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ABSTRACT: Estrogen receptor alpha (ERα) is a ligand-responsive transcription factor critical for sex determination and
development. Recent reports challenge the canonical view of ERα function by suggesting an activity beyond binding dsDNA at
estrogen-responsive promotor elements: association with RNAs in vivo. Whether these interactions are direct or indirect remains
unknown, which limits the ability to understand the extent, specificity, and biological role of ERα-RNA binding. Here we
demonstrate that an extended DNA-binding domain of ERα directly binds a wide range of RNAs in vitro with structural specificity.
ERα binds RNAs that adopt a range of hairpin-derived structures independent of sequence, while interacting poorly with single- and
double-stranded RNA. RNA affinities are only 4-fold weaker than consensus dsDNA and significantly tighter than nonconsensus
dsDNA sequences. Moreover, RNA binding is competitive with DNA binding. Together, these data show that ERα utilizes an
extended DNA-binding domain to achieve a high-affinity/low-specificity mode for interacting with RNA.

An increasing number of transcription factors (TFs),
previously thought to solely bind DNA, have been

reported to also bind RNA via their DNA-binding domains
(DBDs).1 In these unexpected TF−RNA interactions, the
RNA acts as scaffolds,2 guides,3 or decoys,4 controlling TF
promoter occupancy and transcriptional output.5−9 One TF
proposed to associate with RNA is the estrogen receptor alpha
(ERα).3,7 ERα is a ligand-responsive TF that mediates the
function of estrogen, a steroid hormone that plays myriad roles
in reproductive system physiology, including regulating growth
and development.10−14 Like most TFs, ERα binds a specific
dsDNA estrogen response element (ERE) TGGTCAnnnT-
GACCA, via its DBD (Figure 1A).

Recent discoveries, however, suggest ERα transcriptional
regulation occurs through RNA binding.15−18 Certain
enhancer RNAs (eRNAs) facilitate estrogen-induced ERα
gene repression, while the lncRNA HOTAIR targets ERα to its
promoter to positively regulate transcription via chromatin
remodeling.3,7 Recently, RNA-binding activity by ERα in the
cytoplasm has been characterized.17 Whether the ERα/RNA
interaction is direct or mediated by other proteins remains
unknown, as association between ERα and RNA is based on in
vivo pull-down experiments. Additionally, systematic deletion
of ERα’s functional domains in vivo demonstrated that the
region spanning ERα’s DBD is required for association with
RNA.7 A survey of the features required for ERα−RNA
binding would improve our understanding of transcriptional
regulation via TF−RNA interactions.

While in vivo studies suggest that the ERα-DBD interacts
with RNA,3 it has previously been shown that it does not bind
the lncRNA Gas5 directly,19 motivating us to readdress this
issue. To approach this question, we used an in vitro
fluorescence anisotropy (FA) assay to measure direct binding
with highly purified components and performed binding in a
buffered solution containing 100 mM NaCl. As expected, the

DBD (AAs 180−262) binds fluorescently labeled DNA ERE
with a KD,app of 22 ± 1 nM (Figure 1B).19 Consistent with the
prior study,19 we did not observe direct DBD binding to
several RNA hairpins derived from the lncRNA HOTAIR
(Figure 1B, all RNA sequences are listed in Table S1).

A previous study for a related TF revealed the addition of
basic residues from the hinge region, C terminal to the DBD,
conferred high affinity RNA binding (Figure 1A).20 Compel-
lingly, this region was independently implicated in cytoplasmic
ERα−RNA association in mammalian cells.17 To test if this
region assists in direct RNA binding, we purified a second ERα
construct with 18 additional residues extending into the hinge
region, termed DBD-Ext (AAs 180−280, Figure 1A, Table S2).
In striking contrast to the binding of the canonical DBD, we
found DBD-Ext robustly binds RNA derived from HOTAIR
with a KD,app of 98 ± 8 nM (Figure 1C).

We next investigated the specificity of RNA binding by
DBD-Ext. We chose various RNAs found to pull down with
ERα, which include lncRNAs, eRNAs, and mRNAs.3,7,17 An
RNA hairpin has been shown to be the minimal binding
element for the TFs Sox2 and glucocorticoid receptor (GR),
and we asked if ERα behaves similarly.20,21 We first tested
hairpins derived from the 5′ domain of the highly structured
HOTAIR.22 Sfold and UNAfold23,24 secondary structure
calculations predicted these fold exclusively as hairpins (Figure
2A, Figure S1). We found that DBD-Ext binds all of the
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HOTAIR-derived hairpins, which have no sequence relation-
ship or conservation, with similar KD,app (Figure 2B).

To determine if other biologically defined RNAs bound
DBD-Ext, we tested the affinity for eRNAs and mRNAs
obtained from publicly available HITS-CLIP data sets.17 We
took >200 nucleotide-window sequences that overlapped with
the most reads, calculated their secondary structures,23,24 and
transcribed segments of RNAs (Figure 2C, Figure S1). These
structured RNAs, including XBP1, TFF1, and GREB1, ranging
from 24 to 75 nucleotides, bound within the same affinity
range as the hairpins from HOTAIR (Figure S3). Therefore,
we conclude that DBD-Ext binds a range of structured,
biological RNAs in vitro.

To further determine sequence or structural features of RNA
required for ERα binding, we made a hairpin RNA derived
from the ERE consensus sequence. This RNA sequence, rERE,
contains the two six-nucleotide half sites and a terminal loop.
DBD-Ext bound rERE with a KD,app of 130 ± 20 nM (Figure

3A). To test if the sequence, not the hairpin, is required for
binding, we made an RNA duplex (duplex rERE) of the same
consensus sequence that lacked secondary structure. Binding
affinity to the RNA duplex rERE was reduced dramatically to
1.1 μM. Moreover, DBD-Ext bound single-stranded RNA
(ssRNA) with the same reduced affinity, demonstrating that
DBD-Ext binds poorly to single-stranded and duplexed,
unstructured RNA (Figure 3A). To test if binding can be
rescued, we created a modified hairpin, adding the terminal
loop back to the opposite end of duplex rERE. We found that
re-establishing the hairpin at the opposite end of the
nonbinding duplex rescues high affinity binding (Figure 3A).
Thus, the RNA hairpin structure is sufficient for binding,
regardless of sequence or orientation. This lack of sequence
specificity for RNA is in stark contrast to ERα’s DNA binding,
wherein affinity for dsDNA without the consensus binding site
is reduced 40-fold (Figure S2).25,26

Many biological targets of ERα contain internal bulges that
could facilitate binding, such as in the case of SMAD3.5 We
therefore asked if other structural features play a role in RNA
recognition. We started with the mRNA XBP1 identified in the
HITS-CLIP analysis, which contains internal and terminal
loops.17 We first eliminated the internal bulge, creating just a
hairpin RNA; affinity was unchanged (Figure 3B). To further
test how the size of the terminal loop affects binding for the
XBP1 hairpin, we created separate constructs, with enlarged 15
and 25 nucleotide terminal loops. For all constructs, the KD,app
remained in the range of the parent XBP1 construct (50−81
nM) (Figure 3B). Therefore, neither the internal bulge nor the
size or sequence of the terminal loop confers specificity.

To determine if ERα-binding activity of RNA and DNA is
mutually exclusive, we performed competition experiments in
which unlabeled DNA (red) or XBP1 RNA (blue) was added
to prebound protein/DNA complex. Unlabeled DNA com-
peted labeled DNA off both ERα DBD and DBD-Ext, as
expected (Figure 3C,D). However, unlabeled RNA effectively
competed off labeled DNA bound to DBD-Ext, but not DBD
alone (Figure 3C,D), further demonstrating residues extending
past the DBD are required for ERα−RNA binding. This
suggests that though the binding domains differ for DNA and
RNA, they overlap to enough of an extent that binding one
precludes interacting with the other.

This study of ERα’s ability to directly bind RNAs advances
our understanding of TF−RNA interactions, supporting the
interpretation that the observed in vivo associations are the
result of direct binding. ERα binds RNA competitively with
DNA, augmenting the canonical DBD with an additional
region that confers full RNA-binding activity. Importantly,
ERα discriminates RNAs on the basis of structure, binding a
suite of RNAs including hairpins of eRNAs, mRNAs, and
lncRNAs independent of sequence or length. As RNA hairpins
are a pervasive element in cellular RNA, our results suggest
that ERα interacts extensively with RNA in the cell, consistent
with HITS-CLIP data.27−29

A second important finding is that ERα requires residues
from the hinge region to interact with RNA (Figure 1).17 Little
is known about the function of hinge regions of nuclear
hormone receptors (NHRs), as most structures suggest
flexible, disordered domains.25,30,31 Notably, this region was
found to be necessary for GR−RNA binding as well.20 An
alignment of other NHRs shows basic residues are highly
conserved within their hinge regions (Figure S4), suggesting
this is a general phenomenon for this class of proteins.

Figure 1. Residues in ERα’s hinge region are required for RNA
binding. (A) Domain map of ERα, including the N-terminal domain,
DBD, hinge region, and ligand binding/C-terminal domain. (B) and
(C) FA-binding curves for ERα-DBD (B) or DBD-Ext (C) bound to
duplex DNA (ERE) or an RNA hairpin derived from HOTAIR. N ≥
3, standard error of the mean reported.
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These observations also raise the question as to the purpose
of ERα−RNA binding and provide insight into existing
models.3,4,7 Given that ERα localizes to chromatin, where a
large number of mature, nascent, and highly structured
noncoding RNAs are present at intracellular concentrations
near or above the KD,app of ERα, RNA binding may

significantly impact ERα function.32−35 On one hand, RNA
could influence the localization of ERα, with nascent, structural
transcripts keeping ERα associated with chromatin during
transcription (Figure 4, top). Conversely, ERα bound to a non-
ERE promoter (with a lower KD than ERE elements, Figure
S2) could be competed off by an RNA with multiple hairpins,

Figure 2. DBD-Ext binds a range of biological RNAs. (A) Schematic of Domain 1 from the secondary structure of HOTAIR.22 Colored hairpins
were prepared separately while maintaining their secondary structures. (B) FA-binding data for various HOTAIR hairpins shown in (A). N ≥ 3,
standard error of the mean reported. (C) Integrative Genome Viewer (IGV) example of HITS-CLIP data, showing ERα bound to the mRNA
XBP1.

Figure 3. DBD-Ext binds RNA hairpins. (A) Normalized FA binding of DBD-Ext to RNA from the DNA consensus sequence, rERE (red). rERE
was made into a standard duplex (orange), the hairpin structure was rescued by the addition of a loop on the opposite end (green). (B) FA-binding
curves of DBD-Ext bound to a hairpin from XBP1 (red), no internal bulge (green), and enlarged stem loops (purple and orange). DBD (C) or
DBD-Ext (D) bound to labeled DNA-ERE and competed off by titration of unlabeled ERE DNA (red) or XBP1 RNA (blue). N ≥ 3, standard error
of the mean reported.
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acting as a molecular sponge to titrate away ERα and terminate
transcription (Figure 4, bottom).

Characterizing this interaction sheds light on the greater
theme of RNA structural recognition that has emerged for
other TFs such as Sox2, SMAD3, and GR.5,20,21 Our findings
suggest this represents an important, and unappreciated,
mechanism of transcriptional regulation. Further investigation
of these associations in vivo is paramount to understanding the
role of ERα−RNA binding in the cell.
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