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Abstract Despite significant advances in the diagnosis and treatment of cardiovascular diseases, recent calls have emphasized
the unmet need to improve precision-based approaches in cardiovascular disease. Although some studies provide
preliminary evidence of the diagnostic and prognostic potential of circulating coding and non-coding RNAs, the
complex RNA biology and lack of standardization have hampered the translation of these markers into clinical prac-
tice. In this position paper of the CardioRNA COST action CA17129, we provide recommendations to standardize
the RNA development process in order to catalyse efforts to investigate novel RNAs for clinical use. We list the
unmet clinical needs in cardiovascular disease, such as the identification of high-risk patients with ischaemic heart
disease or heart failure who require more intensive therapies. The advantages and pitfalls of the different sample
types, including RNAs from plasma, extracellular vesicles, and whole blood, are discussed in the sample matrix, to-
gether with their respective analytical methods. The effect of patient demographics and highly prevalent comorbid-
ities, such as metabolic disorders, on the expression of the candidate RNA is presented and should be reported in
biomarker studies. We discuss the statistical and regulatory aspects to translate a candidate RNA from a research
use only assay to an in-vitro diagnostic test for clinical use. Optimal planning of this development track is required,
with input from the researcher, statistician, industry, and regulatory partners.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

* Corresponding author. Tel: þ32 16 344235, E-mail: vanhaverbeke.maarten@gmail.com
VC The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-
use, distribution, and reproduction in any medium, provided the original work is properly cited.

REVIEW
https://doi.org/10.1093/cvr/cvab327
Cardiovascular Research (2022) 118, 3183–3197

https://orcid.org/0000-0002-4385-7069
https://orcid.org/0000-0002-5210-5184
https://orcid.org/0000-0001-5572-5883
https://orcid.org/0000-0001-5376-7369
https://orcid.org/0000-0003-2240-3532
https://orcid.org/0000-0002-2392-0702
https://orcid.org/0000-0001-7038-2874
https://orcid.org/0000-0002-4136-7293
https://orcid.org/0000-0002-5283-7561
https://orcid.org/0000-0002-8624-7738
https://orcid.org/0000-0002-4059-1779
https://orcid.org/0000-0001-6315-7177
https://orcid.org/0000-0002-5321-8543
https://creativecommons.org/licenses/by/4.0/


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

....................................................................................................................................................................................................
Keywords RNAs • Biomarkers • Genomics • Gene expression • Cardiovascular disease • Transcriptomics •

Methodology standardization • Translational cardiovascular research

1. Introduction

The treatment and outcome of patients with cardiovascular disease
(CVD) substantially improved in the past decades. Nevertheless, there is
considerable room to improve the diagnosis of CVD, predict disease
progression, and tailor therapies accordingly. Recent calls have empha-
sized this unmet need to improve precision-based approaches in CVD.1

Previous studies have shown important pathophysiological roles of cod-
ing and non-coding RNAs in all areas of CVD. Since many of these RNAs
can be measured in peripheral blood, circulating transcriptome markers
are a promising source to molecularly phenotype patients and poten-
tially improve diagnosis, prognostic power, and treatment.2 Although a
large number of discovery studies have identified candidate RNA bio-
markers, only a minority of these markers have progressed towards im-
plementation into clinical practice. The slow development of RNA
biomarkers is mainly caused by the complex role of RNAs in disease, dis-
crepant results, difficult and diverse measurement techniques with lim-
ited standardization, and lack of samples for large-scale validation.

The EU-CardioRNA Action CA17129 is an international consortium
supporting collaboration and research on RNAs in CVD, to improve our
knowledge of the pathophysiology of RNAs, and to translate this into
clinical practice. In this position paper, we describe the translational
RNA biomarker development track (Figure 1). We systematically list the
important steps and pitfalls in the development of RNA biomarkers for
CVD. We discuss the unmet clinical needs and address the issues of the
different sample types and measurement techniques in the sample

matrix. We list potential effect of demographical factors and patient
comorbidities, which should be mentioned in each biomarker study. We
finally discuss statistical and regulatory issues for translation of the candi-
date RNA into a clinically validated assay.

2. Rationale and clinical need for
RNA biomarkers

Coding and non-coding RNAs have important biological functions, which
makes them promising biomarkers. Heart- or muscle-enriched
microRNAs (miRs) are involved in cardiac development, proliferation,
hypertrophy, and failure. For instance, miR-1 and miR-133a are downre-
gulated in cardiac hypertrophy.3 Overexpression of these cardiac-
enriched miRs was protective against hypertrophy in preclinical models,
while inhibition of these miRs resulted in hypertrophy. However, consti-
tutive deletion of miR-133a1 resulted in dilated cardiomyopathy, illus-
trating the complex biological and temporal mechanism of these
molecules. A number of antisense therapies against miRNAs are cur-
rently being assessed in phase I clinical studies, e.g. miR-92 and miR-132.
miR-132 suppresses genes related to calcium handling (SERCA2A), con-
tractility, and anti-hypertrophic transcription factors (FOXO3). In a pre-
clinical porcine model, monthly intravenous administration of CD132L,
an antisense miR-132 inhibitor, improved cardiac function and reversed
cardiac remodelling.4 In a phase Ib clinical study, CD132L resulted in a
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dose-dependent miR-132 suppression in patients with heart failure and
was well tolerated.5

Although currently available biomarkers had a significant positive im-
pact on the clinical care of patients with CVD, e.g. high-sensitive assays
for cardiac troponins and assays for natriuretic peptides, the prognosis is
still poor in many areas of CVD. We next discuss a number of unmet
clinical needs where RNAs can potentially improve diagnosis and out-
come (Figure 2). Because of their important biological function, RNAs
may help to identify patients benefitting most from new therapies.

In ischaemic heart disease, muscle- or heart-enriched miRs have been
shown to be useful as biomarker to diagnose acute myocardial infarction
(MI).6,7 However, they currently do not improve the diagnosis of acute
MI on top the currently available methods and the turnaround time is
long.8 Therefore, RNAs in ischaemic heart disease may be more informa-
tive to guide therapies after the acute phase, e.g. to improve the predic-
tion of left ventricular (LV) dysfunction post-MI, predict recurrent
ischaemic events, and eventually guide new cardioprotective therapies.
In patients with ST-elevation MI, adding miR-26b-5p, miR-660-5p, and
miR-320a improved the prediction of recurrent ischaemic events.9

Thrombo-miRs may also provide new opportunities to tailor antithrom-
botic therapy in secondary prevention, since tailoring based on platelet
function testing did not improve clinical outcome.10–12 RNAs may also
allow us to better understand the pathophysiology of myocardial infarc-
tion with no obstructive coronary artery disease (MINOCA) or type 2
MI, for which no evidence-based therapies are currently available.13

Finally, many RNAs related to inflammation and metabolic changes have
been identified as promising markers of atherosclerosis and coronary ar-
tery disease (CAD).14

In heart failure, candidate RNAs such as QSOX1, LIPCAR, and MICRA
have been identified and relate to post-MI LV dysfunction.15–17 In con-
trast to muscle- or heart-enriched miRs, not all differentially expressed
RNAs are necessarily released from the heart or mirror changes at the
cardiac level.7,18 Even in patients with non-ischaemic heart failure, im-
proved molecular phenotyping is required to identify patients who might

benefit from upfront intensified neurohormonal blockade or cardiac
resynchronization therapy.

In valvular heart disease, the decision to perform a surgical or trans-
catheter valve intervention is currently made in a multidisciplinary heart
team, based on symptoms, echocardiographic parameters, and natri-
uretic peptides. To optimize the decisions for early intervention, there is
a need to improve the identification of patients at high-risk for disease
progression, e.g. in aortic stenosis or mitral regurgitation. Both miRs and
long non-coding RNAs (e.g. HOTAIR and TUG1) are dynamically regu-
lated in aortic valve interstitial cells and are associated with inflammation
and calcification in patients with aortic stenosis (AS).19,20

In atrial fibrillation (AF), besides echocardiographic signs, no bio-
markers are available to predict progression of paroxysmal to perma-
nent AF, although treatment options are different. Since the different
stages of the disease are accompanied by structural and transcriptomic

Figure 1 The translational RNA biomarker development track: steps in biomarker discovery, validation, and development of an in-vitro diagnostic RNA
test from bench to bedside. IVD, in-vitro diagnostic; RuO, research use only.

Figure 2 Unmet clinical needs to improve precision-based diagnos-
tics and therapies in cardiovascular disease. AF, atrial fibrillation; CAD,
coronary artery disease; HF, heart failure; LV, left ventricular;
MINOCA, myocardial infarction with no obstructive coronary artery
disease.
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changes in the left atrium, circulating RNAs (e.g. miR-21-5p and miR-
150-5p) may guide us for early detection of progressive disease.21 In ad-
dition, identifying patients with a high risk of thromboembolism in
AF may further improve the risk-benefit ratio of permanent
anticoagulation.

Since circulating RNAs act as intercellular communicators, they have
the potential to improve the diagnosis of clinical entities involving inter-
actions between the heart and other organs, e.g. cardiorenal syndrome.
Similar gaps in the understanding of the pathophysiology of Takotsubo
cardiomyopathy, cardiogenic shock, cardiac arrest, and myocarditis lead
to poor outcomes, even in the current era.22 Very recently, hsa-miR-
Chr8:96 has been shown a promising marker for the diagnosis of myo-
carditis, discriminating patients with myocarditis from healthy subjects
and patients with MI.23 The marker was validated in a preclinical model
and in three moderately sized independent cohorts. However, as for al-
most all of the aforementioned examples, it remains unknown to what
extent these markers may improve treatment decisions and improve
outcome.

3. Sample collection and processing

Sample collection is a crucial step when using RNA-based biomarkers.
Different sample types are available to collect cell-free or cellular RNA
(the sample matrix, Table 1). Although RNAs from cellular subfractions
or extracellular vesicles (EVs) yield more specific RNA expression pat-
terns, they are more time consuming to process and to store compared
to plasma or whole blood. Many factors in sample collection and proc-
essing can result in increased preanalytical variation with subsequent del-
eterious impact on the quantification of the biological variability. These
preanalytical variables should be reported in each biomarker study
(Figure 3).

For the collection of cell-free RNA, the use of serum tubes or tubes
with anticoagulants [ethylenediaminetetraacetic acid (EDTA), sodium
citrate, or heparin] differentially affects the concentration of miRs. The
repertoire and concentrations of RNAs found in serum samples differs
to those of corresponding plasma samples due to RNAs released during
the coagulation process.24 Significant variation in cell-free RNA plasma
levels can occur due to platelet contamination since platelets are specifi-
cally rich in miRs (e.g. miR-24, miR-126, miR-191, miR-223).12 The use of
citrate–theophylline–adenosine–dipyridamole as anticoagulant has been
suggested to decrease contamination related to platelet activation.25

Platelet-poor plasma can also be used to decrease contamination by pla-
telets and their RNA content. Heparin as an anticoagulant should be
avoided since it has a dose-dependent inhibitory effect on enzyme-based
RNA quantification.26 The same recommendation should be taken into
account for samples from patients treated with heparin as anticoagu-
lant.27 The use of heparinase to remove heparin from the samples may
be considered.7 Finally, since blood cells are a significant source of
RNAs, perturbations in blood cell counts and haemolysis may alter
plasma miR levels by up to 50-fold.18 Different methods have been de-
veloped to screen serum and plasma samples for haemolysis, e.g. includ-
ing miR-16, miR-451, and miR-486, as quality control downstream the
RNA quantification process.28 To reduce haemolysis caused by blood
sampling, a needle of adequate gauge should be used.

The storage conditions of the blood samples as used in clinical routine
may affect the extracellular RNA profile before the isolation of cell-free
fractions. Although some families of RNAs, such as miRs and circular
RNAs, have been reported as highly stable in clinical specimens due to

their remarkable resistance to nucleases, both miR degradation and re-
lease of RNA from cellular components influence the cell-free RNA pro-
file.29,30 Köberle et al.31 found that levels of miR-1, miR-16, and miR-21
were increased in EDTA and serum collection tubes incubated for 1–3 h
at room temperature prior to separation of plasma or serum from cell
components, even in the absence of significant haemolysis. Differences in
temperature and coagulation times may increase the variability between
samples. As such, delayed processing of samples and inconsistency in
storage temperature may introduce significant technical variation. A
rapid specimen processing, i.e. within 1–4 h as recommended by some
standard operating procedures, and consistency in storage temperature
is recommended.32 Nonetheless, this is not always possible, e.g. in multi-
centre setting. A meticulous storage documentation and detailed quality
control experiments are therefore imperative. The use of RNA stabiliza-
tion reagents may also be considered.33 Finally, the contamination of
blood with epithelial cells during puncture can be avoided by discarding
the first 1–2 mL of blood drawn.34

Besides cell-free RNA fractions, whole blood is also an excellent
source of RNA-based biomarkers. The transcriptomic signatures of
blood cells could provide valuable information on disease status and pro-
gression. The development of commercially available blood collection
systems allowing RNA stabilization and facilitating the storage of the
samples makes whole blood very convenient for clinical practice. Subtle
or cell-specific changes in RNA expression may not be detected since
the bulk RNA profile is measured of the entire blood compartment.
Depletion of abundant red blood cell-derived RNAs (e.g. globin RNA,
miR-16, or miR-486) may be required to improve the sensitivity of
micro-array or RNA sequencing studies.35 RNA profiles obtained from
isolated cells, e.g. CD14þ monocytes or specific lymphocytes subsets,
using fluorescence-activated cell sorting (FACS) or magnetic bead isola-
tion, may be more specific but they are time consuming to collect and
process.36

4. Extracellular vesicles

In addition to the aforementioned sample types, EVs are a promising
source of circulating biomarkers with specific characteristics. EVs exist in
different sizes and are released by the parent cells into the circulation,
shuttling molecular information, including miRNAs, from the parent cells
to the extracellular space.37 EVs therefore have a good potential to
translate into minimally invasive biomarkers (liquid biopsy).

Larger EVs, such as microparticles, possess a panel of surface markers,
which allow tracking of their cellular origin, particularly from platelets,
endothelial cells, leucocytes, and erythrocytes. Despite some initial
attempts, protocols enabling tracking of the cellular origin of the smaller
EVs populating the biofluids of patients are still lacking. This could im-
prove with recently introduced platforms, such as the ExoView R100
(NanoView Biosciences, Brighton, US) and the Flow Nanoanalyzer
(NanoFCM, Nottingham, UK). The former is an automated platform,
providing multi-level measurements for exosomes and other small EV
particle size and concentration analyses, and membrane antigens colocal-
ization. The latter reportedly acts as a high sensitivity flow cytometer
combining light scattering and fluorescence detection with distributions
of particle size. These techniques could potentially support the use of
EVs as circulating biomarkers without the need to purify them. While
researchers have mostly focused on the internal cargo of EVs, potential
biomarkers are indeed also present at the level of the EV external
surface.

4 M. Vanhaverbeke et al.3186
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rich these vesicles from the biofluid before performing molecular analy-
ses. The comprehensive analysis of several studies on pools of EVs
extracted from a biofluid suggests EVs could contain proteins,
microRNAs, other RNAs, and DNAs as well as metabolites, such as sug-
ars, amino acids, lipids, nucleotides, and N-glycans.37 The molecular sig-
nature of individual EVs is still debated, with some papers suggesting not
more than one miRNA present per every 1–100 EVs.38 Definitive

conclusions are understandably difficult, given the current infeasibility of
profiling the molecular content at single EV level, and when considering
that different protocols for EV isolation and RNA or protein extraction
and analysis produce different profiles from the same biofluids.39,40

These discrepancies will be probably resolved as technologies advances.
Recommendations on minimal information that needs to be reported

when performing studies with EVs have been published by International
Society for Extracellular Vesicles.41 These include storage temperatures
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..............................................................................................................................................................................................................................

Table 1 Advantages, pitfalls, and recommendations for each sample type in sample preparation and RNA measurement
(sample matrix)

Sample collection and processing

Advantages (þ) and pitfalls (–) Recommendations

Serum or plasma þ Easy to obtain and to store

þOften available from biobanks

- Cellular contamination

- Storage temperature and platelet activation

- Interference by haemolysis

• EDTA or CTAD (to prevent unintentional platelet-de-
rived RNA contamination) as preferred anticoagulant.
Avoid heparin

• Use miR-16, miR-451, or miR-486 for haemolysis quality

control
• Assess and standardize sampling temperature

EVs þ Potentially cell- or disease-specific information

- Time-consuming isolation (ultracentrifugation)

- Unknown purity when using commercially available kits

• Verify purity when using commercially available kits
• Consider prefiltering sample, excluding particles larger

than 0.8mm

Whole blood or isolated cells þ Easy to obtain and to store (whole blood)

- Lower sensitivity or specificity to detect a meaningful ex-

pression profile because assessing bulk RNA (whole

blood)

- Globin decreases available reads in RNA seq (whole

blood)

- Impact of differential cell counts (whole blood)

- Time-consuming isolation (isolated cells)

• Commercially available tubes with RNA stabilization

agent (whole blood, e.g. PAXgeneVR blood RNA system,

PreAnalytiX, Hombrechtikon, Switzerland)
• Library-prep with globin depletion (e.g. Illumina Stranded

Total RNA Prep with Ribo-Zero Plus)
• Report or normalize for leucocyte subset counts

RNA extraction and measurement

Advantages (þ) and pitfalls (–) Recommendations

Serum or plasma - Low yield, difficult RNA quantification

- Phenol-based extraction: higher yield, lower purity and in-

hibition of downstream reactions.

- Column-based extraction: each kit with different yield and

size cut-off

- RNA inhibition and spurious expression levels caused by

heparin

- Endogenous controls difficult to identify

- Risk of sequencing bias during small RNA sequencing

• Phenol-based: if low yield add carrier. If low purity, con-
sider ethanol precipitation or column-based clean-up
(e.g. Qiagen RNeasyVR MinEluteVR Cleanup). Be careful to
retain small RNAs.

• Consider heparinase treatment
• RNA quantification: standardize initial sample volume

and monitor PCR efficiency
• Use a combination of endogenous controls and exoge-

nous spike-ins (e.g. cel-miR-39) for normalization.
• Specific protocols to prevent sequencing bias (e.g. circu-

larization, unique molecular identifiers)

EVs - Very low RNA yield with difficult RNA quantification

- Endogenous controls difficult to identify

• Similar to serum/plasma
• Lyse EVs before RNA isolation
• Prefer no preamplification and consider digital PCR
• Column-based RNA extraction has acceptable yield

Whole blood or isolated cells þ High RNA yield

þ RNA purity and yield easily tested (e.g.

spectrophotometric)

þ Endogenous controls can be used

• Identify and validate proper endogenous control (e.g. us-

ing the NormFinder or GeNorm algorithm)

CTAD, citrate–theophylline–adenosine–dipyridamole; EDTA, ethylenediaminetetraacetic acid; EVs; extracellular vesicles; ISEV, international society for extracellular vesicles; PCR,
polymerase chain reaction.

RNA biomarkers CardioRNA position paper 53187
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..of the source (e.g. plasma), the volume used for EV extraction, the ex-
traction method with the trade-off between recovery, and specificity
and quantification by at least two methods. Recommendations on EV
isolation and RNA extraction are summarized in Table 1. The most used
isolation methods remain density gradient centrifugation, ultracentrifuga-
tion, and their combination with size exclusion chromatography.
However, these techniques are time consuming, require specialized
equipment, and are difficult to automate, which poses a limitation for the
use in clinical practice. The effect of using more simplified, cost-effective,
and commercially available methods (often resulting in higher recovery
but lower EV specificity) needs to be assessed when developing an EV-
based biomarker. Contamination caused by the method of EV extraction
also needs to be considered, especially for preparation of serum or
plasma EVs, which usually carry lipoproteins.

Despite these technical limitations, work on pooled circulating EVs
clearly show disease-associated molecular changes and suggest the poten-
tial of EVs as diagnostic and prognostic biomarkers. For instance, the num-
ber of monocyte-derived microparticles related with outcome in patients
with ST-segment MI, while the specific cargo in monocyte-derived EVs (e.g.
decreased MTCOI) related to poor outcome in patients with stable coro-
nary disease.36,42 In contrast to the oncological field, clinical studies with
EVs in CVD are still in the discovery or recruitment phase (NCT04349189,
NCT04191044, NCT04327635, NCT01104220).

5. RNA measurement

After having assessed sample collection and the appropriate sample
type, RNA extraction poses challenges that vary according to the sample
type, analytical method, and future automation requirements (Table 1).
RNAs are generally extracted using either a traditional phenol-based nu-
cleotide extraction method (e.g. TRIzol) or silica column-based extrac-
tion kits. In this latter case, the RNA species being tested (small, e.g.
miRs, or long, e.g. mRNAs) guides the choice of the kit with the appro-
priate size cut-off. Among plasma extracellular miRNA isolation kits, the

miRNeasy kit from Qiagen (Hilden, Germany) performs well in terms of
purity and recovery, but results in a high amount of unmapped reads in
RNA-sequencing.43 The low RNA yields derived from plasma, serum,
and EVs are a significant limiting factor. Adding carriers, such as glycogen,
may also improve yield in RNA-precipitation-based protocols. Due to
the membranous nature of the exosomes, lysis should be performed be-
fore RNA isolation from EVs following the manufacturer’s protocol. A
pure RNA extract for downstream analysis is still preferred above pre-
amplification, since the latter step may increase variability and bias. It is
important to be consistent when performing RNA extraction and mea-
surement: only when using standardized protocols, the results can be
interpreted and compared correctly.44 For whole blood samples, the in-
ference of haemoglobin should be considered, which, along with heparin,
is one of the major sources of inhibitors for downstream RNA amplifica-
tion. RNA quantification and quality checks are generally performed us-
ing spectrophotometric (e.g. 260 and 260/280 nm absorbances) and
electrophoresis (e.g. Agilent 2100 Bioanalyzer) techniques. However,
this step is generally not possible for RNAs derived from plasma or se-
rum, due to the low amounts recovered. A commonly used strategy
consists in extracting the same volume of plasma or serum, and monitor
the efficiency of the extraction and measurement steps [e.g. reverse
transcription and polymerase chain reaction (PCR)] using synthetic
spike-ins (e.g. cel-miR-39, Quanto EC1 and 2).45 The detection of syn-
thetic spike-ins seems to be particularly sensitive to heparin inhibition.

RNA measurement techniques can be divided between high-
throughput and targeted approaches. Among the first, RNA-sequencing
and microarrays allow to investigate the whole transcriptome or a large
portion of the sample, respectively, providing a broad analysis that is
particularly useful during the biomarker discovery phase.46 Specifically,
high-depth RNA-sequencing, long-read isoform sequencing, and exon-
arrays are not only quantitative and sensitive, but can also provide infor-
mation on the structure of the transcripts analysed.47 Single-cell RNA
sequencing can be used to identify transcripts in rare circulating cell
types, e.g. obtained using FACS. High-throughput techniques, however,
are relatively time consuming, expensive, require specialized

Figure 3 Comorbidities and preanalytical variables with significant impact on RNA expression. QC, quality control.
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instruments, skilled technical personnel, and a complex bioinformatics
analysis. Plasma/serum miRNA profiling, in particular, poses a variety of
challenges that may significantly affect the results, stimulating the devel-
opment of specific strategies to circumvent them: the formation of
adapter dimers may be prevented using chemical modifications or a
single-adapter and circularization approach.48,49 The latter protocol has
also been shown to reduce the ligation bias that can negatively affect
the coverage of low abundant miRNAs. Moreover, introducing unique
molecular identifiers in the adapter sequences can attenuate the bias en-
suing from PCR duplicates.50 Considering all these potentially con-
founding elements, validation of profiling results with an independent
technique [e.g. quantitative PCR (qPCR)] is strongly advised.

Among the targeted measurement techniques, qPCR represents the
gold standard. This amplification-based assay is an accurate method to
measure RNA and sufficiently sensitive to be reliably used in plasma and
serum samples. It is also cost-effective and not particularly challenging
from a technical and data-analysis point of view. For the detection and
accurate quantification of low-abundance RNAs (e.g. plasma, serum,
EVs), digital PCR (dPCR) is particularly indicated, as it provides direct, ab-
solute, and precise measures of target sequences, although in a less cost-
efficient manner compared to qPCR.

The next crucial issue is the choice of the correct reference RNAs for ex-
pression level normalization. This is particularly challenging for plasma/serum
miR studies, where exogenous spike-in RNAs are still frequently used be-
cause of the lack of widely accepted endogenous normalizers.51 While exog-
enous spike-ins are very useful in monitoring the efficiency of extraction and
measurement, they do not account for the quality of the original sample.
Endogenous normalizers are, theoretically, the best choice, and should have
low deviation of expression levels across samples, be minimally affected by
storage conditions and sample processing, and display a maximal efficiency
of extraction.45 A commonly used normalizer is miR-16. However, this
miRNA is present in significant levels in red blood cells and its levels in the
plasma are proportional to the degree of haemolysis. Thus, its value as nor-
malizer is limited to sample sets in which haemolysis is tightly controlled.
Small non-coding RNAs RNU6A and RNU6B are among the reference
genes most frequently used as normalizers. Although they have many posi-
tive characteristics, they are not miRs and their normalization value can al-
ways be questioned.45 When an RNA expression panel is available from a
profiling study, the total RNA content of the sample can be used for global
normalization or the panel can be used to identify the most suitable endoge-
nous normalizer for the specific experimental setting. In order to compen-
sate the potential shortcomings of each individual normalization method, a
combination of endogenous and exogenous controls is recommended.

Each of the above-mentioned RNA detection techniques currently
requires considerable time and advanced expertise for sample prepara-
tion and analysis, making them adequate platforms for centralized labora-
tories, but not suitable for point-of-care diagnostics. Alternative
technologies hold great promise, such as isothermal amplification (e.g.
loop-mediated isothermal amplification), nanobead-based, oligonucleo-
tide-templated reaction-based, electrochemical signalling-based, lateral
flow assay-based, and microfluidic chip-based strategies.

6. Influence of patient
characteristics and comorbidities
on RNA expression

Cardiovascular risk factors and comorbidities (e.g. diabetes and obesity)
act, at least in part, through alterations of metabolic and inflammatory

profiles. A growing body of literature also suggests that these factors, to-
gether with demographic factors, influence levels of peripheral blood
RNAs, highlighting the importance of documenting, reporting, and if nec-
essary adjusting for these confounding variables in biomarker studies
(Figure 3). We will here discuss those variables with sufficient evidence
to at least partially affect RNA expression in cellular or cell-free fractions
(Table 2).

Age is one of the factors most strongly associated with changes in
both miR and mRNA expression, driven by cellular senescence and age-
related metabolic conditions.57–60 Lifestyle factors such as alcohol con-
sumption and smoking also effect expression of mRNA and miRs.
Changes due to smoking have been observed in multiple tissues including
airway epithelial cells, lymphocytes, and peripheral whole blood.64,65

Many of the genes influenced by smoking are those involved in the mod-
ulation of the immune system, blood coagulation, and natural killer cell
and cancer pathways.58,65 The differential gene expression associated
with smoking may be due to its impact on chromatin remodelling and
DNA methylation status, related to peroxidation products and direct
DNA damage by smoking components. Some of these effects are revers-
ible while others persist after smoking cessation.58 Alcohol has also been
shown to induce DNA methylation changes that effect transcription.87

The effect of fasting on miR expression profiles in humans remains
unclear.88 In preclinical models, fasting upregulated miRNA-induced si-
lencing complex components, which in turn regulates a wide range of
miRNAs.89 There is ample evidence that diet influences miR expression,
whilst there is conflicting evidence about food-derived miR ending up in
the circulation.90 Despite a high degree of interindividual variation in
gene expression, a recent study on whole blood transcriptomes
highlighted effects due to fasting and post-prandial status after a high-fat
meal, with some genes, including circadian rhythm genes, exhibiting a uni-
versal response, while others, including innate immune response genes,
exhibiting subject- and time-dependent differences in response.91

Dietary patterns have also been associated with sex-specific differential
expression of thousands of mRNA transcripts in peripheral
blood mononuclear cells.92 Physical exercise has also been shown to
influence mRNA and circulating miR levels in both acute and chronic sce-
narios.54–56

External factors such as seasonal changes have been shown to influ-
ence both miR and mRNA profiles mostly through widespread seasonal
changes of immune cells and their gene expression.53,93,94 Circadian
rhythms may cause variations in circulating miR levels, thus timing of
blood collection (day/night) might affect miR expression. Several rhyth-
mically expressed miRs have been documented in various tissues includ-
ing heart and blood plasma in animal studies.95 Robust diurnal
oscillations have also been found for tissue Dicer expression (endonu-
clease controlling miR processing) in mice.96 Only a limited number of
studies focused on the diurnal variations in humans. While in few studies,
no circadian variations in levels of circulating RNAs were found,
Heegaard et al. found clear rhythmicity in circulating levels of 26 miRs
showing out two main diurnal phase patterns.52,96,97

Hormonally-controlled cycles, primarily menstrual cycle in women,
represent additional physiological rhythmicity possibly influencing miRs
expression. Bovine plasma levels of selected miRs distinctly increased
during oestrus as compared to other stages of the cycle, while data on
miR expression during the hormonal cycle in humans is inconclusive so
far.98 While Rekker et al. and Max et al. found no changes in circulating
miRs levels within the menstrual cycle in healthy women, Eisenberg et al.
found elevated serum levels of selected miRs in early follicular phase as
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compared to early luteal phase of the cycle.63,88,99 More generally, sex is
considered to significantly affect expression levels.61,62

Cardio-metabolic risk factors, which include body mass index, hyperli-
pidaemia, diabetic status, and hypertension, have been shown to influ-
ence both mRNA and miR levels in research subjects from the
Framingham Heart Study selected to exclude those on medication for
hypertension, dyslipidaemia, or diabetes.100 Whole blood gene expres-
sion data identified specific mRNA transcripts that were upregulated
amongst obese individuals, most of which belong to pathways associated
with the metabolic state and inflammatory responses.101 Many studies
have identified changes in circulating RNA expression in patients with di-
abetes mellitus, with significant overlap with obesity, metabolic syn-
drome, and CAD.14,62,66,67,102 Whole blood mRNA expression
signatures were also associated with hypertension.68 The effect of LDL
cholesterol levels on the expression profile were linked to oxidized low-
density lipoprotein (ox-LDL), with ox-LDL-loaded cells showing tran-
scriptional changes in expression of pro-inflammatory genes.103 The evi-
dence for other cardiovascular and non-cardiovascular comorbidities
and drug therapies is further summarized in Table 2.

7. Statistical approach for
biomarker discovery and validation

State-of-the-art detection and validation of biomarkers and related scor-
ing systems relies on thorough data analyses comprising multiple steps.
Although there is no common, generally accepted standard of this pro-
cess, most biomarker research papers follow a general approach
(Figure 4). For each of the steps, there is a plethora of available statistical
methods and there is ongoing discussion, which performs best in which
situation.

7.1 Step 1: marker selection and
prioritization
In the first step, features for RNA biomarkers are selected from data of
high-throughput technologies such as RNA sequencing. After proper
technique- and study-specific pre-processing and quality control, we
have a situation of a large number of markers (M) available in a small
number of individuals (N, N often much smaller than M). Therefore, in

..............................................................................................................................................................................................................................

Table 2 Comorbidities and covariables in cardiovascular patients that impact peripheral blood RNA expression

Category Description

Sampling and timing • Circadian rhythms. Diurnal (cell-free RNA)52 and seasonal (cellular RNA) changes.53 Changes in plasma miRs after ex-

ercise54–56

• Storage and processing. Changes depending on storage time, sample processing57 and heparin use7

Demographics • Age. Impact on both cell-free57,58 and cellular59,60 RNAs
• Sex. Variation in cellular RNAs according to sex61,62 and menstrual cycle (cell-free RNA)63

Risk factors • Smoking habit. Impact on cellular RNAs,64,65 sometimes reversible, and cell-free RNAs.
• Diabetes. Cellular RNA significantly influenced by diabetic status in different cohorts (using both micro-array as well

as qPCR).14,62,66

• Obesity and metabolic syndrome. Changes in cellular RNA.66,67 Hypertension (cellular)68

Non-cardiac comorbidities • Inflammatory disease. Differences observed in asthma,69 COPD (cellular RNA),70 systemic lupus erythematosus,71 and

ankylosing spondyloarthritis72

• Oncological disease. Numerous circulating coding and non-coding RNAs have been identified in cellular and cell-free

fractions of patients with malignancies73

• Immunologic events: Changes in patients with kidney transplant rejection74

Cardiac comorbidities • Atrial fibrillation. Differential expression in cellular and plasma fractions of patients with prevalent atrial fibrillation vs.

controls21,75

• Heart failure. Cell-free RNAs in systolic (e.g. LIPCAR)16 and diastolic (SENCR and other miRs)76,77 heart failure.

Cellular RNAs in ischaemic heart disease (e.g. QSOX1, MICRA)15

• Atherosclerosis. Many differentially expressed RNAs have been described in cell-free fractions,6,78 monocytes,36,67,79

and whole blood62

• Valvular disease. Possible changes in plasma miRs depending on aortic stenosis severity, with interactions based on the

presence of coronary atherosclerosis20,80

Concomitant cardiovascular drugs • Statins. Differential RNA expression in whole blood in a COPD cohort81

• Antiplatelet drugs. Platelet miR changes in patients treated with aspirin and clopidogrel82 Changes in cell-free RNAs in

patients treated with aspirin83

• Immunosuppressants. High doses of corticosteroids (AlloMapVR in the CARGO study using PBMCs84)

Acute events • Significant changes in many different cohorts of patients with acute MI (both cellular and cell-free),6,15 stroke (cellu-

lar),85 and acute infection86

COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; miRs, micro-RNAs; PBMCs, peripheral blood mononuclear cells; qPCR, quantitative polymerase chain
reaction.
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.the first step of biomarker discovery, dimensionality of the problem is of-
ten reduced by selecting or prioritizing markers for the subsequent
analysis steps. This step is not mandatory and could be combined with
the model identification step (see below). Methods to deal with this
problem are from the class of (univariate) variable importance analyses
and comprise for example methods of univariate hypotheses testing,
explained variance analysis, regression techniques, or methods of dis-
crimination analysis.104 If required, correlation structure of features can
also be considered during this step, e.g. by removing correlated features
or applying de-correlation techniques.105

7.2 Step 2: model identification
In the next step, markers selected at Step 1 are combined to a prediction
model, i.e. a formula or decision tree combining the information of sev-
eral features to one predictive framework. Established biomarkers or
clinical covariates can also be included. This step typically includes model
selection and parameter estimation for which several methods and con-
cepts are available comprising for example multivariable regression and
classification approaches, which could be linear (e.g. logistic regression,
linear discriminant analyses, and support vector machines), non-linear
(e.g. support vector machines with non-linear kernels, k-nearest neigh-
bour with different distance measures), or based on decision trees or
graphical models. Advantages and disadvantages of these methods are
compared elsewhere.106

Overfitting is a serious concern during establishing a classifier, i.e. the
classifier typically performs better in the data set where it was developed
(training set) than in a new data set (validation set). Several measures are
applied to reduce this issue as much as possible comprising for example
penalization approaches (information criteria, shrinkage) or prior limita-
tion of the degrees of freedom of a model.107 The goal is to find a trade-
off between the accuracy of the prediction in the training set (also called
in-sample accuracy) and a new data set (out-of-sample accuracy).

7.3 Step 3: model validation
Estimation of the out-of-sample accuracy requires an independent data
set comparable to that of the training set. If such a data set is not avail-
able, the set of samples can be split into a training set and a validation set,
i.e. a subset of samples is not used for the analyses in Step 2 but reserved

for assessing the prediction accuracy of the model in Step 3. To avoid de-
pendence of model identification and validation on a specific split of the
data, methods of cross-validation are often applied.108 This means that
the splitting of data is repeated in a systematic manner and a consensus
model is constructed. Combining cross-validation with resampling tech-
niques for improved out-of-sample prediction is proposed.109,110

7.4 Step 4: assessing clinical utility
Assessing the potential clinical impact of a new classifier is an important
step towards bedside translation. Several aspects are of interest. First,
the discriminative power of the test needs to be evaluated, e.g. by re-
ceiver operating characteristics (ROC) allowing assessing sensitivity and
specificity of the test for a given cut-off. Often, defining a cut-off is not
straightforward due to uncertainty with respect to the costs of false neg-
atives and positives. Therefore, the area under the curve (AUC) is typi-
cally considered as a measure of discriminative strength. A
complementary characteristic are precision-recall curves displaying the
relation between the positive predictive value (precision) and the sensi-
tivity (recall). Compared to ROC, this curve is not affected by imbal-
anced case/control samplings, e.g. enrichment of controls with low
classifier values.

In the next step, new classifiers are compared with current standards
(other biomarkers, tests, risk factors). Although this can be done by
comparing, e.g. AUC of ROC, there are clinically more intuitive indices
available for this purpose. Net Reclassification Improvement (NRI) com-
pares the correct re-classifications between two tests.111 It is recom-
mended to calculate this statistic separately for cases and controls.112

The Integrated Discrimination Index (IDI) assesses the gain in sensitivity
and specificity over all possible cut-offs compared to another test.113 It
was pointed out recently that NRI and IDI should not be used for signifi-
cance testing.114 Finally, the effectiveness of a new classifier in a given
population can be evaluated by Numbers Needed to Screen, which is
the average number of tests required to prevent one event.115

However, this statistic also depends on the effectiveness of treatment
measures applied to test-positives.

Figure 4 Statistical workflow to develop and validate an RNA-based classifier and assess the clinical utility. CAD, coronary artery disease; IDI, integrated
discrimination index; NNS, number needed to screen; NRI, net reclassification improvement; PRC, precision-recall curve; qPCR, quantitative polymerase
chain reaction; ROC, receiver operating characteristics.
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7.5 Step 5: adaptation and generalization
Generalization is a major issue to improve clinical utility of a developed
classifier. Often, the classifier was developed in a specific selection of
cases and controls (i.e. with specific inclusion/exclusion criteria and
highly standardized testing environments), which does not mirror the
general population or conditions in general health care. Thus, the classi-
fier might require re-calibration to new situations by re-weighting the
components of the prediction model, e.g. by using appropriate regres-
sion techniques to determine new weights or by Bayesian approaches
using the established weights as priors.

8. Regulatory aspects from research
use only to in-vitro diagnostic test

Once potential biomarkers have been evaluated in a discovery phase,
steps have to be made towards the development of a clinically useful as-
say . Only few candidate markers from a discovery phase are translated
to the status of research use only (RoU) tests. Even more rare is that
RoU tests are validated as in-vitro diagnostic (IVD) tests and taken up into
clinical practice. Thus, we observe that only few promising projects are
continued beyond the publication of interesting biomarker discovery
and validation studies, or even the RoU status of development. Besides
the need for reproducibility in broader validation cohorts, there are
other important milestones that need to be achieved in order to trans-
late these biomarker candidates into clinically useful IVD tests. We next
describe these other crucial steps that need to be taken to go from bio-
marker validation to approval as an IVD test (Figure 1). Some of these
steps may already have been partially addressed during the discovery or
validation phase of the study.

8.1 Step 1: the ‘Intended-Use Statement’
The first essential step, if not done already at the beginning of the discov-
ery phase, is to define the ‘intended-use’ of the test. This seems a trivial
action but is highly important as it will subsequently affect the regulatory
pathway and efforts that need to be taken during analytical and clinical
validation of the biomarker. The intended-use must include a description
of the (patient) target population, the biological matrix, the type of assay
(quantitative vs. qualitative), and target molecules, and potentially the
clinical action that is triggered by the test. From our experience, the clini-
cal uptake of a test strongly depends on the clear definition how the test
result will support decision-making of physicians.

8.2 Step 2: assay selection, validation, and
sample logistics
In the next step, the requirements for assay type and sample logistics can
be delineated from the intended use. Typically, the assay platform for
biomarker discovery and validation is selected based on the availability of
instruments and know-how in the research lab, and commonly RNA bio-
markers are measured using various types of laboratory assays such as
qPCR, dPCR, RNA sequencing, or other targeted hybridization-based
techniques. However, the turn-around-time that is required for the test
result to be clinically useful must be considered as well. In case the turn-
around-time can be 6–8 h or more, conventional ‘laboratory assays’ such
as qPCR are suitable. In this case, the pre-analytical logistics such incuba-
tion times before sample processing, and storage temperatures and ana-
lyte stability must be determined alongside analytical validation of the
assay.116

In case the turn-around-time should be shorter, rapid diagnostic test
platforms or point-of-care platforms must be used for the IVD test.117

This will likely require additional assay development efforts and bridging
studies to demonstrate comparability to the results obtained from the
laboratory tests. Once the assay and sample type have been determined,
manufacturing protocols according to for example ISO13485 standards
must be implemented. The prototype assays need to be taken through
analytical validation studies to determine key parameters such as repro-
ducibility, accuracy, specificity, and sensitivity of the test. Analytical vali-
dation protocols should be defined taking into account the national or
regional legal requirements for IVD approval.

8.3 Step 3: regulatory pathway
In Europe, the legal basis for placing IVD tests on the market is the In-
Vitro Diagnostics Regulation (IVDR), which was released in April 2017
and will fully replace the In-Vitro Diagnostics Directive after 26 May 2022.
Importantly, the IVDR includes a risk-based classification of IVDs with
four risk classes (A is lowest risk, and D is highest risk), which take into
account the intended purpose of a test as well as its inherent risk. For ex-
ample, tests for determining blood type to determine the suitability of
blood specimens for transfusion are considered high risk, since a wrong
test result will have severe impact on the health of the test person. A ma-
jor change compared to the previous directive is the risk classification
system, since the IVDR risk classification is now based on rules, which
means that the intended-use of the test together with assay type define
the risk class. For example, most ‘omics-based’ technologies for diagno-
sis, prognosis, staging, or guiding the treatment of a disease will from
now on fall into the second highest class C, which means mandatory in-
volvement of notified bodies (which are tasked with IVD approval in
Europe) and conduction of clinical performance evaluation studies using
the analytically validated test device. The extent of such studies depends
on the intended-use (i.e. the type and size of the disease population) and
the already available amount of data.

In the United States, the FDA is tasked with the approval of molecular
diagnostic IVD tests and distinguishes three risk classes. Molecular diag-
nostic tests without predicate devices, i.e. already approved tests with
the same intended-use and technology, will most likely require clinical
studies. In order to determine the exact regulatory pathway [510(k) pre-
market notification vs. pre-market approval] a pre-submission meeting
with the FDA is highly recommended.

8.4 Step 4: cost-utility analysis and
reimbursement
Once the technical documentation of the analytical and clinical perfor-
mance of an IVD test have been reviewed and approved by the regula-
tory agencies, IVD tests can be placed on the market. However, this
does not necessarily result in immediate uptake of the test by its target
audience. Uptake of a novel test can be catalysed by two main achieve-
ments.118 First, inclusion into patient management and treatment guide-
lines by any professional society, and second reimbursement of the test
cost by medical insurances. In order to achieve this, the impact of any
new IVD test on health of the target population and the budget of the
paying stakeholder needs to be evaluated. This can be done using the
principals of cost-utility (or health-economic) studies, which model the
impact of test uptake on health outcomes such as mortality, morbidity,
life-years, and quality-adjusted life years.119 The change (improvement)
in health outcomes is then contrasted with the expected impact on bud-
get for the IVD test, additional (or avoided) treatment, and/or hospital
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interventions, etc. Cost-utility is then calculated as the incremental cost-
efficiency ratio between the change in health (H) and change in budget

(B) before and after uptake of the IVD test: ICER e

health

� �
¼ H1�H0

B1�B0
. The

amount of money paid per unit of health outcome (‘willingness to pay’) is
country-specific, but as a rule-of-thumb, one gross domestic product per
unit of health outcome is considered cost-effective, meaning that health
care payers are willing to invest this money. Importantly, the construc-
tion of such a model can be very helpful during the early stage of IVD
test development since it can be very helpful to define thresholds for di-
agnostic performance and cost of the test procedure in order to be still
‘clinically useful’.

9. Examples of clinical-grade RNA-
based tests

To our knowledge, only two clinically relevant RNA-based IVD tests
have been made commercially available: AlloMapVR (CareDx, Brisbane,
CA, USA) to rule-out acute cellular rejection after cardiac transplanta-
tion and CorusVR CAD (CardioDx, Palo Alto, CA, USA) to rule-out
CAD in non-diabetic patients. Both tests were developed using an RNA
micro-array in the discovery phase, followed by qPCR to confirm the
identified genes (on the same or new samples) and to establish the classi-
fier (Figure 4).14,84,120 Importantly, preanalytical bias caused by clinical
variables affecting expression of the transcripts was timely identified and
corrected for (e.g. time post-transplant, steroid dose, and transcripts
influenced by sample processing for AlloMapVR and diabetic status and
cell count for CorusVR CAD). The classifier was next validated in inde-
pendent cohorts.78 The clinical benefit of AlloMapVR was shown in the
IMAGE study, with a reduction in the number of endomyocardial biop-
sies without an increase in adverse events.121 This clinical benefit, to-
gether with continued validation (CARGO II) and regulatory approval,
led to active clinical use of this RNA-based test.122 For CorusVR CAD, ad-
ditional validation studies were performed, but the clinical benefit was
less convincing and no regulatory approval was obtained.123,124

Together with the availability of other non-invasive tests to rule-out
CAD (such as coronary CT angiography), this led to the discontinuation
of the test.

10. Perspectives and main
challenges

There is a clear need for new molecular biomarkers for clinical use.
However, only a well-orchestrated approach using standardized techni-
ques and showing clinical benefit can lead to a successful IVD test. With
COVID-19, we have seen an unprecedented interest in the use of RNA-
based vaccines. These developments will certainly pave the way for fu-
ture developments of other RNA-based applications.

The potential of RNAs to aid in personalizing health care has been
suggested by many studies, yet RNA-based biomarker applications are
still at a preclinical research level. Challenges linked to the measurement
of RNAs in biological fluids are currently being addressed and great
efforts are being made regarding their reproducibility, accuracy, time-
and cost-effectiveness, and acceptance by the clinical community.
Because of the complex RNA biology, the exact mechanism which
results in a dysregulated peripheral blood level of a candidate RNA bio-
marker is often uncertain, e.g. as for LIPCAR or QSOX1, while for others,

e.g. muscle-enriched miRs, it is clearer. Therefore, to facilitate uptake by
the clinical community and approval by the regulatory bodies, indepen-
dent validation of associations between RNA expression values and dis-
ease outcome in properly sized populations is of paramount importance.
A database gathering existing cohorts of patients with CVD available for
sharing will help designing independent validation strategies.125 Since
some RNAs have a significant variability in expression levels, prediction
models based on artificial intelligence and combining both RNA data and
clinical data of patients may constitute future tools for personalized
medicine.126

With these recommendations, we aim to promote standardization in
the development process and catalyse efforts to investigate novel RNAs
that may improve the treatment of CVDs in a precision-medicine ap-
proach. Overall, as shown for COVID-19 vaccines, there is great hope
that RNA constitutes the next family of RNA biomarkers for clinical
practice.

Authors’ contributions

Significant contribution to the manuscript content: M.V., R.A., M.B., S.B.-
A., T.B., D.d.G.-C., C.E., R.F., J.G., M.H., B.K., F.M., M.S., S.B.W., Y.D.
Manuscript drafting: M.V., Y.D. Manuscript review and revision: M.V.,
R.A., M.B., S.B.-A., T.B., D.d.G.-C., C.E., R.F., J.G., M.H., B.K., F.M., M.S.,
S.B.W., Y.D.

Acknowledgements
This article is based upon work from EU-CardioRNA COST Action
CA17129 (www.cardiorna.eu) supported by COST (European Coopera-
tion in Science and Technology).

Conflict of interest: M.H. and J.G. are co-founders of TAmiRNA
GmbH. M.H. is employed by TAmiRNA. D.d.G.-C. has filed a patent on
miRs as biomarkers. Y.D. holds patents related to diagnostic and thera-
peutic applications of RNAs. T.B. holds a patent on miRNAs as diagnos-
tic tools for acute kidney injury.

Funding
D.d.G.-C. has received financial support from Instituto de Salud Carlos III
(Miguel Servet 2020: CP20/00041), co-funded by the European Social Fund
(ESF) ‘Investing in your future’. CIBER Cardiovascular (CB16/11/00403 to
D.d.G.-C.) is a project from Carlos III Health Institute. Y.D. is funded by the
EU Horizon 2020 project COVIRNA (grant agreement # 101016072), the
National Research Fund (grants # C14/BM/8225223, C17/BM/11613033, and
COVID-19/2020-1/14719577/miRCOVID), the Ministry of Higher Education
and Research, and the Heart Foundation—Daniel Wagner of Luxembourg.
C.E. is funded by the British Heart Foundation Programme Grant and
Personal Chair Awards (RG/15/5/31446 and CH/15/1/31199), the EU
Horizon projects MEDIRAD (NFRP Call) and COVIRNA (grant agreement
# 101016072), and Research England (Global Challenges Research fund
2019/2021). M.H. is funded by the Eureka-Eurostars project THROMBOMIR
through the FFG (grant agreement 871562). M.B. and B.K. are funded by the
Scientific Grant Agency of the Ministry of Education, Science, Research and
Sport of the Slovak Republic and the Slovak Academy of Sciences (grant
VEGA no. 2/0104/20). F.M. is supported by the Italian Ministry of Health
‘ricerca corrente’ and RF-2019-12368521, Telethon Foundation (#446
GGP19035A), AFM-Telethon (# 23054), and EU Horizon 2020 project
COVIRNA (grant #101016072).

RNA biomarkers CardioRNA position paper 113193

http://www.cardiorna.eu


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
References

1. Bayes-Genis A, Voors AA, Zannad F, Januzzi JL, Mark Richards A, Diez J.
Transitioning from usual care to biomarker-based personalized and precision medi-
cine in heart failure: call for action. Eur Heart J 2018;39:2793–2799.

2. Perrino C, Barabasi AL, Condorelli G, Davidson SM, De Windt L, Dimmeler S,
Engel FB, Hausenloy DJ, Hill JA, Van Laake LW, Lecour S, Leor J, Madonna R, Mayr
M, Prunier F, Sluijter JPG, Schulz R, Thum T, Ytrehus K, Ferdinandy P. Epigenomic
and transcriptomic approaches in the post-genomic era: path to novel targets for di-
agnosis and therapy of the ischaemic heart? Position Paper of the European Society
of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res
2017;113:725–736.

3. Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure.
Circ Res 2013;113:676–689.

4. Batkai S, Genschel C, Viereck J, Rump S, Bar C, Borchert T, Traxler D, Riesenhuber
M, Spannbauer A, Lukovic D, Zlabinger K, Hasimbegovic E, Winkler J, Garamvolgyi
R, Neitzel S, Gyongyosi M, Thum T. CDR132L improves systolic and diastolic func-
tion in a large animal model of chronic heart failure. Eur Heart J 2021;42:192–201.
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Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A,
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P, Gu W, Gyöngyösi M, Hackl M, Karaduzovic-Hadziabdic K, Lustrek M, Martelli F,
Nham E, Poto�cnjak I, Satagopam V, Schneider R, Thum T, Devaux Y.
Cardiovascular RNA markers and artificial intelligence may improve covid-19 out-
come: position paper from the EU-CardioRNA cost action CA17129. Cardiovasc
Res 2021;117:1823.

RNA biomarkers CardioRNA position paper 153197


	tblfn1
	tblfn2



