole 

contiguous U.S. provided sufficient statistical power, even for the subgroup and effect 

measure modification analyses, which is a main advantage of this study compared to 

previously published research. Another important advantage of our study is the use of 

CCW database to better capture the first incidence of the outcomes. This is a huge 

improvement compared to previous studies using hospitalization records, since the CCW 

database has included more medical records rather than only the hospitalizations. Many 

incidences occur well before the hospitalizations, and many incidences do not result in 

hospitalization. Therefore, with more medical records covered by CCW database, we could 

better capture the actual incidence rather than the exacerbation of the outcomes. Moreover, 

our study has also examined the associations at low pollutant concentration levels and the 

potential modifications by race/ethnicity and comorbidities. These analyses provided us 

more thorough understanding of the associations between air pollution and cardiovascular 

disease.

Our study also has some limitations. First, we assumed a linear relationship between the 

exposures, covariates, and the outcome, which may result in some residual confounding, 

especially for the associations between exposures and outcomes. In our study, we do 

see steeper slopes at lower concentrations, which is indicative of non-linearity. More 

detailed examinations of the concentration-response curves should be examined in future 

research. Second, although we used high-resolution air pollution spatiotemporal models 

with strong validation metrics, there is still potential for measurement error in our analysis 

from lack of indoor air pollution measurements, commuting across different places, lack 

of detailed residential and activity diaries, and the residual prediction error of exposure 

models. However, we would expect most of these errors to be non-differential. We also 

think commuting and workplace exposures are of less concern in a population that is mostly 

retired. Further, with the National Human Activity Pattern Survey in the U.S. reporting 

that U.S. adults spent 69% of their time at home and 8% of the time immediately outside 

their home69, it is reasonable to use the residential air pollution to capture the exposure. 

However, the lack of indoor air pollution measurement may be a concern, since there is 

study reporting different effect sizes adjusting for time spent indoor70. We believe this could 

be a worthwhile potential research direction with more adequate data on activity diaries and 

time spending indoor. Third, the usage of concurrent year concentrations as exposure metrics 

may also introduce some exposure measurement errors because in the years of diseases 

incidence or censoring, these exposure metrics may cover some periods of the time that 
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the participants didn’t actually experience. However, our sensitivity analysis using 3-year 

average exposure produced similar results.

5. Conclusions

We found positive associations of long-term exposure to PM2.5 and NO2 with atrial 

fibrillation, congestive heart failure, and stroke, and positive associations of warm-season 

O3 with congestive heart failure and stroke. These associations were consistent and even 

stronger when we restricted to pollutants concentrations levels below U.S. and EU standards, 

which suggests no sign of threshold effects and greater marginal benefits to further 

reduce air pollution. In particular, we observe strong associations when restricted to PM2.5 

concentrations below those the U.S. EPA is considering for revised standards. Moreover, 

we also found that some of these associations could be modified by race/ethnicity and 

comorbidities. Greater susceptibilities to PM2.5 and NO2 were observed for Black people 

and people with diabetes, indicating potential vulnerable populations.
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• A nationwide Medicare cohort study was conducted across the contiguous 

U.S.

• Associations were examined using co-pollutant models and at low pollution 

levels

• Potential effect modifications by race/ethnicity and comorbidities were 

assessed

• Air pollution is found associated with incidence of CVD even at low 

concentration

• People who identify as Black or have diabetes are more susceptible to air 

pollution
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Figure 1. 
Potential effect modifications by race/ethnicity

Abbreviations: AF for atrial fibrillation; CHF for congestive heart failure.
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Figure 2. 
Potential effect modifications by comorbidities (hypertension, hyperlipidemia, diabetes)

Abbreviations: AF for atrial fibrillation; CHF for congestive heart failure.
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Table 1.

Demographic characteristics and exposure summary of study cohorts

Characteristics AF Cohort CHF Cohort Stroke Cohort

Follow-up Start Age, Mean (S.D.) 73.1 (6.9) 72.7 (6.6) 73.1 (6.9)

Female Sex, n (%) 18,977,901 (59.0) 17,597,195 (58.4) 18,955,470 (58.4)

Race/ethnicity, n (%)

White 28,327,456 (88.1) 26,756,246 (88.8) 28,736,911 (88.6)

Black 2,363,489 (7.4) 2,035,968 (6.8) 2,265,406 (7.0)

Asian 398,340 (1.2) 366,135 (1.2) 392,072 (1.2)

Hispanic 434,323 (1.6) 377,991 (1.3) 419,639 (1.3)

Native American 111,238 (0.3) 100,946 (0.3) 109,894 (0.3)

Others 518,409 (1.6) 495,662 (1.6) 520,442 (1.6)

Average Follow-up Years 6.8 6.5 6.8

Case Numbers 4,939,663 8,234,206 4,865,640

Total Person-years 218,957,061 194,885,797 219,978,768

PM2.5 Concentration (μg/m3), Mean (S.D.) 10.2 (2.8) 10.2 (2.8) 10.2 (2.8)

NO2 Concentration (ppb), Mean (S.D.) 19.8 (9.2) 19.7 (9.1) 19.8 (9.2)

Warm-season O3 Concentration (ppb), Mean (S.D.) 42.9 (5.8) 42.9 (5.8) 42.9 (5.8)

Abbreviations: AF for atrial fibrillation; CHF for congestive heart failure; S.D. for standard deviation.
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Table 2.

Associations between air pollution and atrial fibrillation (AF), congestive heart failure (CHF) and stroke 

incidence: results from the full cohorts and low-pollutant-concentration-level sub-cohorts analyses, presented 

as hazard ratios (HR) and 95% confidence intervals per 1 μg/m3 increase in PM2.5, 1 ppb increase in NO2, and 

1 ppb increase in warm-season O3

Pollutant HR for AF HR for CHF HR for Stroke

PM2.5 1.0059 (1.0049, 1.0069) 1.0260 (1.0245, 1.0275) 1.0279 (1.0264, 1.0293)

PM2.5 (<10 μg/m3) 1.0689 (1.0637, 1.0741) 1.0959 (1.0891, 1.1027) 1.1011 (1.0946, 1.1077)

PM2.5 (<8 μg/m3) 1.1503 (1.1358, 1.1650) 1.1731 (1.1564, 1.1900) 1.1878 (1.1698, 1.2061)

NO2 1.0057 (1.0054, 1.0061) 1.0112 (1.0106, 1.0117) 1.0095 (1.0089, 1.0100)

NO2 (<25 ppb) 1.0128 (1.0120, 1.0135) 1.0200 (1.0189, 1.0210) 1.0193 (1.0184, 1.0203)

NO2 (<18 ppb) 1.0233 (1.0217, 1.0249) 1.0275 (1.0254, 1.0297) 1.0304 (1.0284, 1.0324)

Warm-season O3 0.9998 (0.9994, 1.0003) 1.0035 (1.0028, 1.0043) 1.0026 (1.0019, 1.0032)

Warm-season O3 (<50 ppb) 1.0134 (1.0124, 1.0144) 1.0181 (1.0168, 1.0195) 1.0190 (1.0177, 1.0204)

Warm-season O3 (<40 ppb) 1.0553 (1.0499, 1.0607) 1.0589 (1.0533, 1.0645) 1.0649 (1.0587, 1.0711)
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