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SUMMARY

Lysergic acid diethylamide (LSD) produces hallucinations, which are perceptions uncoupled from 

the external environment. How LSD alters neuronal activities in vivo that underlie abnormal 

perceptions is unknown. Here, we show that when rats run along a familiar track, hippocampal 

place cells under LSD reduce their firing rates, their directionality, and their interaction with 

visual cortical neurons. However, both hippocampal and visual cortical neurons temporarily 

increase firing rates during head-twitching, a behavioral signature of a hallucination-like state 

in rodents. When rats are immobile on the track, LSD enhances cortical firing synchrony in a state 

similar to the wakefulness-to-sleep transition, during which the hippocampal-cortical interaction 

remains dampened while hippocampal awake reactivation is maintained. Our results suggest that 

LSD suppresses hippocampal-cortical interactions during active behavior and during immobility, 

leading to internal hippocampal representations that are degraded and isolated from external 

sensory input. These effects may contribute to LSD-produced abnormal perceptions.
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In brief

Domenico et al. investigate how lysergic acid diethylamide (LSD) affects hippocampal place cells 

and visual cortical neurons. During active navigation, LSD reduces hippocampal-visual cortical 

correlation and hippocampal spatial representation precision. During immobile behavior, LSD 

promotes isolated hippocampal reactivation and produces a cortical state similar to wakefulness-

to-sleep transition.

INTRODUCTION

The psychedelic drug lysergic acid diethylamide (LSD) is a potent hallucinogen that 

produces surreal hallucinations in humans, defined as subjective perceptions uncoupled 

from external environments (Liechti, 2017; Schmid et al., 2014). Previous studies in humans 

suggest that LSD and similar hallucinogens disrupt activities in the prefrontal cortex, visual 

cortex (VC), and the hippocampus (HP), as well as their functional connections with other 

regions, during resting (Alamia et al., 2020; Carhart-Harris et al., 2012, 2016; Müller et al., 

2018; Palhano-Fontes et al., 2015; Preller et al., 2019; Roseman et al., 2014; Tagliazucchi 

et al., 2014, 2016) and during active tasks (Schmidt et al., 2018). However, how LSD alters 

firing activities of neurons in these areas in vivo is unknown.

Unlike human studies, neuronal firing activity in animals can be recorded in vivo during 

behavioral responses to psychedelic drugs. We set out to study the effects of LSD on 

neuronal activities in freely moving rats. Previous behavioral studies in rodents identified 
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a number of behavioral changes, including reduced movement with increased immobility 

(but sometimes enhanced mobility possibly depending on dosage and timing) (Adams and 

Geyer, 1982; Mittman and Geyer, 1991; Pálenícek et al., 2010). In addition, rodents display 

a unique response to LSD and similar hallucinogens called head-twitching (HT), which 

is a brief, rapid shake of the head in rats and mice (Corne et al., 1963; Fantegrossi et 

al., 2008; González-Maeso et al., 2007) or a head-bobbing motion in rabbits (Dave et al., 

2004; Romano et al., 2010). HT is considered a behavioral signature of the LSD-produced 

mental state similar to human hallucination (Fantegrossi et al., 2008). HT in rodents and 

altered perceptions in humans caused by hallucinogens like LSD require activation of the 

serotonin 5-hydroxytryptamine-2-A receptor (5HT2AR), which can be blocked by specific 

5HT2AR antagonists such as M100907 (Fantegrossi et al., 2008; González-Maeso et al., 

2007; Schreiber et al., 1995). Previous studies show that the LSD-induced HT depends 

on HP (Dave et al., 2004; Romano et al., 2010). Furthermore, HP, as well as VC, is also 

important for visual hallucinations (Carhart-Harris et al., 2016; Vignal et al., 2007). In this 

study, we targeted neuronal firing activities, as well as local field potentials (LFPs), in the 

CA1 area of HP and VC in freely moving rats during their behavioral responses to LSD.

HP place cells fire spikes at one or a few places (place fields) of an environment 

(O’Keefe and Dostrovsky, 1971). A population of place cells with place fields covering 

an environment is believed to encode an internal cognitive map of the environment (O’Keefe 

and Nadel, 1978; Wilson and McNaughton, 1993). Place fields are formed by integrating 

self-motion cues with external sensory input, especially visual cues (Knierim and Hamilton, 

2011; Moser et al., 2017; Muller, 1996). Indeed, during active maze running when CA1 

LFPs display prominent theta (6–10 Hz) oscillations (Buzsáki, 2002), the firing activities of 

CA1 and VC neurons are correlated (Haggerty and Ji, 2015). During resting and immobile 

behavior, firing activity patterns in CA1 are reactivated, possibly for planning or memory 

recall, at times when CA1 LFPs display high-frequency (100–250 Hz) ripple oscillations 

(Carr et al., 2011; Foster and Wilson, 2006; Gupta et al., 2010; Karlsson and Frank, 2009; 

Pfeiffer and Foster, 2013; Wilson and McNaughton, 1994; Wu et al., 2017). In addition, 

CA1 and VC are coordinately reactivated during sleep for memory consolidation (Ji and 

Wilson, 2007). Therefore, CA1 and VC are engaged in functional interactions in various 

behavioral states.

Because LSD produces a mismatch between internal perception and external environment, 

we aimed to study whether the cognitive map in HP and the interaction between HP and 

VC are altered by LSD in vivo. To this end, we recorded firing activities of CA1 and VC 

neurons and LFPs in rats while they ran a familiar track before and after systemic injection 

of LSD. We analyzed whether and how LSD altered CA1 and VC neuronal activities during 

active running and during immobility on the track, focusing on place-coding properties of 

CA1 place cells and their interactions with VC neurons.

RESULTS

We trained rats to run laps back and forth (two trajectories) on a familiar C-shaped track 

(Figure 1A) prior to the recording experiment. On each recording day, rats performed the 

same running task for two sessions (PRE and POST), separated by a sleep session (Figure 
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1B). Fifteen minutes prior to PRE, rats received an injection of the saline vehicle. Fifteen 

minutes prior to POST, rats received another drug administration under various conditions 

(Figure 1B), namely, injection of LSD at either a high (LSDhigh) or low (LSDlow) dose 

or one of the control injections including the 5HT2AR antagonist M100907, followed by 

LSDlow, antagonist alone, or saline alone. We recorded 781 CA1 neurons and 153 VC cells 

from 17 rats on 20 recording days, with most of the rats (n = 14) only recorded 1 day per 

animal (Table S1; see STAR Methods). Six additional rats were used only for the behavioral 

experiment and/or LFP recordings without single-neuron activities, following the same track 

running and injection schedule.

Reduced running and increased HT

To examine behavioral responses to LSD in our track-running task, we linearized the two 

trajectories on the track (Figure 1C) and quantified running behavior by the number of laps 

per minute (lap rate), running speed, and percentage of immobility time in each session. For 

the quantification of immobility, because the duration of POST varied from animal to animal 

and was longer than that of PRE, which could naturally lead to more time in immobility, we 

limited the quantification to the first 30 min of POST, a duration comparable to PRE.

The median lap rate in POST under LSD (0.27 [0.16, 0.50], median [25%, 75%] values, 

same below unless otherwise specified) was dramatically reduced (88% lower) from PRE 

(2.3 [1.9, 2.9]; p = 2.4 × 10−4, Wilcoxon rank-sum test), whereas the reduction was modest 

(46% lower) under the control (PRE: 1.7 [0.98, 2.2], POST: 0.91 [0.72, 1.3], p = 1.2 × 

10−4) condition (Figure 1D). Although both groups demonstrated reduced laps in POST, 

the lap rate in POST under LSD was significantly lower than that under the control (p 

= 5.1 × 10−5, Mann-Whitney test) condition. The median running speed (after removing 

immobility periods) under LSD was also significantly reduced (54% lower) in POST from 

PRE (PRE: 48 [40, 53] cm/s, POST: 22 [20, 53] cm/s, p = 1.4 × 10−10, Wilcoxon rank-sum 

test) and modestly reduced (29% lower) under the control (PRE: 38 [30, 43] cm/s, POST: 

27 [19, 39] cm/s, p = 0.0067) condition (Figure 1E). Accordingly, the median percentage 

of immobile time under LSD in the first 30 min of POST was significantly increased (34% 

higher) from PRE (PRE: 40% [38%, 53%], POST: 78% [61%, 86%], p = 0.017, Wilcoxon 

rank-sum test) but not under the control (PRE: 42% [31%, 61%]; POST: 51% [42%, 65%], 

p = 0.27) condition (Figure 1F). The data suggest that the rats ran fewer laps and ran slower 

in POST than in PRE, but this change was greater under LSD than the control condition. 

Furthermore, the animals spent more time immobile in POST under LSD but not under the 

control condition, consistent with previous studies (Mittman and Geyer, 1991; Pálenícek et 

al., 2010).

We then analyzed the HT events, which were identified from those animals video recorded 

on the track. HT rarely occurred in PRE but frequently occurred in POST under LSD across 

all locations of running trajectories (Figure 1C). The HT rate (number of HTs per minute) in 

POST under LSD was significantly higher than that in PRE (PRE: 0.047 [0.0, 0.12], POST: 

0.58 [0.38, 1.0]; p = 4.9 × 10−4, Wilcoxon rank-sum test; Figure 1G). No increase in HT 

was observed in POST under the control condition (PRE: 0.0 [0.0, 0.031], POST: 0.0 [0.0, 

0.0], p = 0.25). The HT rate was even higher in POST under LSDlow (0.98 [0.88, 1.4], n 
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= 4 sessions) than that under LSDhigh (0.45 [0.31, 0.58], n = 8, p = 0.028, Mann-Whitney 

test). When LSD was injected at the same low dose after the injection of M100907, HT was 

abolished in POST (PRE: 0.0 [0.0, 0.038], POST: 0.0 [0.0, 0.0], n = 6, p = 0.50). This result 

shows that LSD worked as expected from previous reports, inducing 5HT2AR-dependent 

HTs (González-Maeso et al., 2007; Schreiber et al., 1995).

Reduced firing rates of CA1 and VC neurons

We asked how firing activities of CA1 and VC cells were altered by LSD. We first analyzed 

the CA1 and VC cells that were active (firing rate, >0.5 Hz) on at least one of the trajectories 

in PRE or POST (active cells). A total of 365 active CA1 and 130 active VC cells were 

identified (Table S1). We examined the overall firing rates of these neurons during active 

running. The firing rates of CA1 cells were lower under LSD in POST (Figure S1A). The 

median rate was reduced from PRE to POST under LSDhigh (PRE: 1.3 [0.67, 2.0] Hz, POST: 

0.45 [0.054, 0.89] Hz; p = 9.8 × 10−22, Wilcoxon rank-sum test) and under LSDlow (PRE: 

1.2 [0.64, 2.1] Hz, POST: 0.92 [0.58, 1.6] Hz; p = 0.015) but not under the control (PRE: 1.1 

[0.59, 2.5] Hz, POST: 1.3 [0.62, 2.2] Hz; p = 0.57) condition. However, the firing rates of 

VC neurons were not altered by LSD (Figure S1A). Their median rate was not significantly 

different between PRE and POST under LSDhigh (PRE: 3.3 [1.5, 8.7] Hz, POST: 3.1 [1.1, 

6.9] Hz; p = 0.22), LSDlow (PRE: 5.0 [2.5, 10] Hz, POST: 6.1 [0.28, 8.8] Hz; p = 0.63), or 

the control (PRE: 4.0 [1.7, 8.1] Hz, POST: 3.7 [1.2, 8.9] Hz; p = 0.063) condition.

A question is whether the firing rate changes in CA1 resulted primarily from the speed 

changes between PRE and POST. To address this question, we removed the effect of speed 

by using a regression analysis (see STAR Methods) and computed the average residual rate 

for PRE and POST (Figure S1B). We found that the average residual rates of CA1 neurons 

remained significantly lower in POST than in PRE under LSDhigh (PRE: 0.053 [0.0053, 

0.10] Hz, POST: −0.43 [−1.0, −0.047] Hz; p = 3.1 × 10−15, Wilcoxon rank-sum test) and 

LSDlow (PRE: 0.033 [−0.059, 0.11] Hz, POST: −0.20 [−0.58, 0.18] Hz; p = 0.024) but 

not under the control (PRE: −0.026 [−0.20, 0.21] Hz, POST: 0.11 [−0.43, 0.42] Hz; p = 

0.34) condition (Figure S1C). The average residual rates of VC cells were not significantly 

different between POST and PRE under LSDhigh (PRE: 0.023 [−0.10, 0.23] Hz, POST: 

−0.18 [−1.6, 0.43] Hz; p = 0.55), LSDlow (PRE: 0.017 [−0.31, 0.66] Hz, POST: −0.52 [−1.5, 

0.60] Hz; p = 0.81), or the control (PRE: −0.14 [−0.53, 0.079] Hz, POST: 0.26 [−0.49, 2.2] 

Hz; p = 0.25) condition (Figure S1C). Thus, the effects of LSD on CA1 cell firing rates 

during running remained even after removing the speed modulation.

We also examined firing rates of active CA1 and VC cells during immobility. The median 

rate of CA1 cells was significantly lower in POST than PRE under LSDhigh (PRE: 0.21 

[0.073, 0.53] Hz, POST: 0.073 [0.023, 0.24] Hz; p = 6.1 × 10−14, Wilcoxon rank-sum test) 

but not under LSDlow (PRE: 0.27 [0.11, 0.61] Hz, POST: 0.25 [0.076, 0.49] Hz; p = 0.45) or 

the control (PRE: 0.21 [0.063, 0.50] Hz, POST: 0.21 [0.071, 0.62] Hz; p = 0.73) condition 

(Figure S1D). Similarly, the median rate of VC cells in POST was significantly reduced 

from that of PRE under LSDhigh (PRE: 3.1 [1.0, 7.0] Hz, POST: 2.2 [0.70, 5.3] Hz; p = 

0.0097) but not under LSDlow (PRE: 5.2 [2.9, 8.8] Hz, POST: 4.7 [0.35, 8.9] Hz; p = 0.82) 
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or the control (PRE: 3.7 [1.1, 7.6] Hz, POST: 3.0 [0.79, 8.0] Hz; p = 0.36) condition (Figure 

S1D).

Taken together, LSD reduced the firing rates of active CA1 and VC cells in a behavior- and 

dose-dependent manner. LSDlow had a relatively moderate effect, reducing the rates of CA1 

active cells during running. LSDhigh had a broader effect, reducing rates during both running 

and immobility and also reducing rates of active VC cells during immobility. In addition, we 

found that the firing rates of putative CA1 interneurons (firing rate >5 Hz) and those CA1 

cells that were inactive (firing rate <0.5 Hz) during running (silent cells) were also reduced 

by LSD during running (Figure S1E) and during immobility (Figure S1F), suggesting that 

LSD appeared to affect all cell types in CA1.

Increased firing rates around HT

Because HT is considered a behavioral signature of 5HT2AR-mediated hallucinations 

(Fantegrossi et al., 2008), we examined the behavior and neural activities surrounding HTs. 

We took advantage of the electromyography (EMG) signals recorded from the neck muscle 

in a group of rats under LSDhigh and LSDlow (N = 8, Table S1). EMGs displayed a large 

deflection whenever an HT event occurred, which allowed us to precisely determine its 

start and end times (Figure 2A). Because HTs were rare in PRE and in control rats, we 

analyzed only the EMG-detected HT events (eHTs) in POST under LSD (LSDhigh and 

LSDlow combined). The median duration of eHTs was 236 [176, 306] ms (Figure 2B).

As expected, the velocity of head movement increased immediately at eHT start times and 

lasted slightly after eHT end times for a total duration of ~300 ms (Figure 2C). The animals’ 

movement along the one-dimensional linearized trajectory slowed down between 100 ms 

before and 100 ms after eHT start times but resumed afterward (Figure 2D). The analysis 

indicates that HTs occurred mostly when rats were running along a trajectory, slowed, 

head-shook quickly, and then continued running.

To understand whether neural activities were altered during eHTs, we computed the average 

firing rates of active CA1 and VC cells triggered by eHT start times. We found that both 

CA1 and VC cells significantly increased their rates around eHTs (CA1: p = 5.0 × 10−113; 

VC: p = 1.0 × 10−116, one-way ANOVA; Figures 2E and 2F). The increase appeared to be 

broad (>4 s), starting before the eHT start times and ending well beyond the eHT end times. 

In addition, it appeared that VC rates peaked 0.8 s before the eHT start times, but CA1 

rates peaked 0.4 s after the eHT start times, suggesting that the VC changes led the CA1’s 

changes. Therefore, a temporary, broad firing rate increase occurred before and during HTs, 

despite an overall rate reduction in POST under LSD.

Altered spatial properties of CA1 place cells

Given the firing rate changes during running, we asked how the place-coding properties of 

CA1 place cells were affected by LSD. We plotted a spike raster of example place cells and 

their firing rates at positions along a linearized trajectory (rate curve) in PRE and POST 

under LSDhigh and LSDlow (Figures 3A and 3B; Figure S2). The plots suggest that place 

field locations were relatively preserved between PRE and POST, but firing rates within 

place fields were reduced, especially under LSDhigh. In addition, place cells appeared more 
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likely to fire at the same locations along the two opposite trajectories (directions), i.e., the 

directionality of place fields was reduced under LSD (Figures 3A and 3B; Figure S2). We 

used several measures to quantify these observations, starting with overall properties of 

firing rate curves, followed by properties of individual place fields. These measures were 

computed from firing activities during active running, excluding those occurring during 

immobility and at both ends of the track.

First, the spatial tuning of a place cell on an active trajectory was quantified by spatial 

information (SI; Figure 3C). The median SI values were not significantly different between 

PRE and POST under LSDhigh (PRE: 2.0 [1.4, 2.4] bits/spike; POST: 1.9 [1.4, 2.6] bits/

spike, n = 121; p = 0.46, Mann-Whitney test), LSDlow (PRE: 1.9 [1.4, 2.4] bits/spike; POST: 

2.0 [1.5, 2.6] bits/spike; p = 0.33), or the control (PRE: 1.6 [1.2, 2.5] bits/spike; POST: 1.8 

[1.2, 2.3] bits/spike; p = 0.81) condition.

Second, we quantified the stability of place cell firing locations on active trajectories 

between PRE and POST (Figure 3D). The median stability values were significantly 

different among LSDhigh (0.59 [0.21, 0.85]), LSDlow (0.85 [0.61, 0.94]), and the control 

(0.71 [0.22, 0.91]) condition (p = 5.6 × 10−7, Kruskal-Wallis test). Post hoc comparisons 

indicated that this difference was due to the higher median stability of LSDlow, relative to 

that of LSDhigh (p = 5.3 × 10−8, Mann-Whitney test) and to that of the control (p = 0.0021), 

with no difference between LSDhigh and the control (p = 0.10). The reason for the seemingly 

higher stability under LSDlow is unclear; it could be due to other factors such as the amount 

of experience on the familiar track (although rats were all trained on the track for >4 days). 

Nevertheless, our data show that LSD did not reduce the stability of place field locations.

Third, to quantify place cell firing directionality, we computed a spatial correlation between 

a cell’s rate curves on the two opposite trajectories in a session (Figure 3E). A higher 

correlation means lower directionality. We found that the median correlation value was 

significantly increased from PRE to POST under both LSDhigh (PRE: 0.0 [−0.12, 0.34]; 

POST: 0.12 [−0.034, 0.50]; p = 0.017, Mann-Whitney test) and LSDlow (PRE: 0.096 

[−0.097, 0.59]; POST: 0.33 [0.053, 0.67]; p = 0.049) but not under the control condition 

(PRE: 0.15 [−0.12, 0.43]; POST: 0.11 [−0.098, 0.45]; p = 0.95). Thus, LSD reduced the 

directionality of CA1 place cells.

Fourth, we detected individual place fields on each active trajectory and quantified their 

changes from PRE to POST by the number of place fields per trajectory, field length, and 

within-field firing rate. The number of fields was similar between PRE and POST under 

LSDhigh [PRE: 1.1 ± 0.04 (mean ± SE), n = 244 cell × trajectories; POST: 1.1 ± 0.6, n = 

133; p = 0.80, Student’s t test), LSDlow (PRE: 1.1 ± 0.06, n = 101; POST: 0.98 ± 0.08, n = 

98; p = 0.30), and the control (PRE: 1.2 ± 0.08, n = 85; POST: 1.2 ± 0.09, n = 87; p = 0.74) 

condition. The median field length (Figure 3F) was slightly, but significantly, decreased 

from PRE to POST under LSDhigh (PRE: 52 [40, 69] cm; POST: 45 [36, 60] cm; p = 7.2 

× 10−4, Mann-Whitney test) and LSDlow (PRE: 54 [42, 71] cm; POST: 48 [38, 60] cm; p 

= 0.023) but not under the control (PRE: 50 [39, 71] cm; POST: 50 [39, 64] cm; p = 0.55) 

condition. The median within-field firing rate (Figure 3G) was significantly lower in POST 

than in PRE under both LSDhigh (PRE: 5.3 [3.0, 8.9] Hz; POST: 3.8 [2.5, 6.5] Hz; p = 4.7 
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× 10−6, Mann-Whitney test) and LSDlow (PRE: 5.6 [3.5, 8.9] Hz; POST: 4.9 [3.0, 7.0] Hz; 

p = 0.029) but not under the control (PRE: 5.2 [3.1, 8.9] Hz; POST: 5.2 [3.3, 8.5] Hz; p = 

0.91) condition. To address the issue that the lower within-field rate might be due to slower 

speed under LSD, we removed the effect of speed on within-field rates in PRE and POST. 

We found that the median residual within-field rate in POST remained significantly lower 

under LSDhigh (PRE: 0.19 [0.058, 0.42] Hz, POST: −2.1 [−4.0, −0.76] Hz, n = 161 fields; 

p = 3.2 × 10−21, Wilcoxon rank-sum test) and LSDlow (PRE: 0.14 [−0.099 0.34] Hz, POST: 

−0.87 [−2.5, 0.26] Hz, n = 69; p = 6.4 × 10−4) but remained similar under the control (PRE: 

0.090 [−0.92, 0.77] Hz, POST: −0.28 [−1.9, 2.2] Hz, n = 61; p = 0.80) condition (Figure 

S1C).

Taken together, these results indicate that place cell firing activities were largely stable under 

LSD, with similar SI and no reduction in stability. However, the spatial tuning became 

significantly less precise, with reduced directionality and a lower within-field firing rate.

Previous studies show that place cells at different locations of CA1, either in superficial 

versus deep layers of the pyramidal layer (Mizuseki et al., 2011) or in proximal versus distal 

ends of CA1 (Oliva et al., 2016; Soltesz and Losonczy, 2018), differ in their firing rates 

or bursting properties. We asked whether LSD differentially affected place cells with these 

different characteristics. First, we separated the place cells recorded under LSD into three 

groups, as follows: those with stable fields between PRE and POST, those with unstable 

fields, and those active in PRE but silent in POST. The firing rates of the POST-silent group 

were lower in PRE to begin with than those of the other two groups, whereas the burst index 

was not significantly different among the groups (Figure S3A). This result is consistent 

with a broad rate reduction in all place cells. Second, we divided those cells that fired 

on both running trajectories in PRE and POST under LSD into two groups, namely, those 

with reduced directionality and those with directionality unchanged or increased. We found 

no difference in either firing rate or burst index between the two groups (Figure S3B). In 

addition, we examined the identified recording sites in CA1 for rats under LSDhigh, LSDlow, 

and the control condition and found they were comparable (Figure S3C). Therefore, our 

results suggest that LSD affected place cells broadly in CA1, consistent with the rate change 

of CA1 silent cells and interneurons during running (Figure S1E).

Because some drugs such as cannabinoids can affect LFPs and fine spike timing of place 

cells (Robbe and Buzsáki, 2009; Robbe et al., 2006), we examined how LSD affected theta 

oscillations in the CA1 LFPs, as well as theta phase tuning and phase precession of place 

cells. LSD appeared to lower theta peak frequencies, but not theta power, when compared 

at similar speed ranges between PRE and POST (Figures S4A and S4B). But, the coherence 

in the theta band between CA1 and VC LFPs was unaltered (Figure S4C). The mean theta 

phase and phase variance (a measure of the degree of theta phase tuning) of active cells 

were not significantly affected by LSD (Figures S4D and S4E). Theta phase precession 

within CA1 place fields was apparently intact under LSD (Figures S4F-S4H). In addition, 

theta sequences, measured by the pairwise correlation between place field distances and 

firing timing intervals within theta cycles (Dragoi and Buzsáki, 2006; Robbe and Buzsáki, 

2009), appeared normal under LSD (Figure S4I). Therefore, theta oscillations were modestly 

affected, but theta phase precession and theta sequences of place cells remained under LSD.
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Changes in spatial representation of place cell ensembles

After analyzing individual place cells, we examined how spatial representations of CA1 

place cell populations were altered by LSD. We already showed that firing rates of CA1 

cells reduced with LSD, necessarily leading to fewer active cells during trajectory running 

in POST. Here, we focused on those locations with a sufficient number of active place cells 

(≥5) and asked whether the remaining active cells in POST encoded the locations similarly 

as in PRE at the population level. We constructed population vectors (PVs) from the active 

cells’ rate curves and computed a correlation between PVs at the same location of the 

same trajectory between PRE and POST (cross-session PVcorr) or between PVs at the same 

location in the same session but between two opposite trajectories (cross-trajectory PVcorr).

The cross-session PVcorr quantifies how stable PVs were between PRE and POST. Plots of 

example trajectories suggest similar PVcorr at the same locations under all conditions (Figure 

4A). We computed an average PVcorr across all locations of a trajectory and compared 

the average PVcorr for all trajectories between different conditions. We found that the cross-

session PVcorr did not significantly differ between LSD (LSDhigh and LSDlow combined) 

and control conditions (LSD: 0.52 ± 0.04; control: 0.55 ± 0.07; p = 0.72, Student’s t-test; 

Figure 4C). By breaking down the LSD group to LSDhigh and LSDlow, we showed that the 

cross-session PVcorr under LSDlow was modestly higher than that under LSDhigh, but it did 

not reach significance (LSDhigh: 0.46 ± 0.06, n = 16 trajectories; LSDlow: 0.64 ± 0.08, n = 

6; p = 0.099). This result suggests that population-level spatial representations were largely 

stable under LSD for the active cells in POST, consistent with the result of stable individual 

place cells (Figure 3D).

The cross-trajectory PVcorr quantifies how similar PVs on one trajectory were to its opposite 

trajectory in the same session. Higher cross-trajectory PVcorr means lower directionality at 

the population level. Plots of example trajectories suggest higher cross-trajectory PVcorr at 

the same locations in POST than that in PRE under LSDhigh and LSDlow but not the control 

condition (Figure 4B). There was a significant increase in the average cross-trajectory PVcorr 

from PRE to POST under LSD (PRE: 0.084 ± 0.029; POST: 0.30 ± 0.05; p = 7.6 × 10−4; 

Student’s t-test) but not from that of the control (PRE: 0.080 ± 0.05; POST: 0.14 ± 0.03; p 

= 0.35) condition (Figure 4D). The increase under LSD was consistent in both the LSDhigh 

(PRE: 0.10 ± 0.05, n = 9 sessions; POST: 0.44 ± 0.07, n = 8; p = 0.0011) and LSDlow (PRE: 

0.043 ± 0.05, n = 3; POST: 0.21 ± 0.03, n = 3; p = 0.049) groups. Therefore, consistent with 

the reduced directionality in individual place cells, LSD reduced the directional specificity 

of spatial representations at the population level as well.

Reduced CA1-VC interactions during running

Our results so far indicate that LSD degraded spatial representations in CA1, with reduced 

firing rates and reduced directionality. To understand whether a miscommunication between 

HP and VC might underlie the degradation, we analyzed interactions between CA1 and 

VC cells under LSD. For each pair of CA1-VC cells active during running (active pair), 

we computed a normalized cross-correlogram relative to those computed from the shuffled 

spikes of the two cells. We then defined coactivity for the pair as the average correlation 

value within the time bins around the time lag 0 [−0.1, 0.1] s. Higher coactivity means 
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a higher degree of firing together between the two cells during running. We examined 

whether coactivity values of CA1-VC active pairs were altered between PRE and POST 

under different conditions.

Examples of normalized cross-correlograms suggest that the cell pairs with high coactivity 

in PRE maintained high coactivity in POST under all conditions, but with relatively lower 

peaks especially under LSDhigh (Figure 5A). Indeed, the distribution of coactivity was 

narrowed from PRE to POST under LSDhigh and LSDlow, but it was unchanged under the 

control condition (Figure S5A). The narrower distribution could be due to overall changes in 

firing rates from PRE to POST under LSD.

To examine more specific alterations in coactivity beyond the effects of rate changes, 

we computed a correlation between coactivity values in PRE and POST for all active 

pairs. There was a significant correlation in coactivity between PRE and POST under all 

conditions (LSDhigh: p = 6.3 × 10−33, Pearson’s r; LSDlow: p = 4.7 × 10−18; control: p 

= 3.1 × 10−33; Figure 5B), suggesting that the VC-CA1 coactivity patterns overlapped 

significantly between PRE and POST. However, the correlation was significantly smaller 

under LSDhigh (R = 0.29, p = 2.1 × 10−11, Fisher’s exact test) and under LSDlow (R = 

0.42, p = 1.6 × 10−4) than that under the control (R = 0.62) condition. This result was true 

even when the CA1-VC active pairs were downsampled with a matched number of pairs 

and similar firing rates across the three conditions (Figure S5B). The result indicates that 

the PRE/POST coactivity patterns were less overlapped under LSD than under the control. 

Therefore, more changes in CA1-VC interactions had occurred from PRE to POST under 

LSD.

To further understand how the CA1-VC interaction changed, we examined the multiunit 

activities (MUAs) in CA1 and VC, which included all sorted and unsorted spikes recorded in 

an area. We computed the cross-correlation between normalized CA1 and VC MUAs during 

running. The average cross-correlogram in PRE, over all running periods and all rats under 

the same condition, had a clearly defined peak under LSDhigh, LSDlow, and control (Figure 

5C). However, the peak was reduced in POST under LSDhigh and LSDlow but not under 

the control condition (Figure 5C). The mean correlation value at the peak was significantly 

lower in POST under LSDhigh (PRE: 0.14 ± 0.01; POST: 0.11 ± 0.01; p = 0.015; Student’s 

t-test) and LSDlow (PRE: 0.11 ± 0.01; POST: 0.073 ± 0.01; p = 0.035) but not under the 

control (PRE: 0.20 ± 0.01; POST: 0.18 ± 0.01; p = 0.11) condition. The result suggests that 

LSD reduced the strength of CA1-VC interactions.

Altered oscillatory activities during immobility

After analyzing neural activities during running, we switched to the immobile behavior on 

the track, given the significantly enhanced immobility with LSD (Figure 1F). As expected, 

the CA1 LFPs displayed ripple events in PRE and POST under all conditions, which were 

accompanied by bursts of spikes in MUAs of CA1 cells (Figure 6A). The occurrence rate of 

ripples was reduced from PRE to POST under LSD with small changes in ripple frequency, 

duration, and amplitude (Figure S6A). Unexpectedly, the VC LFPs frequently displayed a 

high-amplitude spike-and-wave event (Figure 6A; Figure S6B), called high-voltage spikes 

(HVSs), which naturally occurs during the wake-fulness-to-sleep transition (WST) in 
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rodents (Haggerty and Ji, 2014; Kandel and Buzsáki, 1997). Here, HVSs were observed 

during immobility on the track under LSD and accompanied by highly synchronized bursts 

in MUAs of VC cells (Figure 6A).

We analyzed properties of individual cortical HVS events in PRE and POST, as well as 

those in WST (in a sleep box prior to the LSD injection). For this analysis, we used cortical 

LFPs recorded from VC in 12 rats and those recorded from the anterior cingulate cortex 

(ACC) in 5 rats. Previous studies show that HVS events are highly synchronized across 

many cortical areas, including sensory and frontal cortices (Sakata et al., 2005; Shaw, 2004). 

Because our purpose was to examine the occurrence and properties of HVSs under LSD 

compared to those naturally occurring during WST, we combined the animals with cortical 

LFPs in VC and ACC and performed within-animal comparisons in HVS properties across 

sessions. To quantify HVS occurrence, we computed the percent of time in HVSs among 

total immobility time in PRE and POST. The percentage of time in HVSs was dramatically 

increased in the first 30 min of POST from that in PRE under LSD (PRE: 0.0% [0.0%, 

0.82%]; POST: 11% [0.21%, 19%]; p = 0.0039, Wilcoxon rank-sum test) but not under the 

control (PRE: 0.0% [0.0%, 1.2%]; POST: 0.0% [0.0%, 0.0%]; p = 0.25) condition (Figure 

6B). The first HVS event occurred as early as 48 s on the track with a median onset time 

of 5.9 [3.3, 13.0] min in the 9 rats (out of 11) under LSD that displayed HVSs within the 

first 30 min of POST (Figure 6C). The HVS occurrence plateaued around 12 min from the 

POST start (Figure 6D). Furthermore, we did not observe any transition to slow-wave sleep 

(SWS) on the track. The rapid HVS onset and lack of SWS indicate that the occurrence of 

HVSs was not simply due to the rats falling asleep on the track. We compared properties 

of HVS in POST under LSD to those occurring in WST without LSD. Judging from their 

waveforms (Figure S6B), the HVSs in POST appeared qualitatively similar to those in 

WST. Quantifying individual HVS events under LSD in POST did not reveal a significant 

difference in their median amplitude, duration, or frequency from those in WST (Figure 

S6C).

Given the prominence of ripples in CA1 and HVSs in the cortex, we asked how the two 

types of events interacted. We first examined the interaction at the broad LFP and MUA 

levels. Consistent with our previous study showing weak CA1-VC interactions during WST 

and unlike SWS (Haggerty and Ji, 2014; Sirota et al., 2003), the cross-correlogram between 

CA1 LFPs in the ripple band and VC LFPs in the HVS band did not show an obvious peak 

in WST, and this result was not altered in POST under LSD (Figure S6D). Similarly, the 

average VC MUAs triggered by CA1 ripple peak times did not show a clear response in 

WST or in POST under LSD (Figure S6E). We then counted the number of ripples within 

each HVS event and computed the ripple occurrence rate per minute of HVS. We found 

a significant reduction in ripple rate within HVSs in POST under LSD from that in WST 

(WST: 13 [5.5, 20] ripples per min; POST: 2.5 [0.4, 3.7] ripples per min; p = 6.0 × 10−4; 

Mann-Whitney test; Figure 6E). Therefore, LSD during immobility promoted a cortical state 

similar to WST but with an even weaker interaction with CA1 ripples, consistent with the 

reduced CA1-VC interaction under LSD during running.
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Maintained pairwise awake reactivation during immobility

It is known that place cell activities during running are replayed within ripples during 

normal immobility on the track (awake replay), which can be quantified by a pattern analysis 

like Bayesian decoding that requires a large number of place cells (Davidson et al., 2009; 

Karlsson and Frank, 2009; Zhang et al., 1998). In our experiments, the number of cells 

simultaneously active on a trajectory was limited, especially under LSDhigh when CA1 rates 

were reduced. Therefore, we used a pairwise approach as in previous studies (Hoffman 

and McNaughton, 2002; Wilson and McNaughton, 1994). For all pairs of CA1 cells active 

during running and with non-zero rates within ripples, we computed a correlation between 

their coactivities during running and those within ripples in the same session. A significant 

correlation means that cell pairs co-activated during running also co-activated within ripples, 

which is referred to as awake reactivation.

We found that awake reactivation of CA1 pairs occurred in PRE and POST under all 

conditions (Figure 7A). There was a significant correlation between running and ripple 

coactivities in PRE and POST under LSDhigh (PRE: R = 0.23, p = 2.2 × 10−30, Pearson’ r; 

POST: R = 0.20, p = 7.5 × 10−10), LSDlow (PRE: R = 0.32, p = 2.7 × 10−17; POST: R = 

0.29, p = 4.0 × 10−16), and the control (PRE: R = 0.38, p = 3.0 × 10−17; POST: R = 0.44, p = 

2.8 × 10−25) conditions. The correlation values did not significantly differ between PRE and 

POST under LSDhigh (p = 0.24, Fisher’s exact test), LSDlow (p = 0.29), or the control (p = 

0.12) condition. The same result was observed even when the CA1 pairs were downsampled 

to match the number of pairs and firing rates between PRE and POST (Figure S7A). Thus, 

awake reactivation during ripples in CA1 persisted under LSD.

We also examined whether such awake reactivation occurred across CA1-VC cell pairs. 

For this analysis, to account for the possibility that VC cells might fire spikes preceding 

or lagging CA1 ripples, we computed the cross-correlogram between a CA1-VC cell pair 

within a time window of [−1, 1] s from each ripple trough time and took the average value 

with the time lag window [−100, 100] ms as their coactivity. Our analysis found no awake 

reactivation across the two areas (Figure 7B). There was no significant correlation between 

running and ripple coactivities for CA1-VC pairs in PRE or POST under LSDhigh (PRE: R 
= 0.022, p = 0.35, Pearson’ r; POST: R = 0.044, p = 0.15), LSDlow (PRE: R = 0.052, p 

= 0.30; POST: R = 0.069, p = 0.21), or the control (PRE: R = −0.0012, p = 0.98; POST: 

R = −0.021, p = 0.71) condition. The same was observed when the CA1-VC cell pairs 

were downsampled (Figure S7B). Furthermore, such a lack of awake reactivation was also 

observed within HVS events in POST under LSDhigh (Figure S7C). Thus, unlike cell pairs 

within CA1, the cells across CA1 and VC did not coordinately reactivate in ripple or HVS 

events, suggesting that the awake reactivation within CA1 under LSD was isolated without 

proper interactions with VC.

DISCUSSION

To understand how LSD dissociates a subject’s internal perception from the external 

environment, we have investigated LSD-induced alterations in HP place cell activities 

and their interactions with VC neurons in freely behaving rats. As rats actively ran on a 

track, LSDhigh and LSDlow lowered the firing rates of CA1 place cells and reduced their 
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directionality at both the individual cell and ensemble levels. Despite the overall reduction 

of firing rates in CA1, both CA1 and VC cells temporarily increased their rates before and 

during HT events. Importantly, the interaction between CA1 and VC neuronal activities 

was reduced by LSD during running at both doses. During immobility on the track, LSD 

promoted a cortical state similar to that of WST, which was observed by the occurrence 

of cortical HVSs. However, different from WST, LSD in immobility further weakened 

interactions between ripples and HVSs but left the awake reactivation within CA1 preserved. 

Therefore, LSD reduces normal communication between HP and the sensory cortex, which 

consequently degrades the HP cognitive map during active running and promotes a state 

with isolated HP reactivation during immobility. These findings may contribute to the 

dissociated perceptions produced by LSD.

Our data support that LSD alters HP spatial representation. The firing rates of CA1 place 

cells, both mean firing rates and within-field rates, were significantly reduced under LSDhigh 

and LSDlow. The reduction persisted even after accounting for rate changes due to speed 

modulation. For those place cells that remained active under LSD, their directionality 

was reduced in both high and low doses, i.e., they tended to fire at the same locations 

despite the different trajectory directions. As such, place cells became less differentiated 

between the two directions. Despite these changes, the rate curves of place cells were stable, 

as measured by spatial correlation, indicating that their firing locations were relatively 

unaltered. The reduced directionality and stability of place cell activities were also observed 

at the ensemble level, measured by PV correlations. Therefore, our data suggest that LSD 

induces a less precise, degraded spatial representation of the external environment.

Our finding suggests that this degraded spatial representation may be due to an abnormal 

interaction between HP and VC. It is well known that visual information is a crucial 

modality driving the formation of place fields (Muller, 1996; Muller and Kubie, 1987). 

During track running, it has been shown that firing activities of CA1 place cells and VC 

neurons are functionally correlated (Haggerty and Ji, 2015). Our data here show that the 

coactivity between CA1-VC cell pairs changed more in POST than that in PRE under 

LSDhigh and LSDlow, indicating a miscommunication between CA1 and VC cells. More 

importantly, the cross-correlations between CA1 and VC MUAs were weaker under LSDhigh 

and LSDlow. Therefore, the CA1-VC interaction involved in place cell activities during 

running is likely reduced by LSD.

The reduced functional interaction between CA1 and VC cells appears to occur during 

immobility as well. When animals stop on a track, ripple events take place with highly 

synchronized population bursts of CA1 place cells. We found that ripple rates and other 

parameters were modestly altered by LSD. In the cortex, we found that LSD dramatically 

enhanced the occurrence of HVSs, a type of event that normally occurs in WST as the 

brain shifts to a more internally generated state (Haggerty and Ji, 2014; Kandel and 

Buzsáki, 1997). During HVSs, cortical neurons are highly synchronized, whereas CA1 

ripples occasionally occur. Our previous study suggested that HVSs and ripples during 

WST produce a weak, transitional interaction between the cortex and HP that eventually 

leads to a strong correlation between the two areas for memory consolidation in SWS 

(Haggerty and Ji, 2014). Here, we found that there were fewer ripples during HVS under 
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LSD, suggesting a reduction in cortical-hippocampal consonance. In addition, CA1 cells had 

reduced firing rates during immobility under LSDhigh and LSDlow, and VC neurons also 

had lower rates with the high dose. Thus, like during running, the CA1-VC communication 

during immobility is also reduced by LSD. In addition, our data confirm awake reactivation 

of CA1 activity patterns within ripples during immobility but provide no support for awake 

reactivation for the joint activity patterns between CA1 and VC. Importantly, LSDhigh and 

LSDlow did not alter the lack of CA1-VC reactivation in our experiment. Because LSD 

enhanced immobility on the track, this finding further supports the idea that LSD reduces 

CA1-VC communication, namely, this time through the promotion of a behavioral state 

lacking coordinated reactivation, which possibly leads to isolated CA1 awake reactivation in 

the absence of engagement from the sensory cortices.

Our study helps to understand how neural activity changes during the HT behavior. HT is 

believed to be a behavioral signature of a brain state similar to hallucination in humans, 

because the 5HT2AR agonists that are hallucinogenic in humans also evoke HT in rodents, 

whereas those 5HT2AR agonists that are non-hallucinogenic in humans do not evoke HT 

(Fantegrossi et al., 2008; González-Maeso et al., 2007). Our analysis indicates a temporary 

increase in the firing rates of CA1 and VC cells when HT occurred, despite the overall 

reduction in the firing rates in POST under LSD. This increase was broad, starting seconds 

earlier than and lasting beyond HT events. We did not find specific, short-term changes 

immediately before HT in our data. However, it is possible that there exist signals in other 

brain areas that are more tightly correlated with HT. Nevertheless, based on our data, we 

speculate that the increase in firing rates is a temporary compensation for the overall rate 

reduction under LSD and that HT is a coping behavior in response to internal percepts 

associated with the temporarily increased neural activities in HP and VC.

One of our findings is that LSD greatly promotes the occurrence of HVSs. Because HVSs 

naturally occur during WST (Haggerty and Ji, 2014; Kandel and Buzsáki, 1997), we propose 

that LSD produces a WST-like state on the track as animals become less engaged with 

the task and descend into immobility. Our analysis shows similar quantitative properties 

between LSD-induced and WST HVSs, suggesting that the LSD-induced state is similar to 

WST. However, unlike the HVS events in WST that are normally followed by SWS, we did 

not detect any SWS on the track even when strong HVSs occurred repeatedly under LSD. 

The observation suggests the cortex perpetuates a highly synchronized state without going 

to sleep. It is unknown how this cortical state is related to LSD-induced hallucinations. 

However, hypnagogic imagery does occur often in WST in humans (Stickgold et al., 2000), 

and a recent study shows that slow oscillatory events in the retrosplenial cortex are involved 

in the effect of dissociative drugs such as ketamine (Vesuna et al., 2020). In addition, the 

forward propagation of alpha waves, a potential signature of HVSs in humans, is enhanced 

by the hallucinogen N- Dimethyltryptamine or DMT (Alamia et al., 2020). It is possible that 

this LSD-induced state similar to WST may contribute to hallucinations under LSD.

A previous human fMRI study shows that activities in the parahippocampal gyrus are 

reduced and the functional connectivity in the hippocampal-prefrontal network is disrupted 

by LSD in an active task (Schmidt et al., 2018). Another study found that the functional 

connectivity between HP and VC is lower in patients with Parkinson’s disease who 
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display visual hallucinations (Yao et al., 2016). These findings are consistent with our 

results that CA1 neurons had lower firing rates and lower functional interaction with VC 

during running. When humans rested awake with eyes closed, fMRI studies found that 

VC is hyperactive under LSD, with enhanced functional connectivity with some brain 

areas (Carhart-Harris et al., 2016; Müller et al., 2018), which seems inconsistent with our 

result that VC neurons reduced their rates during immobility. However, our finding may 

not necessarily contradict human studies. It is unclear whether the resting state in humans 

with eyes closed is the same as immobility in rodents. Second, it is also unclear whether 

the increase in fMRI signals directly translates to an increase in firing rates of individual 

neurons. It is possible that large LFP signals such as HVS events under LSD underlie the 

increased fMRI signals (Logothetis et al., 2001; Magri et al., 2012). Finally, the dosage 

of LSD used in rodent studies including ours (60 μg/kg or 240 μg/kg) is much higher 

than that in human studies (single dose of ~100 μg), which could lead to differences in 

neurophysiological responses.

Overall, our work reveals neurophysiological alterations that can advance our understanding 

of how LSD produces its powerful reality-altering effects. The reduced HP-VC interaction 

leads to degraded spatial representations during active tasks, resulting in an altered cognitive 

map different from the external environment. The temporary, compensatory increase in 

firing rates of VC and HP cells around HTs may further alter the sensory and memory 

processing under LSD. Furthermore, LSD prolongs the immobility behavior and promotes 

a WST-like state with enhanced cortical HVSs, during which HP reactivates spatial 

representations in isolation without the participation of the sensory cortex. Our findings 

contribute to the neural circuit mechanism of LSD-induced hallucinations by identifying 

a specific functional dissociation between sensory and memory circuits through VC and 

HP miscommunication, which may produce abnormal spatial representations of the external 

world and/or abnormal sensory percepts misaligned with external reality.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Daoyun Ji (dji@bcm.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The analyses in this paper were performed by MATLAB scripts with existing 

MATLAB functions. The MATLAB codes for the main analysis tool are publicly 

available in GitHub (https://gitbub.com/DaoyunJiLab/DataManager).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

• Data reported in this paper will be shared by the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-three male Long-Evans rats between 4 and 9 months of age were used in this 

study. Each rat was individually housed, food-restricted with weight maintained at or above 

85% of ad libitum level, and trained to run on a track for food rewards (pre-training). 

Electrophysiological recordings of neuronal activities and/or behavioral experiments were 

conducted in the 23 rats under various drug conditions (see below). All animal and 

research procedures adhered to the “Guide for the Care and Use of Laboratory Animals” 

of the National Institute of Health and were approved by the Baylor College of Medicine 

Institutional Animal Care and Use Committee.

METHOD DETAILS

Surgery—For the electrophysiological recording experiment, each rat was surgically 

implanted with a custom-built microelectrode array (tetrode drive) under anesthesia with 

0.5 – 3% of the inhalation isoflurane. The tetrode drive included 24 - 32 movable tetrodes 

that intended to target one or two recording areas. The CA1 of dorsal hippocampus at 

coordinates anterior-posterior (AP) −3.8 mm and medio-lateral (ML) 2.4 mm to the Bregma 

was a target in all 23 rats (not everyone yielded useful electrophysiological data; see Table 

S1). The other targeted area was either the visual cortex (VC, 15 rats) at AP 6.8 mm and ML 

4.5 mm or the anterior cingulate cortex (ACC, 5 rats) at AP 1 mm anterior and ML 1 mm. 

For the ACC recording site, only the LFPs were used for analyzing cortical high-voltage 

spikes (HVS); single-unit ACC data were not used in this study. A bipolar electrode made 

from a steel wire (0.11 mm diameter; A-M Systems) was inserted into the neck muscle 

to record electromyography (EMG). The tetrode drive was anchored to the skull using 

stainless steel screws and dental cement. The analgesic buprenorphine (slow-release) or 

ketophen was administered subcutaneously prior to surgery to assist with recovery. Animals 

did not resume training or food restriction until fully recovered from the surgery and tetrodes 

reached the targets, about 2 - 4 weeks post-surgery.

Behavioral procedure and drug conditions—Animals were pre-trained to run back 

and forth (two trajectories) for food reward (condensed milk) along a C-shaped track, 

which was 3.5 m long. The pre-training lasted for at least 4 days until they reliably and 

consistently ran at least 20 laps on the track. After the pre-training, a behavioral procedure 

was conducted for one or more days per animal. Each daily procedure began with a rat 

resting in a sleep box followed by a subcutaneous injection of 0.5 mL saline. Fifteen minutes 

following the injection, the rat ran for food rewards back and forth along two trajectories on 

the now familiar (after pre-training) C-shaped track for 20 - 30 minutes (PRE). The rat then 

slept in the sleep box for ~3 hours between sessions, followed by another administration of 

0.5 mL under various drug conditions. Fifteen minutes after the second drug administration, 

the animal performed the same task for 20 – 70 minutes on the track (POST). The variation 

in the duration of POST was needed to collect sufficient number of running laps (≥6) in 

a session, especially for the animals injected with LSDhigh who’s running activities were 

greatly reduced. However, longer sessions might lead to increased immobility behavior or 

immobility-related neural activities that were drug-irrelevant. To eliminate this possibility, 

we restricted our analysis on immobility-related neural activities within the first 30 minutes 

in POST.
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The drug condition for the second administration was the injection of a high dose of LSD 

at 0.24 mg/kg (LSDhigh), a low dose of LSD at 0.06 mg/kg (LSDlow), or one of the control 

injections including the injection of saline alone, the injection of a 5HT2AR antagonist 

M100907 alone at 0.2 mg/kg, or the injection of M100907 at 0.2 mg/kg together with the 

low dose of LSD at 0.06 mg/kg. In the M100907 and LSD together condition, M100907 

was administered 15 minutes prior to the injection of LSD. M100907 at this concentration 

is known to block 5HT2ARs at even high concentrations of LSD (Nichols, 2004). If an 

animal was used in this procedure for more than one day, the condition on the first day 

was always saline or M100907 (Table S1). Electrophysiological recordings were performed 

during this behavioral procedure in 23 rats across 28 days of experiments. The other 2 days’ 

experiments did not have neural recordings, but their behavioral data were included in the 

behavioral analysis.

Electrophysiological recording—Recordings were performed using tetrodes made by 

twisting 4 fine nichrome wires (diameter 13 μm; Sandvik Palm Coast, Palm Coast, FL), 

as previously described (Haggerty and Ji, 2014, 2015). During the two to four weeks 

post-surgery, tetrodes were descended slowly to the target regions: CA1, VC, or ACC. 

Neuronal spikes and LFPs, as well as the EMGs, were acquired using a Digital Lynx system 

(Neuralynx, MT). For the ACC recordings, only the LFPs were used in this study for 

analyzing cortical HVS events. In 19 animals, LFP signals were sampled at 2 kHz with a 

broad-band filter (0.1 – 1 kHz); in other 4 animals LFPs were sampled at 4 - 8 kHz. Spikes 

were identified using a preset threshold of 50 - 70 μV from signals filtered within 600 Hz - 9 

kHz and sampled at 32 kHz. Animal positions were tracked using two diodes mounted to the 

tetrode drive and recorded by an overhead camera. Position data were sampled at 33 Hz with 

a resolution of ~0.25 cm per pixel.

Histology—After the recording, animals were euthanized by pentobarbital overdose (200 

mg/kg). For recording site identification, electrical lesions were made at each recording site 

by passing a current of 30 μA for 15 s. Brains were fixed with 10% formalin and sectioned 

at 90 - 300 μm thickness. Sections were stained with 0.2% cresyl violet or 1% sodium 

sulfide nonahydrate (for acetylcholineesterase activity). Recording locations in CA1 and 

ACC were verified from the lesion marks in the cresyl violet stained sections. Recording 

sites in VC were determined from the sodium sulfide nonahydrate staining as shown in 

previous studies (Haggerty and Ji, 2014, 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

For the majority of analyses on neuronal activities, we considered LSDhigh and LSDlow 

conditions separately because the number of neurons recorded under each condition 

(LSDhigh: N = 435 CA1 cells, N = 99 VC cells; LSDlow: N = 177 CA1 cells, N = 22 

VC cells; Table S1) was sufficient for the study of dose-dependent responses to LSD (see 

details below). However, for behavioral analyses and certain neuronal analyses that required 

individual rats as samples, we combined LSDhigh and LSDlow together, due to the limited 

number of animals in each condition (LSDhigh: N = 10 rats, LSDlow: N = 4 rats). Although 

the combination did not permit the study of dose-dependent responses in these measures, it 

still allowed us to examine the effects of LSD in comparison to the control. For various drug 
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conditions in the control group, behavioral and neuronal activity results were similar and 

thus combined unless specified otherwise.

Statistical details of the experiments including N, statistical tests, and their descriptive 

statistics are found in the Results section of the paper. Significance is defined in the figure 

legends as *p < 0.05; **p < 0.01; ***p < 0.001.

Behavioral quantifications—The behavior of an animal during tracking running was 

quantified for each session by the number of running laps, running speed, the amount of 

time the animal was immobile, and the number of head twitches (HTs).

A running lap was the time period when the animal ran from one end of the track to the 

other. Instantaneous running speed was calculated for every time point using the position 

data and smoothed by a Gaussian window with a sigma of 0.5 s. Slow-speed or stopping 

periods were removed from speed calculations by removing events when the animal’s speed 

was below 10 cm/s for at least 0.5 s. Immobility periods throughout the entire session 

including the ends of the trajectory were used for ripple analysis and percent of immobility 

in a session. These periods were identified by setting a speed threshold below the mean 

speed at the reward sites, with the same threshold applied to PRE and POST for each animal. 

If two neighboring immobility periods (either within or outside the running laps) had a gap 

smaller than 0.5 s, they were combined into a single immobility period.

A head twitch (HT) was visually identified from the recorded videos of the running sessions. 

Across most animals, two experimenters independently scored and compared counts for 

reliability. In addition to visual observation, in a subset of sessions (N = 8) under LSDhigh 

or LSDlow, the start and end times of each HT was precisely determined automatically 

from deflections in the filtered EMG signal recorded from the rat neck muscle. These EMG-

identified HTs were referred to as eHTs. In this case, raw EMG signals were band-pass 

filtered within 20 - 60 Hz to remove the movement-related artifact. eHTs were detected 

when at least 2 peaks exceeded 8 standard deviations (SDs) from the filtered trace baseline 

with a minimum inter-peak time of 0.1 s. The eHT start and end times were assigned when 

the signal first and last exceeded a threshold of 3.5 SDs.

Single-unit dataset—Our analyses on single-unit data were performed on a total of 781 

CA1 neurons and 153 VC cells from 17 rats on 20 recording days (Table S1). Single 

units were sorted offline using custom software (xclust, M. Wilson at MIT, available at 

GitHub repository: https://github.com/wilsonlab/mwsoft64/tree/master/src/xclust). The VC 

cells were mostly located in the primary visual cortex V1 (140) and the rest (13) were 

located in the neighboring secondary visual cortex. We identified those CA1 and VC cells 

that were active on at least one trajectory in at least one of the track-running sessions (PRE 

or POST) with a minimum firing rate of 0.5 Hz (active cells). CA1 silent cells were defined 

as those with rate < 0.5 Hz and putative interneurons in the CA1 as firing rate > 5 Hz in 

both trajectories during running. Firing rates of CA1 and VC active cells, CA1 silent cells, 

and CA1 putative interneurons were analyzed during running and during immobility. For 

VC cells, we did not analyze those silent (< 0.5 Hz; N = 15) or those with very high rate 
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(> 25 Hz, N = 8) due to their small numbers. Further analyses described below were only 

performed on active CA1 (N = 365) and active VC (N = 130) cells.

Quantification of spatial firing properties—We analyzed the spatial firing properties 

of active CA1 cells. Spikes occurring at any stopping periods were excluded from the 

analysis. For each cell on its active trajectory in a session, we constructed a firing rate 

curve by computing the average firing rate across all laps at each position along the 

trajectory, excluding the positions within ~10 cm from the reward sites. The rate curves 

had a spatial bin size of 1 cm and were smoothed using a Gaussian window with a sigma 

of 3 bins. Spatial information (SI) was computed from the firing rate curve according 

to the established formula as in previous studies (Haggerty and Ji, 2015; Skaggs et al., 

1993). Stability was the Pearson correlation between the two firing rate curves on the same 

trajectory between PRE and POST. For this calculation, a cell was included if it was active 

on the trajectory in at least one session (rate > 0.5 Hz) and fired at least one spike in the 

other session. Directionality was measured by a Pearson’s correlation between the two firing 

rate curves on the two trajectories in the same session. In this case, a cell was included if it 

was active on one trajectory (rate > 0.5 Hz) and fired at least one spike on the other.

For a CA1 cell on an active trajectory in a session, its place fields were identified using a 

threshold of 3 Hz for peak rates. Boundaries of a place field were determined by 10% of its 

peak rate. Fields with a gap smaller than 5 cm were combined. The within-field firing rate of 

a field was the mean rate of the rate curve within the field’s boundaries.

For comparing firing rates between PRE and POST sessions, we removed the effect of 

running speed on firing rates. In this case, for each cell active on a trajectory we computed 

its mean firing rate ri and mean running speed si during every lap i on the trajectory in both 

sessions. We performed a linear regression between the lap-by-lap rate and speed: r = ks + 

b. We then computed a residual rate ri‘ = ri − (ksi + b). The residual firing rate for PRE or 

POST was the average value of ri‘ for those laps in PRE or POST. The within-field rates 

were similarly corrected for the effect of speed. In this case, the lap-by-lap firing rate and 

speed were computed within the boundaries of each place field. In addition, we computed a 

burst index for CA1 active cells, which was the percentage of spikes of a cell during running 

that occurred within 10 ms of another spike.

Theta oscillation, theta phase precession and theta sequence—To compute theta 

peak frequency and theta power, we divided running laps of a session into different events 

with different running speeds (< 20, 20 −40, 40-60, > 60 cm/s) with minimum length of 2 

s. We then used multi-taper method to estimate the power spectral density (PSD) of CA1 

LFPs. Theta peak frequency (at 0.25 Hz resolution) and total theta power were obtained 

for each speed range of a session. Not all speed ranges were available in a given session, 

especially for POST under LSD when rats tended to run slower. Coherence was computed 

between CA1 and VC LFPs during running and then averaged over the theta band (6 – 10 

Hz). To obtain theta phases of spikes of a CA1 place cell, CA1 LFPs were filtered within 

[6 10] Hz and theta peaks and troughs during active running were identified. Theta phases 

were assigned according to spike times relative to their nearest theta peaks (360°/0°) and 

troughs (180°). Theta phase properties for cells active in a session were computed according 
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to circular statistics. Theta phase precession for spikes within a place field was quantified by 

the maximum linear correlation between phases and positions within the field (O’Keefe and 

Recce, 1993). Only the fields with a minimum of 20 spikes were included in the analysis. 

To quantify theta sequences (Dragoi and Buzsáki, 2006; Robbe and Buzsáki, 2009), we 

selected those place cells with the peak distance of their overlapping place fields < 40 cm 

and identified their cross-correlation peak time as a measure of firing interval within theta 

cycles. The correlation between the field distance and the theta firing interval among all 

overlapping place fields in a session was computed and compared between PRE and POST.

Population vector (PV) analysis—Population vectors (PVs) were constructed for every 

spatial bin of a trajectory from rate curves of all cells on a day active on the trajectory. Only 

PVs at those locations with at least 5 active cells were included in the PV correlation 

analysis. A PV correlation was the Pearson’s correlation between the two PVs at the 

same spatial bin either for two sessions (PRE and POST, cross-session PVcorr) or for two 

trajectories (cross-trajectory PVcorr). The PV correlations for all the spatial bins and all 

animals were combined and compared among different experimental conditions.

Pairwise correlation analysis—To quantify pairwise interactions within CA1 cell pairs 

or between CA1 and VC cell pairs, we computed a normalized cross-correlation of two 

spike trains, relative to the shuffled spike trains. We first computed a spike-count cross-

correlation using the two original spike trains within all events under consideration (e.g., 

all running laps in PRE, or ripple events in POST). Then, each of the two spike trains 

was independently shifted by a random time within each event and a cross-correlation 

was computed using the shuffled spike trains. The shuffling was repeated for 200 times. 

The mean and standard deviation (SD) were computed at each time bin from all the shuffle-

generated cross-correlations. The normalized correlation value at each time lag was the 

Z-score of the original correlation value relative to the shuffle mean and SD.

For within-CA1 cell pairs, we computed their normalized cross-correlations during running 

laps, with stopping periods within laps removed. The bin size was 10 ms and the cross-

correlation was smoothed by nearest-neighbor averaging among ± 10 bins (100 ms). 

Coactivity between two cells was the average Z scores around time lag 0 ([−100 100] 

ms). For within-CA1 cell pairs, we also computed their normalized cross-correlations within 

ripple events. In this case, the bin size was the same 10 ms, the cross-correlation was 

smoothed using ± 4 bins (40 ms), and coactivity was the average Z-score among the time 

lag [−50 50] ms. For CA1-VC pairs, we computed their normalized cross-correlations and 

coactivities during running similarly as within-CA1 pairs. But for ripple events, the CA1-VC 

cross-correlation was performed in time intervals of [−1 1] s from the ripple peak times 

and coactivity was the average Z-score among the time lag [−100 100] ms, to account for 

the possibility that VC neurons might activate earlier or later than the CA1 ripples. Awake 

reactivation was identified by correlating coactivities of all cell pairs during running with 

those within ripples. In this case, we included those cell pairs that contained at least one cell 

active during running (rate > 0.5 Hz) and the other fired at least one spike during running.

MUA analysis—All spikes in a recording area (CA1 or VC) were included in the multiunit 

activities. The spikes in a given area were counted in 10 ms time bins. The spike counts 
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were normalized to values within [0 1] with 0 meaning no spikes and 1 meaning maximum 

spike count. The spike counts were then smoothed by a Gaussian kernel with a sigma of 

3 bins into a MUA activity curve with time. A cross-correlation between CA1 and VC 

MUAs was computed within lags of [−1 1] s for running periods longer than 2 s without 

immobility. The mean MUA cross-correlation for a session under a condition was the 

average cross-correlation among all running periods in all animals under the same condition. 

For analyzing fine temporal relationship between VC MUAs and CA1 ripples, we used 

ripple peak times (time 0) to trigger VC MUAs within ripple events and the average VC 

MUAs were computed at time lags within [−50 50] ms (to identify possible peaks within an 

HVS cycle of ~100 ms), relative to baseline periods of [−120 – 100] ms and [100 120] ms.

HT-triggered averages—We computed the average velocity, linearized 1-dimensional 

(1D) position, and firing rates of CA1 and VC cells triggered by the EMG-identified head-

twitching (eHT) start times. We aligned the start times of all eHTs in POST under LSDhigh 

and LSDlow as time 0 s. For triggered averages of velocity and 1D-position, we considered 

every 50 ms bin (time lag) within a time interval of [−1 1] s around the eHT start times. The 

HT-triggered average velocity at a time lag was the average across all values of velocity at 

the time for all eHTs. For HT-triggered average 1D-positions, we aligned the 1D positions at 

time lag 0 s as 0 cm and averaged all 1D-positions relative to this 0 position at every time lag 

for all eHTs. For HT-triggered average firing rates, we considered a time interval of [−5 5] s 

with a bin size of 50 ms. At every time lag, firing rates of all running-active cells in CA1 or 

VC at the time lag were averaged across all cells and all eHTs.

High voltage spike (HVS) and ripple event detection—HVS events were detected 

as described in previous work (Haggerty and Ji, 2014). Cortical LFP was filtered with a 

band-pass of 6 - 12 Hz. HVS were identified if the filtered LFP trace exceeded a trough 

threshold set as 6 SD below the baseline trace with at least 4 troughs below this threshold 

and with a maximum inter-trough interval of 250 ms. The start and end time was assigned at 

the point when the signal first and last exceeded a threshold of 2.5 SD. The peak time was 

determined as the time with the lowest trough amplitude within the HVS event. Neighboring 

HVS events with a gap between them less than 0.5 s were combined into a single event. 

Detected events were visually examined to ensure reliable and consistent identification, 

and parameters may have been slightly adjusted in rare cases in which HVS events were 

mis-identified.

We detected ripple events from a band-pass filtered (100 - 250 Hz) hippocampal LFPs. 

Ripple events were identified by a trough threshold exceeding 6 SD from baseline. The 

start and end times of ripples were identified as the moment the amplitude of the filtered 

LFP trace crossed 2.5 SD and only ripple events between 30 and 400 ms in duration were 

included in the analysis. If neighboring ripple events were separated by fewer than 30 ms, 

they were combined into a single event. In addition, we also computed the cross-correlation 

between ripple-filtered (100- 250 Hz) CA1 LFPs and HVS-filtered (6 – 12 Hz) VC LFPs as 

a measure of possible fine temporal relationship between CA1 and VC activities during HVS 

events.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• LSD reduces firing rate and directionality of hippocampal place cells

• LSD reduces hippocampal-cortical interactions in active/immobile behavior

• LSD promotes a cortical state similar to wakefulness-to-sleep transition

• Reactivation within hippocampus but not across hippocampus and cortex 

under LSD
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Figure 1. LSD enhanced head twitching and immobility
(A) C-shaped track (top) and the linearized trajectories (bottom). L and R, reward locations; 

M, landmark locations (two corners of the long arm).

(B) Behavioral procedure is as follows: two track-running sessions (PRE and POST), with 

each following a drug administration, separated by a sleep session. Prior to PRE, saline 

was injected. Prior to POST, either LSDhigh, LSDlow, or a control (Ctrl) condition (injection 

of the 5HT2AR antagonist M100907 followed by injection of LSDlow, M100907 alone, or 

saline alone) was administered.

(C) Linearized spatial trajectories (black lines) and head twitches (HTs; red stars) of an 

example rat under LSDhigh in PRE and POST. White gaps, linearization artifacts when the 

animal made sharp turns at corners. M, two of the corners.

(D–G) Lap rate (D), running speed (E), percentage of immobile time (F), and HT rate (G) in 

PRE and POST under LSDhigh (n = 10), LSDlow (n = 3, except for G, which is n = 4), and 

the Ctrl (n = 14) conditions. Each dot is a session. Boxplot: median and [25% 75%] range 

values; same in other figures. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2. Increased firing rates of CA1 and VC cells around head twitching
(A) An example HT event identified by EMG (eHT). Raw, raw EMG trace; filtered, the 

same EMG trace filtered within 20–60 Hz; dashed line, eHT start/end time.

(B) Distribution of eHT duration (n = 245 eHTs).

(C) Average velocity (mean ± SE) of head movement triggered by eHT start times (time 0).

(D) Average linearized position (mean ± SE) along the moving trajectory relative to the eHT 

start times. The linearized positions at eHT start times were aligned to position 0.

(E and F) Average firing rate (mean ± SE) of active CA1 (E) and VC (F) cells triggered by 

the eHT start times (n = 218 eHTs). ***p < 0.001 for peak value. See also Figure S1.
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Figure 3. CA1 place cells under LSD maintained similar firing locations but had reduced 
directionality and within-field firing rates
(A and B) Example place cells under LSDhigh (A) and under LSDlow (B). Each panel 

shows the lap-by-lap spike raster (top) of a cell and its rate curves (bottom) during running 

on the two opposite, linearized trajectories of the C-track in PRE and POST. Dashed 

lines, landmark positions on the track; black arrows, dominant place field in PRE had 

similar firing locations with reduced rates in POST; red arrows, place field became more 

bi-directional in POST.

(C) Cumulative distributions of spatial information (SI) under LSDhigh (PRE: n = 244 cell × 

trajectories, POST: n = 121), LSDlow (PRE: n = 101, POST: n = 83), and the Ctrl conditions 

(PRE: n = 85, POST: n = 84) for place cells on active trajectories in PRE and POST.

(D) Cumulative distributions of stability under LSDhigh (n = 204 cell × trajectories), LSDlow 

(n = 98), and the Ctrl (n = 104) condition.

(E) Cumulative distributions of correlation between rate curves of two opposite trajectories, 

as a measure of directionality under LSDhigh (PRE: n = 175 cells, POST: n = 66), LSDlow 

(PRE: n = 72, POST: n = 52), and the Ctrl conditions (PRE: n = 58, POST: n = 55).

(F and G) Same as (E), but for field length (F) and within-field firing rate (G) under LSDhigh 

(PRE: n = 286 fields, POST: n = 167), LSDlow (PRE: n = 117, POST: n = 112), and the Ctrl 

(PRE: n = 114, POST: n = 113) conditions. *p < 0.05, ***p < 0.001.

See also Figures S1-S4.
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Figure 4. Stable representation but reduced directionality in active place cell ensembles
(A) Example PV correlations of CA1 place cells between PRE and POST along the same 

linearized trajectory (cross-session PVcorr) under the LSDhigh, LSDlow, or the Ctrl condition. 

Arrows, running directions; gray broken lines, landmark locations; white lines, linearization 

artifacts when animals made sharp turns around some corners of the track. Note the similar 

values (colors) along the diagonal line under different conditions.

(B) Same as (A), but for example PV correlations between two opposite trajectories (Traj 

1 and Traj 2) in the same PRE or POST session (cross-trajectory PVcorr). Note that values 

along the reverse diagonal line were higher in POST (arrows) than those in PRE under 

LSDhigh and LSDlow.

(C) Average (mean ± SEM) cross-session PVcorr for all recording days and all animals under 

LSD (LSDhigh and LSDlow combined, n = 22 trajectories) and the Ctrl condition (n = 10). 

Each dot is a trajectory.

(D) Same as in (C), but for average cross-trajectory PVcorr in PRE and POST for LSD (PRE: 

n = 17 sessions, POST: n = 16) and Ctrl (PRE: n = 5, POST: n = 5). Each dot is a session. 

***p < 0.001.
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Figure 5. Reduced CA1-VC interaction during running under LSD
(A) Example normalized cross-correlograms of CA1-VC active cell pairs during running in 

PRE and POST under LSDhigh, LSDlow, and the Ctrl conditions. Note high coactivity values 

(around time lag 0) in PRE and POST.

(B) Coactivity values for all CA1-VC active pairs during running in PRE and in POST under 

LSDhigh (n = 1573 pairs), LSDlow (n = 396), and the Ctrl condition (n = 305). Each dot is a 

pair. Line, linear regression between PRE and POST.

(C) Average (mean ± SE) cross-correlograms between CA1-VC MUAs over all running 

periods in PRE and in POST under LSDhigh(PRE: n = 694 running periods, POST: n = 252), 

LSDlow (PRE: n = 252, POST: n = 157), and the Ctrl condition (PRE: n = 230, POST: n = 

148). Vertical dashed line, time lag 0. *p < 0.05 for comparing PRE and POST peaks.

See also Figure S5.
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Figure 6. LSD promoted high-voltage spike (HVS) events during immobility
(A) CA1 and VC MUAs (top) and LFPs (bottom) in PRE, in WST, and in POST during 

immobility under LSDhigh in an example rat. Each row in MUAs includes all spikes 

recorded from a tetrode. Each tick is a spike. VC LFPs were in broad band (0.5 Hz–2 

kHz) and CA1 LFPs in ripple band (100–250 Hz). Arrow, ripple event; #, HVS event.

(B) Percentage of time in HVSs among total immobility time in PRE and POST under LSD 

(n = 11 sessions) and the Ctrl (n = 11) condition. Each dot is a session. Box and bars, 

median and [25% 75%] range values.

(C) Onset times of the first HVS event in POST for each of the 9 rats (out of 11 rats; 2 had 

no HVSs within the first 30 min of POST). Line, median value.

(D) Distribution of HVS peak times in POST under LSD (n = 622 HVS events from 9 rats).

(E) Same as (B), but for occurrence rate of ripples per minute within HVS events in WST (n 

= 16 sessions) and in POST (N = 9) during immobility under LSD. *p < 0.05; **p < 0.01; 

***p < 0.001.

See also Figure S6.
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Figure 7. Awake reactivation within CA1 cell pairs but not cross CA1-VC pairs
(A) Coactivity during running and within ripples for CA1 cell pairs in PRE and POST under 

LSDhigh (PRE: n = 2,479 pairs, POST: n = 921), LSDlow (PRE: n = 660, POST: n = 734), 

and the Ctrl condition (PRE: n = 457, POST: n = 495). Each dot is a pair. Solid line, linear 

regression.

(B) Same as (A), but for cell pairs across CA1 and VC around ripples in LSDhigh (PRE: n 

= 1,744, POST: n = 1,075), LSDlow (PRE: n = 401, POST: n = 326), and the Ctrl condition 

(PRE: n = 313, POST: n = 307). ***p < 0.001.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Rat: Long-Evans Charles River Laboratories Substrain: Crl: RRID: RGD_2308852

Software and algorithms

DataManager Daoyun Ji Lab at BCM https://github.com/DaoyunJiLab/DataManager

Digital Lynx Neuralynx https://neuralynx.com/hardware/digital-lynx-sx

xclust Matthew Wilson Lab at MIT https://github.com/wilsonlab/mwsoft64/tree/master/src/xclust
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