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BACKGROUND: In just over 2 years, tracking the COVID-19 pandemic through wastewater surveillance advanced from early reports of successful
SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts pri-
marily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health labo-
ratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing
surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective
use by public health agencies also remains a key objective for the field.

OBJECTIVES:We examined the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid
and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance
to aid in the transition from early monitoring efforts to more formalized programs within the public health system.

DISCUSSION: Although wastewater surveillance has rapidly developed as a useful public health tool for tracking COVID-19, there remain technical
challenges and open scientific questions that academic researchers are equipped to address. This includes validating methodology and backfilling im-
portant knowledge gaps, such as fate and transport of surveillance targets and epidemiological links to wastewater concentrations. Our experience in
initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and draw useful lessons
on how to promote synergy between different areas of expertise. As wastewater surveillance programs are formalized, the working relationships
developed between academic researchers, commercial and public health laboratories, and data users should promote knowledge co-development. We
believe active involvement of academic researchers will contribute to building robust surveillance programs that will ultimately provide new insights
into population health. https://doi.org/10.1289/EHP11519

Introduction
In the midst of the COVID-19 pandemic, SARS-CoV-2 waste-
water surveillance has gained traction globally as a means to
assess the occurrence of infections in communities. Shortly after
the first reported detection of SARS-CoV-2 RNA in wastewater
in the Netherlands,1,2 the virus was detected in untreated sewage
in several countries, including the United States,3 Australia,4 and
India,5 suggesting that the virus’ genetic material was sufficiently
abundant in wastewater to provide an indication of community
infections. Efforts shifted from basic detection to attempts to
quantify and characterize the relationship between SARS-CoV-2
RNA in wastewater and associated COVID-19 clinical case
data,6,7 and methodologies were refined to provide more quan-
titative grounding for wastewater measurements.8,9 Academic
researchers in environmental engineering, environmental sci-
ence, microbiology, environmental virology, and similar fields
were heavily engaged in these efforts and disseminated early in-
formation to demonstrate the promise and challenges of waste-
water surveillance for population-level assessments of infection.

The research community used channels of communication such
as published manuscripts and preprints, creation of a National
Science Foundation-funded Research Coordination Network on
Wastewater Surveillance for SARS-CoV-2, workshops (e.g.,
McClary-Gutierrez et al.,10 Lin et al.11), collaboratives, and infor-
mal communications, with knowledge shared freely across the
scientific community.

As the pandemic progressed, wastewater surveillance efforts
became more widespread, particularly in the United States, with
many major cities, as well as some rural areas, implementing pro-
grams.12 We observed that research entities, including many uni-
versities, often led or participated in these efforts, in large part
because of the need to overcome challenging method develop-
ment alongside implementation of wastewater surveillance pro-
grams. This allowed for rapid implementation during a time of
great need, but there were challenges in interpretation and poten-
tial actionability of the data. Academic researchers were not
always experienced with how decision-making occurs within
public health systems. Public health practitioners were also chal-
lenged with assessing a new data stream that was distinct from
traditional disease metrics, such as tracking hospitalizations or
clinical diagnostic test positivity rates. Researchers with expertise
producing and interpreting environmental data and public health
practitioners with expertise in outbreak response approached waste-
water surveillance with distinctly different knowledge bases, differ-
ent definitions for key terms such as variability and uncertainty,
and at times different priorities (e.g., improving science-based
measurements vs. implementing public health measures).13 We
found close working partnerships were critical in bridging this gap,
and wastewater surveillance has now matured into a useful tool for
COVID-19 outbreak response and has been prioritized by the
Centers for Disease Control and Prevention (CDC)14 and some
states as part of future public health responses.

Here, we provide a perspective on the shifting role of
researchers from primary data generators to supporting partners
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of wastewater surveillance programs. Our perspective is shaped
by our experience as researchers implementing wastewater moni-
toring in six different states and forming partnerships with the
public health sector to help establish wastewater surveillance as a
public health tool. As the pandemic continues to evolve and
home testing becomes more common,15 there is a need to sustain
wastewater surveillance programs for SARS-CoV-2, as well as to
further develop methods for other pathogens of concern.14 We
believe that a robust wastewater surveillance system that can
inform public health actions will require a foundation of sound
science and ongoing collaborations between academic research-
ers and the public health sector to advance new technologies and
knowledge in the field.

Discussion

Evolution of SARS-CoV-2 Wastewater Surveillance from
Research to Practice
Many early SARS-CoV-2 wastewater surveillance efforts were
initiated by academic researchers in collaboration with public
health, wastewater, or municipal partners.3,7,16,17 We found the
environmental microbiology capacity and experience of academic
research labs positioned them to respond effectively to develop
the analytical methods required for processing a complex sample
matrix for wastewater monitoring. By developing methods and
beginning regular sample processing, academic research labs
were instrumental in starting wastewater surveillance programs
in U.S. cities such as Houston, Texas,18 and San Francisco19 and
San Diego,20 California, and statewide programs in Utah,21

Wisconsin,22 and Ohio.23 The structure of these partnerships var-
ied, but in many instances, municipal utilities conducted sample
collection and logistics, and academic partners managed the ana-
lytical burden, developing methodologies, processing samples,
and providing data interpretation for public health partners, who
then could use the information for decision-making.7,18,24 Such
arrangements were pragmatic given the urgency and rapidly
evolving nature of the pandemic. In other situations, public
health, municipal utility, or other government agencies were re-
sponsible for some or all aspects of surveillance.25–28 Other
research programs focused more strictly on method development
and fundamental explorations that would be useful to the broader
scientific community without explicitly identified partner recipi-
ents.8,9,29 Private companies have also emerged as providers of
wastewater surveillance services, from providing only sample
testing to also providing data analysis and reporting.30

Although wastewater surveillance at treatment plants can pro-
vide community-level insights into COVID-19 trends, another
application is to monitor for SARS-CoV-2 RNA in wastewater
collected from smaller areas or individual buildings. College cam-
puses, for example, are particularly well-suited for this type of
localized wastewater surveillance, with early efforts reported on at
least 25 campuses in the United States.31 In many cases academic
researchers were working within their own institutions to provide
in-house expertise or analysis. In several cases, surveillance teams
have been able to use wastewater data to reportedly avert COVID-
19 outbreaks among populations in large residential halls.32–34

Efforts on university campuses have spanned the methodological
gradient, from large-scale composite sampling and high-throughput
automated analysis to greatly simplified passive sampling with
qualitative detection.35–37 Universities have thus proven to be an
important testbed for wastewater surveillance of SARS-CoV-2
infections among defined populations.

Throughout the evolution of COVID-19 wastewater surveil-
lance thus far, a progressively larger group of public health prac-
titioners have used wastewater data.14 In the early stages of the

pandemic, some members of the public health community were
hesitant regarding the use wastewater data for decision-making
because such data was unfamiliar and its performance character-
istics were largely unknown.13,38–40 Efforts to define uncertainty
in the wastewater data, as well as to understand its relationship to
clinical case data,22,41 continue to build confidence and improve
its potential for application. In addition, as practitioners gained
experience and a larger knowledge base was generated, deploy-
ing a national wastewater surveillance system for COVID-19
seemed increasingly feasible.30,42

As states implement their programs, contributions of their
data to such a system offers a nationwide comparison of waste-
water surveillance data and a community of practitioners to share
methods and experience. Critical to these efforts has been funding
to states to establish programs (J. Meiman, personal communica-
tion). In September 2020, the CDC launched the National
Wastewater Surveillance System (NWSS) in the United States
and, on 4 February 2022, wastewater data were officially incorpo-
rated into the agency’s COVID-19 Data Dashboard.43 Globally,
countries such as the Netherlands, UK, Austria, Australia,
Canada, Pakistan, Malawi, and Spain (to name a few) have
national and regional dashboards showing wastewater surveil-
lance results.44 There is an increasing number of examples show-
ing that, if performed in the context of a well-organized and well-
integrated effort, wastewater surveillance can aid public health
responses.44,45

Looking Back: Lessons Learned
In our experience, the most important aspect of successful waste-
water surveillance programs thus far has been the development of
multi-stakeholder partnerships founded in active collaboration
and communication throughout the process. As researchers in
academic laboratories, we have historically worked with a broad
array of partners in university administration, municipalities,
industry, and public health laboratories; these foundational rela-
tionships allowed us to quickly expand or initiate new collabora-
tions to start wastewater surveillance programs. Our partnerships
have taken many forms, and here we discuss some of the lessons
learned from these different types of collaborations.

One effective model for cooperation involved direct partner-
ships between academic researchers and public health laborato-
ries, many of which were members of the Association of Public
Health Laboratories. These partnerships, by nature, extended to
the environmental health or public health departments that the
laboratories served and allowed wastewater surveillance efforts
to tap into existing frameworks for communication and data
transfer within the public health system. Researchers brought
specific technical and scientific expertise that helped implement
virus detection in the complex matrix of wastewater, which added
to the capacity of public health laboratories to expand testing to
include untreated sewage. We found that environmental health
experts within public health departments were often effective liai-
sons between the data producers and data end users because of
their familiarity with both environmental measurements and clin-
ical data.13 Some state public health laboratories are housed
within universities and thus have existing collaborative research
with academic units; examples include the Wisconsin State
Laboratory of Hygiene within the University of Wisconsin-
Madison and the Illinois Department of Public Health Laboratory
housed within the University of Illinois Chicago School of
Occupational and Environmental Health. With this model, aca-
demic researchers, students, and postdoctoral scholars were able
to use their existing expertise to focus on thoroughly investigat-
ing scientific and technical questions without detracting from the
routine analysis pipeline. In addition, public health laboratories
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had the capacity to scale up and optimize methods using high-
throughput platforms. Ongoing exchange of information allowed
each partner to stay apprised of the latest developments in
the field more easily. Collective troubleshooting and sample
exchange for cross-validation were also beneficial for accelerated
data interpretation.

It is noteworthy that several of the seven states that were the
first and are currently the largest participants in the NWSS had
academic research/public health laboratory partnerships early in
the pandemic.46 In Wisconsin, a partnership between a research
laboratory and the state public health laboratory, also part of a
university, enabled the implementation of a statewide wastewater
surveillance program47 with 72 wastewater treatment plants
(WWTPs) in August 2020.22 The statewide wastewater surveil-
lance program in Illinois is similarly organized, with a partner-
ship between a university, and city and state public health
entities. The Illinois program began in October 2020 with 7
WWTPs in the City of Chicago48 and expanded statewide in
May 2021 with 65 WWTPs in 49 counties.49 The Ohio and Utah
statewide programs are additional examples of this type of
partnership.14

There were also specific challenges associated with these
types of partnerships. In our own experience, wastewater surveil-
lance programs were less sustainable if sample processing was
scaled up in academic labs without a long-term plan to transfer
processing to a production lab or public health laboratory that
had capacity to do scheduled, frequent analysis on a long-term
basis. Further, some public health agencies were less receptive to
using wastewater data or did not have the personnel or infrastruc-
ture capacity to implement SARS-CoV-2 wastewater surveillance
within their public health system.13,50

Academic researchers also collaboratedwith other types of labo-
ratories to build capacity for surveillance programs, including mu-
nicipal wastewater utility laboratories and commercial laboratories
capable of rapid, high-throughput sample processing.28,41 In both
cases, academic researchers were involved in methods develop-
ment, data analysis, and troubleshooting, but routine analysis was
conducted by a dedicated staff of analysts using agency or company
staffing logistics (i.e., shifts, overtime policies) that are not often
established in academic labs. We found that engaging such labora-
tory partners (whether municipal or commercial) from the begin-
ning of protocol optimization allowed academic partners to train
analysts as needed and incorporate feedback from analysts and sci-
entists who offered important perspectives into practical and scien-
tific considerations for routine sample processing. Working directly
with municipal laboratories associated with wastewater utilities
offers the logistical benefits of using existing sample collection and
transport structures and having direct access to wastewater data
(e.g., wastewater flow rates and characteristics) critical for trouble-
shooting and data interpretation. Partnering with commercial labo-
ratories offered the benefit of using existing equipment, leveraging
expertise of personnel, and applying existing high-throughput sam-
ple processing strategies.

Finally, some academic researchers generated data in their
academic laboratories without a specific data end user identi-
fied.8,29 Although in these instances the resulting data were not
used in real time, findings from these efforts have been critical in
establishing the scientific basis for wastewater surveillance,
including proof-of-concept and method development, and will be
important for retrospective analysis in local areas moving for-
ward. All of these early frameworks offered a platform for coop-
erative research to refine and validate methods.

In our experience, surveillance programs were less likely to
aid in public health response to COVID-19 if WWTP partners
or public health end users were not identified at the beginning

of the effort. Further, providing surveillance data without access
to expertise to explain the context, scientific basis, limitations,
and interpretations did not promote continued demand for or
application of the data by its end users.30 We conclude that
regardless of whether or not public health practitioners are
directly involved in data generation, close collaboration among
researchers, public health agencies, and laboratories is critical
for interpretating wastewater data in a public health context and
building confidence in wastewater surveillance programs.

Looking Forward: Role of Academic Researchers in
Wastewater Surveillance
The evolution of wastewater surveillance during the COVID-19
pandemic has demonstrated the utility of these programs during
disease outbreaks and underscored the need for dynamic, collabo-
rative program structures to respond to rapidly changing circum-
stances. As wastewater surveillance programs become integrated
into public health systems, continued access to scientific exper-
tise in engineering and microbiology will be crucial in establish-
ing wastewater surveillance as an effective, institutionalized
public health tool. In our view, there are three interconnected
activities that are essential for the support of effective wastewater
surveillance systems, namely a) pioneering new capabilities, b)
sustaining surveillance efforts, and c) integrating surveillance
data for effective public health response (Figure 1). Academic
researchers can play an important role in contributing to each of
these activities.

Pioneering new capabilities. Even as wastewater surveillance
becomes more routine, infectious agents by their nature are con-
stantly evolving. Researchers are uniquely poised to contribute to
the future of wastewater surveillance by taking on a primary role
in pioneering new capabilities and methods for detection, quanti-
fication, and identification of infectious agents in wastewater, as
well as interpretation of the relationship between resulting data
and health outcomes (Table 1). Thus far, the COVID-19 pan-
demic has demonstrated that both existing public health metrics
and novel techniques are critical for our ability to respond to and
stay ahead of emerging public health crises. A clear example of
this has been in the identification and rapid roll-out of new assays
for identifying SARS-CoV-2 variants of concern. Researchers
designed new assays for the SARS-CoV-2 Omicron variant
within a few days of its identification, and wastewater surveil-
lance programs in four states (California, Colorado, New York,
and Texas) were able to use these assays and sequencing-based
approaches to detect evidence of the Omicron variant within days
of the first clinical cases, demonstrating in some areas that the
variant was already spreading in the community before clinical
cases were identified.51 More recently, retrospective analysis of
wastewater revealed positive detection of polio in three counties
in New York, following reports of a single case of identification
of one clinical case of paralytic poliomyelitis in an unvaccinated
person.52

As new tests are brought online, or existing methods are
improved, academic researchers can contribute their extensive ex-
pertise working with wastewater samples. There has been a rapid
adoption of what were previously research methods as routine
assays, and many of the complications of workingwith wastewater
may be underappreciated. Specialized expertise within the aca-
demic community can support optimization, validation, and stand-
ardization; the latter being critical for the transition of these
methods to public health laboratories. Researchers working side by
side with laboratories implementing methods can help shed light
on unexpected results and provide expertise on wastewater con-
veyance systems and the complicated matrix of wastewater, which
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will accelerate troubleshooting efforts and validation of methods
for new targets.

Before SARS-CoV-2, wastewater surveillance was used to
study the epidemiology of a variety of infectious diseases,
although these were most often fecal–oral pathogens. Most
famously, wastewater has been used to study the epidemiology
of poliovirus and other enteroviruses,53–56 but many other in-
fectious agents have been surveilled via wastewater, including
Vibrio cholerae,57 hepatitis E,58 Cryptosporidium,59 group A
rotavirus,60 norovirus,61 and Giardia,62 to name a few. The
recent success of wastewater surveillance for SARS-CoV-2 is
now rekindling interest in using wastewater to examine the epi-
demiology of other respiratory viruses, such as respiratory
syncytial virus63 and influenza A.64 Recent concerns of the
community spread of monkey pox and polio, both of which
have been found in wastewater in communities with reported
cases,52,65,66 highlights the utility of an operational surveillance
system that can pivot to respond to new threats. In our opinion,
expanding the wastewater surveillance paradigm to include a
diversity of infectious agents, along with a fundamental charac-
terization and mechanistic understanding of these pathogens’
fate and transport in wastewater, will continue to be a crucial
pioneering contribution of research teams.

As the COVID-19 pandemic enters an endemic phase and
infections in the community decrease, more sensitive methods will
be needed. Early in the COVID-19 pandemic, researchers found
wastewater solids to be an efficient and methodologically conven-
ient SARS-CoV-2 sample type.6,7,67,68 Other research teams have
alsomade use of suspended solids as a highly sensitive approach to
wastewater surveillance, even during periods of low transmission
or after mass vaccination (e.g., on a university campus).41,69

Sensitive methods will also be needed for new infectious disease
targets thatmay not be as prevalent as SARS-CoV-2. Although sol-
ids have been found to be useful for SARS-CoV-2 and could also

be useful for other targets, other viruses, or bacterial or fungal tar-
gets may behave differently in wastewater depending on their mor-
phology and structure,70 and so ongoing method development is
important for new pathogen targets.

In the future, scaling-up wastewater surveillance programs
and efforts to make them more widely accessible will also require
the development of methods that are cost efficient and less
resource intensive. Various research teams have led efforts to de-
velop passive sampling techniques, such as the Moore swab, for
economical sampling of wastewater with superior performance to
grab sampling.71–73 In addition, researchers have also initiated
efforts to develop molecular testing techniques that do not require
expensive quantitative polymerase chain reaction (qPCR) equip-
ment, such as loop-mediated isothermal amplification,74 and have
coupled these with passive samplers and electronegative mem-
branes to allow rapid wastewater testing.37,75 Researchers have
also proposed paper-based testing devices and biosensors as
future analytical platforms for near real-time surveillance of in-
fectious agents in wastewater, although as of yet no proof of con-
cept has been published.76 It is abundantly clear that researchers
have a strategic role to play in the development of efficient and
scalable wastewater surveillance methodologies.

Outside of laboratory method development, there remains a
critical need to continue advancing modeling and data analysis
methods for wastewater surveillance applications. Early efforts
during the COVID-19 pandemic relied on relatively simple
correlation analyses between SARS-CoV-2 RNA concentra-
tions and COVID-19 cases or hospitalizations in a community.
As research efforts continue to develop numerical techniques
for surveillance of SARS-CoV-2 and other targets,77,78 atten-
tion to predictive modeling techniques and integration of
wastewater data into other epidemiological data analyses will
remain critical. Further, retrospective analyses of the volumes
of data that have been collected during the COVID-19

Figure 1. Framework for building robust and adaptive wastewater surveillance programs. In addition to undertaking basic research that underpins the basis of
wastewater surveillance, researchers have a critical role to play in continuous methods development, technology transfer, research that informs data context
and interpretation, and training the next generation of professionals.
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pandemic may reveal important insights that will inform our
response to future pandemics.

Sustaining surveillance efforts. Similar to other public or
environmental health monitoring efforts, effective wastewater
surveillance requires frequent sample collection and analysis.
Many researchers have determined that a minimum frequency of
weekly or twice per week sampling is needed for useful applica-
tions of the data7,22 and daily samples with 24-h turnaround are
ideal in some use cases (A. Boehm, personal communication).
Despite the efforts that academic research labs have undertaken
to initiate wastewater surveillance programs during the pandemic
and the value that these efforts have had in technical training and
education,79 it is also clear that academic research labs cannot
be expected to sustain the day-to-day sampling, analysis, and
monitoring required by full-fledged, long-term surveillance sys-
tems—nor should they. Research labs typically work on novel
solutions to both new and long-standing challenges and, in aca-
demic settings, are meant to provide a training ground for students
and early career scientists to develop their critical thinking, experi-
mental research, and professional skills. Public health labs and
commercial labs are, on the other hand, well suited for routine
analyses and data production given their high-throughput capacity,
technical expertise, and existing personnel management structures.

In instances where academic labs have taken active roles in
generating wastewater surveillance data during the first years of
the COVID-19 pandemic, these responsibilities will need to switch
to either the end users of the data (public health labs/municipal-
ities) or to other high-production entities (commercial labs). This
necessary shift from routine monitoring in research labs to profes-
sional labs does not, however, imply that researchers will not have
a critical role to play in the sustainability of surveillance efforts.
Wastewater surveillance is a highly interdisciplinary area, and the
professional skillsets required to sustain these efforts are widely
distributed across a range of fields, including environmental engi-
neering, microbiology, molecular biology, statistics, epidemiol-
ogy, data management, public policy, and data communication,

among others (Table 2). We believe that researchers can play a key
role in transferring and combining these skillsets in the professio-
nal world through training, sharing expertise, and technology
transfer of newmethods.

Staffing wastewater surveillance programs will require speci-
alized skillsets. For example, wastewater as a matrix is highly
complex and unique in comparison to the types of sample materi-
als typically worked with in clinical laboratories (e.g., blood or
fecal specimens), and methods for optimal wastewater processing
remain unstandardized. Because of this, we assert that one of the
most critical roles for researchers is training the next generation
of professionals who will in turn sustain long-term wastewater
surveillance efforts as they enter the workforce. By professional-
izing the discipline of wastewater surveillance through formal
and informal educational and training programs, researchers can
also benefit from permanent relationships with monitoring

Table 2. Examples of disciplines and skills required for effective wastewater
surveillance programs.

Disciplines Skills

Environmental engineering • Sewer system design
• Sample collection logistics
• Fate and transport of sewer organisms

Environmental microbiology and
molecular biology

• Environmental sample processing
methods

• Molecular detection techniques
• Sample data interpretation

Statistics and data science • Trend and correlation analyses
• Large data set management
• Predictive modeling

Public health and public policy • Epidemiological modeling
• Intervention strategies
• Policy development

Communication • Infographic design
• Science communication to public
audiences

• Community and political coordination

Table 1. Pioneering activities for strategic engagement of academic researchers to advance wastewater surveillance.

Pioneering research activity Published examples

Surveillance of new SARS-CoV-2 variants of concern and lineages Wastewater surveillance of alpha variant (B.1.1.7) via spike protein mutations
detected in wastewater in the United Kingdom87

Screening for alpha (B.1.1.7), beta (B.1.351), and gamma (P.1) variants of con-
cern via RT-qPCR allelic discrimination assays88

Rapid response wastewater surveillance of Omicron variant (B.1.1.529) through-
out the United States51,83,89

Genomic sequencing of SARS-CoV-2 from wastewater to monitor variants of
concern (B.1.1.7, B.1.351, B.1.617.2) in municipalities across Europe90

Wastewater surveillance of SARS-CoV-2 lineages via deep sequencing of the
receptor binding domain91

Method development, refinement, and optimization Kit-free RNA extraction method for wastewater surveillance of SARS-CoV-224
Rapid, high-throughput wastewater testing via automated concentration and

extraction (Karthikeyan et al.)35

Monitoring of SARS-CoV-2 via wastewater settled solids7,41
Biosensors for near real-time wastewater surveillance92

Development of resource-efficient methods for accessible wastewater
surveillance

Passive sampling and RT-LAMP for building-level wastewater surveillance37
Membrane-based RT-LAMP for wastewater surveillance of SARS-CoV-275

Paper-based testing devices for wastewater surveillance
Biological analyte fate and transport in wastewater systems SARS-CoV-2 accumulation in biofilms in wastewater collection systems93

Enhanced decay of SARS-CoV-2 RNA in sewers with biofilms94
Partitioning of enveloped and unenveloped viruses to suspended solids70

Wastewater surveillance of other infectious agents Respiratory syncytial virus surveillance via wastewater settled solids63
Deep sequencing of wastewater for enterovirus surveillance95
Influenzae wastewater surveillance64

Modeling and quantitative analysis Distributed-lag time-series model to relate SARS-CoV-2 RNA counts in sewage
and COVID-19 cases6

Susceptible–exposed–infected–recovered model to relate SARS-CoV-2 RNA
counts in wastewater and prevalence of COVID-1996

Note: RT-LAMP, reverse transcription-loop-mediated isothermal amplification; RT-qPCR, reverse transcription polymerase chain reaction.
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programs and professional labs that allow rapid identification of
new research questions and areas for improvement.

Integrating surveillance data for effective public health
response. An important goal of wastewater surveillance pro-
grams is to monitor outbreaks to inform public health actions.
As wastewater surveillance programs expanded to achieve this
goal, we found through our own involvement that close partner-
ships and knowledge sharing between academics involved in
project implementation and public health practitioners in a posi-
tion to use data for pandemic response were essential. Because
the field progressed quickly, there was a significant need for
researchers to act as conduits to public health agencies to pro-
vide information on the scientific basis for the measurements,
the limitations and uncertainty, and how that data could be con-
textualized and interpreted.

In Houston, wastewater surveillance efforts have been led by
public health experts, and results have been used to target testing,
vaccination, and educational resources toward parts of the city
with a particularly high COVID-19 burden identified via waste-
water samples.80,81 In several cases, wastewater testing con-
ducted on campuses by academic institutions has been used by
those institutions to implement additional targeted testing and
other responsive measures to protect public health.32,35,82
Citywide testing can also inform decisions such as mask man-
dates and hospital staffing and resource forecasting as a new out-
break begins.14 As the benefits of wastewater surveillance are
demonstrated, localities hesitant to use or continue wastewater
surveillance may become less so13,50; therefore, ongoing dissemi-
nation of these successes is critical.

The novelty of wastewater monitoring and ongoing adaptations
tomeet evolving needs during the COVID-19 outbreak and beyond
can be aided by researcher–practitioner partnerships that facilitate
changes to ongoing programs and enable the development of pub-
lic health guidelines based on these conclusions. We believe it is
important that practitioners and researchers should acknowledge
that what is knowable from wastewater surveillance has and will
continue to change as the technology develops. One key example
is the surveillance of SARS-CoV-2 variants in wastewater.
Although technical challenges originally raised concerns about the
feasibility of this use case, variant tracking through wastewater has
proven valuable to provide indicators of variants in circulation—in
some cases ahead of clinical data—despite important technical
caveats.51,83,84 Researchers who have pioneered new techniques
have an important role to guide these advances as they are incorpo-
rated into regular operation of wastewater surveillance programs.

As wastewater surveillance is professionalized and other
methods of tracking COVID-19 outbreaks relax, we assert that
data from wastewater will have an even greater role to play in
guiding responses. In the United States, free testing programs
have been discontinued in some places and there is increased reli-
ance on at-home tests (which are often not reported to traditional
disease surveillance systems).15,85 Wastewater surveillance is
therefore less duplicative of other sources of information on out-
breaks and has a significant lead on other indicators, such as hos-
pitalizations,6,14,68,86 for which reporting will likely continue to
be robust. We feel it is critically important that researchers con-
tinue to facilitate the interpretation and integration of this new
data stream into public health response to outbreaks.

Conclusions
The academic research community launched wastewater surveil-
lance as a largely ad hoc grassroots effort in the face of a global
crisis, which in the United States has evolved into the NWSS.
Similar efforts emerged in tandem worldwide.12 In our opinion,
academic research laboratories can and should continue to

contribute to these efforts by offering their strengths in pioneering
new methods, transferring knowledge and expertise to support
data interpretations, and training the next generation of professio-
nals who will work in the frontline agencies involved in waste-
water surveillance. Further, academic researchers can contribute
to modeling and synthesizing the large volumes of data generated
during the first years of the COVID-19 pandemic, which will be
critical for understanding future pandemics.

The science and methods behind wastewater surveillance have
made steady progress in just over 2 years, but as a field, we believe
it is premature to codify and scale a singlemethod or approach. It is
clear there is much work yet to be done. We feel the rich diversity
of methods developed and investigative approaches that spurred
the progress to date should continue in academic research labs.
Researchers can also contribute to evaluating options for standard
methods. As academic researchers shift their efforts toward a more
investigative and supporting role, they likely will have increased
bandwidth to tackle important underpinning questions that will
make wastewater surveillance, as a population health metric, a
more useful tool for the public health community.

The pandemic has prompted many academic researchers to
partner with commercial, municipal, and public health laborato-
ries and to deliver data and, importantly, key interpretations of
that data, to the public health sector. We encourage researchers to
maintain these connections. There is a distinct advantage for
advancing the field if researchers are closely tied to actual sur-
veillance programs79 because this provides improved access to
samples and data and makes new findings rapidly available for
advancing wastewater surveillance. Importantly, we believe that
two-way communication with public health laboratories and
practitioners will foster stakeholder-driven research in academ-
ics’ programs (Figure 1).

Academic researchers will therefore need to make concerted
efforts to develop relationships outside of their traditional disci-
plinary silos. Such efforts are not necessarily motivated by con-
ventional metrics of academic success (i.e., publication of peer-
reviewed literature), underscoring the need for new ways to
incentivize the continued involvement of researchers in waste-
water surveillance programs. Paramount to further advances in
the field is funding to pursue research to address the most rele-
vant stakeholder-driven questions. We argue that relationships
are the impact-limiting ingredient for establishing a new complex
public health monitoring system, and it will be important for
researchers to stay embedded in the process.

Our proposed model for working partnerships is one in which
researchers provide training and consulting, as well as transfer
new knowledge from their research programs. The global pan-
demic organically grew a new type of hands-on academic/public
health partnership that accelerated implementation of wastewater
surveillance as a public health measure, and we feel strongly that
we should build upon this success.
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