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Abstract

Nearly all diseases are caused by different combinations of exposures. Yet, most epi-

demiological studies focus on estimating the effect of a single exposure on a health

outcome. We present the Causes of Outcome Learning approach (CoOL), which seeks

to discover combinations of exposures that lead to an increased risk of a specific out-

come in parts of the population. The approach allows for exposures acting alone and

in synergy with others. The road map of CoOL involves (i) a pre-computational phase

used to define a causal model; (ii) a computational phase with three steps, namely (a)

fitting a non-negative model on an additive scale, (b) decomposing risk contributions

and (c) clustering individuals based on the risk contributions into subgroups; and (iii)

a post-computational phase on hypothesis development, validation and triangulation

using new data before eventually updating the causal model. The computational

phase uses a tailored neural network for the non-negative model on an additive scale

and layer-wise relevance propagation for the risk decomposition through this model.

We demonstrate the approach on simulated and real-life data using the R package

‘CoOL’. The presentation focuses on binary exposures and outcomes but can also be

extended to other measurement types. This approach encourages and enables

researchers to identify combinations of exposures as potential causes of the health
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outcome of interest. Expanding our ability to discover complex causes could

eventually result in more effective, targeted and informed interventions prioritized for

their public health impact.

Key words: Causes of effects, sufficient component cause model, inductive–deductive, machine learning, neural

networks, explanations, precision public health, complex epidemiology, interactions, supervised clustering

Introduction

Most diseases are multifactorial and exposures may act to-

gether and lead to combined effects that exceed the sum of

the individual effects on an additive scale, which is called

synergism.1–3 A classic example is how the combined effect

of smoking and asbestos on lung cancer exceeds the sum of

their individual effects.4 The most established theoretical

framework for understanding synergism in epidemiology is

the sufficient cause model. This model uses causal pie illus-

trations of components of causes to indicate that when all

components of one cause are present it is sufficient to cause

disease.5 Assessing synergisms may lead to improved pub-

lic health in two ways: (i) better disease prevention and

treatment through insight into the causation of a disease

(aetiology) and (ii) quantification of the disease burden in

high-risk subgroups who may benefit from risk-mitigating

interventions. For decades, these points have been appreci-

ated for effective preventive strategies. Rose, for example,

said that ‘risk assessment must consider all relevant factors

together rather than confine attention to a single test, for

nearly all diseases are multifactorial’ when discussing

effective policy decisions.6

Few epidemiological studies try to identify larger combi-

nations of causes for specific outcomes despite the policy rele-

vance. We suspect that the apparent lack of epidemiological

studies into causes of outcomes has several reasons: (i) fre-

quently taught frameworks for epidemiologists that warn

against type 1 errors from multiple testing (false-positive

findings),7 (ii) various confounding structures for each expo-

sure complicate causal interpretation,8 (iii) the overwhelming

number of combinations among exposures challenges the

model fitting,9 (iv) insufficient statistical power in small data

samples hides true phenomena and (v) the lack of theoreti-

cally founded approaches.9,10 Frameworks for identifying

component causes exist, though they are not commonly ap-

plied in epidemiology. These frameworks select on either out-

come11 or exposure.12 Unfortunately, these frameworks can

only consider a few exposures at a time and they do not allow

for the estimation of risk, which is often of public health in-

terest. In the social sciences, configurational comparative

methods deal with sufficient causes (referencing earlier

work13). The most famous of these methods is the qualitative

comparative analysis,14,15 which has been applied in the pub-

lic health domain.16 Qualitative comparative analysis works

by analysing all combinations of exposures and uses a top-

down search of exposure combinations that fulfil some

chosen criteria, such as a risk threshold.15 Using pre-defined

risk thresholds has advantages as transparent protocols and

disadvantages as being threshold-sensitive and confined to

unadjusted tabular data.

Moreover, assessing exposure synergisms through stan-

dard approaches based on calculating all possible combina-

tions of exposures is rarely feasible in practice. First, such

analysis would be based on a large number of parameters

requiring large sample sizes and posing computational chal-

lenges. Second, the numerous parameters returned from re-

gression are not interpretable and potentially misleading as

Key Messages

• Most diseases are caused by a combination of multiple exposures but most epidemiological studies focus on one

single exposure and one single health outcome.

• Using causal inference and machine learning, the Causes of Outcome Learning approach addresses explorative

questions such as ‘Given a particular health outcome, what are the most common combinations of exposures, which

might have been its causes?’.

• Using simulated data and real-life data, we demonstrate the usefulness of the approach.

• A tutorial is included in the Supplementary material of this paper (available as Supplementary data at IJE online) and

the R package ‘CoOL’ is available to assist researchers with the computational phase.
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demonstrated in Supplementary Comparison 1 (available

as Supplementary data at IJE online).

We introduce a causal inference-inspired machine learn-

ing approach called the Causes of Outcome Learning

(CoOL) approach. CoOL is aimed at generating insights

regarding questions like ‘Given a particular health out-

come, what are the most common combinations of expo-

sures, which might have been its causes?’. It utilizes the

flexibility of a tailored machine learning model and an ex-

planation technique to discover meaningful combinations

of exposures while avoiding certain causal biases.

Examples of questions to ask using CoOL could be ‘What

are the most common combination of environmental and

household exposures measured before 6 weeks of age caus-

ing child mortality in Guinea-Bissau between 6 weeks of

age to 3 years of age?’ or ‘What are the most common com-

bination of stressful events in childhood causing a high dis-

ease burden in early adult life in Denmark?’. To answer

these questions well, we must explore many combinations

of exposures. Targeting subgroups for interventions aimed

at these combinations of exposures may provide a large

public health impact. We present the approach assisted by

a simple simulated example solely for pedagogical pur-

poses but CoOL also works on complex scenarios with

higher-order interacting synergy. A step-by-step tutorial

and six simulations of various complexity are included in

Supplementary Simulations 1–6 (available as

Supplementary data at IJE online). Three robustness

checks are found in Supplementary Simulations 7–9 (avail-

able as Supplementary data at IJE online). A six-page real-

life application using cohort data from the Center of

Disease Control and Prevention is available in the

Supplementary real-life analysis (available as

Supplementary data at IJE online). A glossary can be found

in Supplementary Table 1 (available as Supplementary

data at IJE online).

Simulated example

We generate a healthy study population of 10 000 individ-

uals (half men and women); 20% are exposed to Drug A

and 20% are exposed to Drug B. Sex, Drug A and Drug B

are independent. In this scenario, all individuals have a

baseline risk of developing any atopic disease of 5%

throughout a 10-year follow-up period; men who are ex-

posed to Drug A have a 15% higher risk of developing at-

opy and so do women who are exposed to Drug B. The

simulated example uses two two-way interactions as a ped-

agogical example but CoOL can identify any higher-order

interacting synergy if it exists in data and the data set is

large enough.

The CoOL approach

CoOL is enabled by recent advances in understanding why

machine learning models produce the results they do [ex-

plainable artificial intelligence such as layer-wise relevance

propagation (LRP)17–19] and by the science of causal struc-

tures for causal inference.20 CoOL is a three-phase induc-

tive–deductive scientific process (Figure 1). The bulk of our

method’s contribution is related to the second phase. The

goal of CoOL is to generate hypotheses for further testing.

The road map for applying CoOL is as follows:

a. The pre-computational phase: Propose a causal model

using a directed acyclic graph (DAG) of the exposures

Figure 1 The phases of CoOL towards inference to the best explanation

(a) Pre-computational phase: scoping the research question and causal structure assumptions. (b) Computational phase: (i) A non-negative model as

close to the assumed causal model is fitted, (ii) risk contributions are decomposed and (iii) individuals are clustered into subgroups. (iv) Manual vali-

dation of the results is suggested in an internal validation data set to assess the stability of the results. (c) Post-computational phase: the results are

held against existing evidence in order to develop new hypotheses that can be tested in new studies. New understandings will update our initial as-

sumed causal model
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and the outcome based on prior domain expertise of se-

lected actionable exposures and contextual factors.

This phase aids the identification of exposure variables

to include in the analysis.

b. The computational phase: The goal of this phase is to

identify subgroups of the population who have certain

combinations of exposures that together were found to

elevate their risk for the health outcome [we provide

the R package ‘CoOL’ (Supplementary Information 1,

available as Supplementary data at IJE online)]:

1. Training data:

i. Fit a non-negative model on an additive scale

based on the features from the assumed causal

model. We suggest a tailored neural network

that can capture synergistic effects using activa-

tion functions, which allows combinations of

covariates interacting to predict higher risks.

ii. Decompose the risk contributions.

iii. Cluster individuals based on the risk

contributions.

2. Internal validation data:

i. Ensure the robustness of the findings in an inter-

nal validation data set.

c. Post-computational phase: Based on learnings from the

computational phase and existing knowledge, develop hy-

potheses to be assessed in further (intervention) studies on

new temporal or external validation data. The approach

focuses on common high-risk subgroups and directs

researchers towards potentially large public health im-

pact. The outcome of this phase is to suggest one or sev-

eral sound hypotheses by combining the empirical

findings from one’s own data with a critical assessment.

Inference from CoOL relies on how risk contributions

cluster in subgroups of the population. These risk

contributions rely on causal assumptions specified in the pre-

computational phase but they are not counter-factual

estimates, i.e. reflecting what would have happened had the

exposure been absent. The main challenges for a causal inter-

pretation in CoOL as well as in standard approaches are first

that the measured covariates may be insufficient to adjust for

confounding, second as the total effects of exposures are di-

luted if mediators are included in the model, and third be-

cause the effect of synergistically co-acting exposures is

divided between the risk contributions estimated via CoOL.

However, CoOL is designed to avoid biases the following

ways: (i) guiding the inclusion of relevant exposures through

expertise-based knowledge in the pre-computational phase,

(ii) using a relaxed monotonic model to prevent the introduc-

tion of collider bias9 when clustering risk contributions

(Supplementary Comparison 2, available as Supplementary

data at IJE online), (iii) adjusting for calendar effects to

prevent spurious time-trend associations (Supplementary

Method 1, available as Supplementary data at IJE online),

(iv) re-weighting the study population if some individuals are

censored during follow-up to prevent selection bias9

(Supplementary Method 2, available as Supplementary data

at IJE online) and (v) designing the model set-up on an addi-

tive scale to allow us to identify synergisms, which a multipli-

cative model could not.

We use the following notation in the next sections: Xi

denotes i exposures, Y denotes the outcome and SCj

denotes j unknown sets of sufficient causes for the outcome

(inspired by the notation by VanderWeele and Robins21).

USCi and U denote different types of unmeasured (including

unmeasurable and unknown) causes. USCi denotes the

unmeasured component causes of SCj, whereas U denotes

unmeasured causes of Y. Rbþ denotes a baseline risk as-

sumed to affect all individuals. Activation functions are

denoted as Sþ. Connection parameters from the exposures

to the activation functions are denoted as bþi;j. Intercepts

are denoted as a�j . þ denotes restrictions to non-negative

values (�0, positive or zero) and � denotes restrictions to

non-positive values (�0, negative or zero).

Pre-computational phase

Causal structures are commonly depicted with DAGs,22

which allow a causal interpretation of associations given a set

of causal assumptions: exchangeability, positivity, consis-

tency, no measurement error and no model misspecification.9

The intuition of CoOL is to link exposures to un-

known sufficient causes21 (with probabilistic effects, not

deterministic) as illustrated in Figure 2a and c. The theo-

retical DAG in Figure 2c makes no assumptions about the

existence of causal effects between exposures and out-

comes, and the computational steps aim at reducing these

causal effects towards the minimal sets of component

causes. The assumed causal model assists in exposure se-

lection: actionable exposures that we can intervene on,

such as drug intake, and contextual factors, which de-

scribe subgroups in risk. It also helps to decide whether

proximal non-actionable exposures should be excluded if

they mediate effects of actionable exposures and thus

mask their effects. Further, the assumed causal model is

used for the interpretation of the results because only di-

rect and joint effects are returned.8

A common drawback of existing synergistic risk estima-

tion models is their positive monotonicity assumption, i.e.

exposures either have no effect or always act in the same

direction on the outcome.1,23 The proposed non-negative

model (next section) relaxes the monotonicity assumption

by letting us explore all directions of exposures on the out-

come simultaneously for which effects act independently
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or synergistically with others (e.g. if there exist exposures

that are especially harmful for men and other exposures

that are especially harmful for women). If we had applied

a model with both positive and negative parameters, the

risk contributions would also take both negative and posi-

tive values, which would be difficult to interpret. Further,

since the risk contributions are conditioned on the out-

come, clustering risk contributions from a model with pos-

itive and negative parameters could lead to collider bias

stratification9 and thus result in spuriously inversely corre-

lated risk contributions (Supplementary Comparison 2).

Using monotonicity (including the relaxed version) by ap-

plying a non-negative model prevents collider bias in the

computational phase Step 3 when clustering the risk

contributions.

In causal inference studies, inclusion of covariates

causing confounding is solely for adjustment.9 In CoOL,

all potential causes of the outcome are of relevance (i.e.

covariates are also considered as potential exposures of in-

terest) and including them carefully allows quantification

of individual and joint direct exposure effects adjusted for

when individual exposures confound the effect of another

exposure (due to being on the latter exposure’s backdoor

path to the outcome).20 However, researchers need to

consider issues with unmeasured confounding, selection or

collider bias and measurement bias. In studies, where data

are gathered over a longer time span, calendar time may

introduce spurious correlations if changes occur in expo-

sure prevalence and in diagnosis criteria. The model can be

adjusted for calendar time without attributing it a risk

Figure 2 Sufficient causes, causal model and non-negative neural network

The pictogram shows the relation between epidemiological theory, structural models and a non-negative neural network. The left column is a generic

presentation and the right column shows the simulated example. (a) and (b) An illustration of sufficient causes. The example to the right shows that a

certain disease occurs if men are exposed to Drug A and some unknown factors and if women are exposed to Drug B and some unknown factors. (c)

and (d) An assumed causal model illustrated using a directed acyclic graph, where Xi denotes the exposures, USCi denotes the unmeasured causes

of the sufficient causes, U denotes the unmeasured causes of Y assumed to affect all individuals, SCj denotes hidden sufficient causes and Y denotes

the outcome. (e) and (f) A non-negative neural network resembling the assumed causal model. Xi denotes exposures, bþi ;j denotes non-negative

parameters, Sþj denotes hidden activation functions, a�j denotes non-positive intercepts acting as activation thresholds for activation functions and

Rbþ denotes the baseline risk
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contribution (Supplementary Method 1, available as

Supplementary data at IJE online). Also, selection bias

may occur if at-risk individuals become systematically cen-

sored. To prevent selection bias due to censoring during

follow-up, the model can be adjusted using inverse proba-

bility of censoring weights assuming a correct model speci-

fication of the probability of not being censored during

follow-up (Supplementary Method 2, available as

Supplementary data at IJE online).

For our motivating example, we assume that sex, Drug

A and Drug B do not share a common cause. Ideally, we

want to identify the sufficient causes shown in Figure 2b

and the DAG showing our scientific interest has been

drawn in Figure 2d. Had other information been available,

we may have included it or not, depending on the assumed

causal structure for developing atopy.

Computational phase

The many potential combinations of exposures increase

the risk of identifying spurious associations. To manually

validate the findings before developing hypotheses, data

are split into a training data set and an internal validation

data set. We suggest fitting the model on the training data

(with regularization to reduce overfitting to noise, which

could produce ungeneralizable predictions) until it con-

verges based on the error function. A training scheme using

k-fold splits of the training data may be useful in very large

data sets but needs further investigation.

Fitting a non-negative model

We suggest a non-negative, single-hidden layer, neural net-

work on an additive scale (Figure 2e) as the mathematical

model designed to mimic our assumed causal model

(Figure 2c). This model resembles a linear regression model

estimating risk differences but with two key modifications.

First, the model includes a series of latent interactions that

can combine the effects of various exposures. The latent

interactions are estimated using what is known in machine

learning as activation functions, SþðÞ, represented in the

hidden layer between the exposures and the outcome.

Second, we restrict all connection parameters to have non-

negative values (�0, positive or zero)24 so that exposures

can only increase the occurrence of the outcome.1 Further,

each category of the variable is binary/one-hot encoded

into one new variable each with 0 if not present and 1 if

present and thereby meets a relaxed version of the monoto-

nicity assumption. The disease outcome is coded 0 and 1.

The activation functions return the non-negative (�0, posi-

tive or zero) sum of its input value. The intercepts can only

take non-positive (�0, negative or zero) values and act as

an activation threshold that only allows combinations of

exposures with large bþi;j-weighted sum to pass SþðÞ. The

baseline risk can only take non-negative (�0, positive or

zero) values. The non-negative and non-positive restric-

tions are made to decompose and cluster the risk contribu-

tions without suggesting spurious subgroups due to

collider bias (Supplementary Comparison 2, available as

Supplementary data at IJE online). If a person has no risk

contribution of any exposures, the person is assumed to

have a risk equal to the baseline risk. The connection

parameters between the activation functions and the out-

come have a fixed value of 1. The model estimates the risk

on an additive scale so that synergisms are defined as com-

bined effects that are larger than the sum of individual

effects.5

This model can be formulated as below and satisfies the

assumption that the added risk is independent of the base-

line risk or is formulated as an ‘independent of back-

ground’ model according to Beyea and Greenland: 25

P
�
Y ¼ 1jX

�
¼
X

j

�
Sþ
�X

i

�
Xi � bþi;j

�
þ a�j

��
þ Rbþ

Fitting the model is done using stochastic gradient de-

scent on the training data set: in a step-wise procedure run

on one individual at a time, the model estimates the indi-

vidual’s risk of the disease outcome, PðYjXÞ, calculates the

squared prediction error ðY� PðYjXÞÞ2 and adjusts the

model parameters to minimize this error.26 By iterating

through all individuals for multiple epochs, we obtain

model parameters, which minimizes the sum of prediction

errors across the entire population. The initial values,

derivatives, learning rates and regularization parameter are

described in Supplementary Information 2 (available as

Supplementary data at IJE online).

Our simulated example data are split into a training

data set and an internal validation data set. Figure 2f

presents the model for our motivating example. We

binary-encode new variables for each possible category of

each exposure, such that sex (coded 0 if man, 1 if women)

becomes two factors: man (coded 1 if man, 0 if not man)

and woman (coded 1 if woman, 0 if not woman) and so

forth for Drug A and Drug B. If, for example, we had

strong expertise knowledge that Drug B could only be

harmful (and never beneficial), we could have used this

causal information to limit the degrees of freedom in the

model and decrease the chance of discovering false-positive

findings. The training data set is used to fit the proposed

non-negative model with 10 hidden activation functions.

Figure 4a–c shows how the error decreases by each epoch;

it visualizes the neural network connections and receiver

operating characteristic curve. Although the predictive per-

formance measured by the area under the receiver
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operating characteristic curve (AUC) provides a useful

metric for evaluating model discriminatory performance

across the entire population, a model with low AUC can

still capture important sets of causes for particular

subgroups.27

Decomposing risk contributions

Machine learning models are commonly referred to as

black boxes due to the limited interpretability of their

parameters and the way they interact with the input varia-

bles.28 Instead of attempting to interpret the model param-

eters directly, we use LRP17–19 to decompose the risk of

the outcome to risk contributions for each individual (in

particular, we use the LRPalpha¼1, beta¼0 rule). LRP was in-

troduced by Bach et al. in 201517 as a decomposition tech-

nique for pre-trained neural networks and was later

justified via Deep Taylor Decomposition.29 As opposed to

other explanation techniques for neural networks, LRP is

aimed at conserving the information such that all relevance

measures sum to the probability of the outcome. In CoOL,

the predicted risk of the outcome, P Y ¼ 1jXð Þ; is decom-

posed into a baseline risk, Rbþ, and the risk contributions

by each exposure, RX
i (where PðY ¼ 1jXÞ can take values

between 0 and 1):

Rbþ þ
X

i

RX
i ¼ P Y ¼ 1jXð Þ

These risk contributions may be interpreted as an ex-

pression of the exposures’ positive contribution to the risk

given the model and the individual’s set of exposures. The

estimation is designed to prevent spurious associations and

direct researchers in identifying combinations of exposures

associated with elevated risk of a specific health outcome,

but they cannot directly be interpreted as the counter-fac-

tual effect of what would have happened had the exposure

been absent. No risk contributions are decomposed to the

intercepts, a�j . The below procedure is conducted for all

individuals in a one-by-one fashion. The baseline risk, Rbþ,

is represented by its own parameter (Figure 2e) and is

therefore estimated as part of fitting the non-negative neu-

ral network. More precisely, the decomposition of the risk

contributions for exposures, RX
i , takes three steps:

Step 1: Subtract the baseline risk, Rbþ :

RX
total ¼ PðY ¼ 1jXÞ � Rbþ

Step 2: Decompose risk contributions to the hidden acti-

vation functions, where Sj is the value returned by each of

the j activation functions given the exposure distribution

Xi, parameters, bþi;j and intercepts, a�j :

RX
j ¼

SjP
j0 Sj0

RX
total

Step 3: Decompose risk contributions from the hidden

activation functions to the exposures:

RX
i ¼

X
j

Xi � bþi;jP
i0 ðXi0 � bþi0;jÞ

RX
j

 !

As a result of the risk decomposition, each individual

is assigned a set of risk contributions, RX
i , one for each

exposure plus a baseline risk, Rbþ. The decomposition of

risk contributions have been illustrated in Figure 3e and

f using the motivating example and explanation in the

figure legend.

Clustering of risk contributions

We suggest to subgroup the individuals based on risk

contributions using Manhattan distances and Ward’s

method.30,31 A dendrogram may help decide the number

of relevant subgroups (Figure 3g).32 Plotting the preva-

lence and mean risk of each subgroups can help research-

ers to identify the subgroups with the highest public

health impact (Figure 3i).33 A table of mean risk contri-

butions and standard deviations by subgroups may illu-

minate which exposures are associated with elevated risk

in each subgroup (Figure 3j). An indication of synergism

is when the combined risk contribution of a set of expo-

sures is higher than the sum of stand-alone risk contribu-

tions of each of the exposures (Supplementary

Information 3, available as Supplementary data at IJE

online, but deviations may occur in noisy data sets).

Final reporting of synergism should be using the yet un-

seen internal validation data set before developing hy-

potheses in the post-computational phase.34

Given the combined risk contributions causally affect

the outcome and meet the assumption of positive monoto-

nicity, the excess fraction (also referred to as grouped par-

tial attributable risks35 or formally as the attributable

proportion in the population23) is the area within a sub-

group above the baseline risk (Figure 3i) and can be de-

fined for a subgroup Z as:

P Y ¼ 1ð Þ � PðYXz¼Xz
¼ 1Þ

PðY ¼ 1Þ

where Xz ¼ Xz denotes eliminating risk contributors in

subgroup Z and is calculated as (Supplementary

Information 4, available as Supplementary data at IJE

online):
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Figure 3 Workflow of the computational phase of CoOL

The flowchart of how subgroups are identified as part of the computational phase of Causes of Outcome Learning. (a) The expanded data set of sex

(one variable for man, one for woman), Drug A (one variable for Drug A, one for no Drug A) and Drug B (one variable for Drug B, one for no Drug B).

(b) The fitted non-negative model is illustrated. Wide edges indicate large connection parameters. (c) and (d) The predicted risk, P ðY jX Þ. (e) The pre-

dicted risk is decomposed using LRP to risk contributions of the baseline, Rbþ, and exposures, RX . (f) The risk contribution matrix. (g) A dendrogram

to help decide on the number of subgroups. (h) Clustered risk contribution matrix into subgroups. (i) Prevalence and mean risk by subgroup plot.

This plot indicate areas for greater public health impact. (j) A table with the mean of risk contributions by subgroups. It can hold more information

that can be useful when developing hypotheses, such as quantifications of the excess proportion of all cases found in this subgroups when consider-

ing the prevalence of the subgroup, the risk in the subgroup and the baseline risk
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Figure 4 Results of the computational phase of CoOL

The main results are combined in one plot. (a) Prediction performance measured by the mean squared error by epoch. (b) A visualization of the fitted

non-negative neural network. The width of the line indicates the strength of each connection. (c) A plot on prediction performance as measured by

the area under the receiver operating characteristic curve. (d) A dendrogram of the three subgroups. (e) The mean risk and prevalence by subgroups.

(f) The table with the main results for the working example. ‘n’ is the total number of individuals in the subgroup, ‘e’ is the number of events/individu-

als with the outcome in the subgroup, ‘prev’ is the prevalence of the subgroup, ‘risk’ is the mean risk in the subgroup based on the model, ‘excess’ is

the excess fraction being the proportion out of all cases that are more than expected (more than the baseline risk) in this subgroup (see

Supplementary Information 4, available as Supplementary data at IJE online), ‘obs risk’ is the observed risk in this subgroup (95% CI is calculated us-

ing the Wald method in 74), ‘risk based on the sum of individual effects’ is the risk summed up where all other exposures are set to zero. For the three

estimates presented at each variable by each subgroup, the first estimate is the mean risk contribution, the estimate in parentheses is the standard

deviation and the estimate in brackets is the risk contribution had all other exposures been set to zero. The baseline risk is by definition the same for

all groups
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PðX ¼ xzÞ � P YXz
¼ 1ð Þ � Rbþ

� �
PðY ¼ 1Þ

Yet, as the inductive–deductive process of CoOL aims

to identify causes and test hypotheses, the excess fractions

may be cautiously interpreted as the potential for a public

health impact if the hypothesis is true.

Analysing our motivating example, we apply the fitted

non-negative model, decompose the risk contributions us-

ing LRP and show a dendrogram of how similar the popu-

lations are (Figure 4d), which suggests three groups.

Figure 4e shows the risk and prevalence of the three sub-

groups, where one subgroup has a risk of 5%, a second

subgroup has a risk of �20% with a prevalence of 10%

and a third subgroup has a risk of �20% with a prevalence

of 10%. Figure 4f shows us that we correctly identified

that men (sex_0) who are exposed to Drug A (drug_a_1)

have a 5% baseline risk, which reaches a near 20% risk

through the contributions from being a man and Drug A.

Similar are the findings for women (sex_1) and Drug B

(drug_b_1). In general, we expect that the predicted risks

are slightly underestimated due to regularization.

Post-computational phase

The results of the computational step may provide learn-

ings about different sets of exposures, which may have led

to a higher risk of the outcome in specific subgroups.

When exploring causes of outcomes, some findings may be

spurious. Therefore, the combination of appropriately se-

lected exposures, a well-defined study-design, the use of

regularization parameters for model fitting, critically

selecting findings and ensuring the replicability in internal

validation data is important before developing new hy-

potheses. This evidence for hypothesis development should

be interpreted in light of the domain expertise formalized

in the assumed causal model (the pre-computational

phase). New hypotheses about multifactorial aetiology

may be denoted in an updated DAG.21 In contrast to other

machine learning approaches, CoOL allows us to identify

subgroups through combinations of risk contributions that

are easily communicated with words.

New learnings may be formulated as a hypothetical in-

tervention and assessed using established methodological

frameworks for causal inference modelling.9,21 The post-

computational phase for triangulating the hypotheses is

conducted in external populations (in temporal validation

data or more desirably, external validation data). If repli-

cable, the researchers should provide sufficient evidence

that the replicated finding is causal (and not due to similar

bias structures). This may be done using various

triangulation approaches with orthogonal bias structures

(i.e. designs with biases in different directions) including

studies outside the epidemiological field.36 Eventually and

if possible, the hypotheses generated using CoOL need to

be tested using a randomized set-up.

In our example, we now have some learnings to inform

two hypotheses: men taking Drug A seem to be at a higher-

than-normal risk and women taking Drug B seem to be at

a higher-than-normal risk. We may test the findings in ob-

servational data from other populations before we eventu-

ally intervene (stop exposure to Drug A for men and Drug

B for women) possible in a randomized way if justified by

equipoise.

Real-life application

Below is a summary of an application of CoOL on publicly

available real-life data that focuses on demonstrating the

computational phase and highlighting the importance of

the pre-computational and post-computational phases.

Pre-computational phase

In a cohort study conducted by the Center for Disease

Control and Prevention, we follow 7539 individuals

<50 years of age at baseline in 1971–75, of which 739

individuals die during the follow-up period until 1992. We

ask the research question: ‘What are the different common

sets of circumstances, which might have caused young

Americans to die prematurely?’ We use the baseline infor-

mation sex, age, body mass index (BMI) and systolic blood

pressure. Based on prior knowledge and literature, we as-

sume the causal structure shown in Supplementary Real-

life Data Analysis Figure 1. Only selected baseline factors

are included for pedagogical reasons.

Computational phase

We analyse a 50% random sub-sample as training data us-

ing the CoOL approach. The CoOL analysis reveals that

among men in their 40s with high systolic blood pressure,

an inverse dose–response association with BMI and mor-

tality is observed (a four-way interaction). We validate this

finding in the remaining 50% internal validation data set.

Post-computational phase

The finding from both the training data and the internal

validation data is also reported in another study.37 Thus,

we may have a similarly complex subgroup of high-risk

individuals, who may be targeted for risk-mitigating

efforts. Naturally, any causal conclusions require thorough
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consideration of bias, e.g. confounding due to the presence

of unmeasured underlying chronic illnesses decreasing BMI

and increasing mortality.38 Still, the strong indication of

synergy suggested in the joint exposure group warrants fur-

ther investigations in future studies.

We discuss this application example in more detail in

the Supplementary material, available as Supplementary

data at IJE online (real-life data analysis).

Discussion

We have introduced CoOL, which investigates common

combinations of exposures that may have caused a health

outcome. This approach essentially provides a formalized ap-

proach to data exploration, which may lead to new and rele-

vant hypotheses to eventually be tested using traditional

epidemiological approaches. We used a simple simulation in

the presentation; however, CoOL translates to complex sce-

narios (see how CoOL performs on nine different data simu-

lations and a real-life analysis in the Supplementary material,

available as Supplementary data at IJE online).

So far, the sufficient cause model and the way of think-

ing about causes of an outcome have, de facto, mostly been

a theoretical framework and not a practical approach for

applied data analysis in epidemiology.9 Fully explaining an

outcome seems far-fetched in epidemiology39 since these

sets of events will interplay with multiple unknown or

unmeasurable causes. However, CoOL is particularly

suited towards common and public health relevant

exposures in subpopulations, which is important for learn-

ing aetiology for preventive interventions40—or at least

identify vulnerable subgroups who may benefit from risk-

mitigating interventions.

Limitations and extensions

Inference

Co-occurring associations between the exposures and the

outcome can be due to various causal structures such as

interactions,34 clustered causes (exposures sharing a com-

mon cause), mediation,34 uncontrolled confounding,9 con-

ditioning on a common effect (collider-stratification or

selection bias)41 and measurement error42 (Figure 5).

Collider bias should not be introduced by using a neural

network compared with standard approaches since all

causes of the latent interactions are included in the

model.21 ‘Interactions’ (Figure 5a) entail a combined struc-

tural effect that is beyond the sum of the individual effects

of the putative causes, and thus some inference about the

underlying structures may be suggested by CoOL and con-

firmed by formal interaction analysis.34 Importantly, cer-

tain measurement errors can produce spurious

appearances of interactions43 and by dichotomizing con-

tinuous exposures, synergistic results may be an indicator

of those individuals with the most extreme values who are

also exposed to additional unmeasured risk factors. The

latter may be useful when identifying high-risk groups but

misleading for understanding co-acting causes of disease.

Figure 5 Seven causal structures causing co-occurring associations

A and B denote measured exposures of interest, U denotes an unmeasured cause of A and B, Y denotes the outcome and S denotes a selection mech-

anism. All seven causal structures result in an increased co-occurrence of A and B in the Causes of Outcome Learning approach. It only applies for

interactions that the combined effect is larger than the sum of the individual effects as well as some measurement error structures.43 (a) Interaction—

A and B jointly affect Y and thus occur often together when assessing risk contributions (see also 34). (b) Clustered causes—A and B occur more often

together due to U. (c) Mediation—since B is caused by A, A and B often occur together (see also 34). (d) Confounding—if U is a cause of A, B and Y, all

variables occur often together (see also 9). (e) M-bias—selection on B can cause a non-causal association between A and B, and A and Y (see also 41).

(f) Selection bias—conditioning on S creates a non-causal association between A, B and Y (see also 41). (g) Dependent measurement error—the mea-

sured A (A*), B (B*) and Y (Y*) occur more often together if they share E as cause (see also 42)
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In real life, complex combinations of all these structures

cannot be excluded and researchers need to assess various

hypotheses through triangulation—and if possible through

randomization—to support their explanatory contribu-

tion.36 Very large data sets may be needed to illuminate

complex structures.

Rose described chains of causes by separating causes into

distal and proximal causes: proximal causes, e.g. infectious

agents, dietary deficiencies, smoking, toxic exposures and

allergens, are close to the outcome and distal causes,

e.g. social and economic positions, are causes of causes and

thus distal to the outcome.6 The fitted effects of proximal

causes may mask effects of distal causes (if their effects are

mediated through the proximal causes) and the included

exposures should therefore be carefully selected according to

appropriate actionable exposures and contextual factors. An

individualized focus on proximal causes may misdirect atten-

tion away from structural public health interventions and

could in the worst-case scenario stigmatize parts of the popu-

lation without offering preventive interventions.44

Model

The presented version of CoOL deals with binary expo-

sures and outcomes, similarly to the sufficient cause

model.10 However, the approach can be extended to con-

tinuous outcomes, where the value 0 has a meaningful in-

terpretation (e.g. loss of disease-free years, and in contrast

to e.g. BMI). Multiple other extensions of CoOL may be

possible, e.g. incorporating time, such as time-varying vari-

ables and complex confounding scenarios. Future work

should explore simultaneous analysis of ‘outcome-wide’

approaches45 since co-morbidity may share underlying suf-

ficient component causes (e.g. atopic diseases as asthma,

dermatitis and nasopharyngitis) and thus may be a multi-

task learning problem. The parameter restriction to non-

negative values limits the model to focus on synergistic

structures, thus antagonistic structures that can have public

health relevance may be overlooked.

Robustness checks

Sparse data may result in type 1 (false-positive findings) and

type 2 errors (false-negative findings). Robustness checks

should be conducted to challenge the stability of the ap-

proach.46 It may give insight to change the number of activa-

tion functions (Supplementary Simulation 7, available as

Supplementary data at IJE online), rerun the analysis with

subsamples of the study population (Supplementary

Simulation 8, available as Supplementary data at IJE online)

and change the regularization parameters (Supplementary

Simulation 9, available as Supplementary data at IJE online).

Risk probabilities of >1 as well as a baseline risk above the

crude risk of the outcome or equal to 0 indicate model

misspecification (warnings will be shown if using the R pack-

age, CoOL). It is important to ensure that the mean predicted

risk in each subgroup is approximately equivalent to the ac-

tual risk in the subgroup.

Theoretical comparison with other approaches

Based on epidemiology textbooks, one may assess the inde-

pendent and joint effects of all possible combinations of all

exposures (two-way interactions, three-way interactions,

etc.).47 This approach is, however, in practice, often not

feasible because it requires a very high number of parame-

ters and may become uninterpretable—or even mislead-

ing—as shown in the comparison with CoOL in

Supplementary Comparison 1 (available as Supplementary

data at IJE online). Our suggested approach utilizes the

advantages of neural networks to discover the relevant

combinations of exposures and make them interpretable

using LRP while avoiding certain causal biases.

LRP properties of CoOL can be compared to decompo-

sition approaches of mediated and interactive effects in epi-

demiology;48,49 however, more work is needed to assess

the extent of these similarities.

Approaches such as the exposome50–52 and exposure-

wide or environment-wide association studies (EWAS)53,54

assess multiple exposures simultaneously but few applied

studies include interactions.53–56 The few that do consider

interactions tend to investigate interaction of pre-selected

factors only57 or with methods generally restricted to pair-

wise interactions.58 Such studies have been discussed in re-

lation to their potential, especially in light of successes of

genome-wide association studies,59 and limitations such as

a challenging causal interpretation.8

LRP has been successfully demonstrated in image, text

and biological data classification60–62 as well as for health

records to explain clinical decisions on therapy assignment.63

In this latter case, neither a baseline risk was estimated nor

was there interest in identifying subgroups. The computa-

tional phase of CoOL has similarities to work on explaining

and correcting computer vision64,65 but takes its depart from

a causal question. CoOL may be viewed as a supervised clus-

tering approach based on an additive feature attribution

method guided by a causally inspired model. It should be in-

vestigated to which degree other additive feature attribution

methods approximate similar results; 66 however, we suspect

that the use of negative attributions used in many other

approaches may mislead the search for true causes due to the

introduction of collider bias since clustering is based on a

common effect (Supplementary Comparison 2, available as

Supplementary data at IJE online).

Alternative methods to LRP for decomposing neural net-

work predictions were proposed recently, such as

DeepLIFT67 and Integrated Gradients.68 However, only LRP
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and its Deep Taylor Decomposition theoretical framework29

fit our assumption of a non-negative neural network with

non-positive activation–function intercepts. Using non-

negative models for sets of explanations within certain aims

was proposed decades ago69 but not in relation to causal

questions. We did not want to consider sensitivity-based, per-

turbation-based or surrogate-based explanation techniques,

since our question of interest relates to the causes of an out-

come posed as ‘Given a particular health outcome, what are

the most common sets of exposures, which might have been

its causes?’ rather than effects of causes posed as ‘What

would have occurred if a particular factor were intervened

upon and thus set to a different level than it in fact was?’.

These distinctions have previously been discussed in the

causal inference literature10 and the literature on LRP.18

Conclusion

We have introduced the CoOL approach with the aim of dis-

entangling common combinations of exposures that could

have caused a specific health outcome. The approach is based

on prior knowledge of the causal structure, the flexibility of a

non-negative neural network, the LRP explanation technique

for decomposing risk contributions and clustering and, fi-

nally, hypothesis development and testing. These are steps to-

wards building better transparency and causal reasoning into

hypothesized causal findings from machine learning methods

in the health sciences.70,71 The proposed approach links to

the sufficient cause model;5 it may help disentangle structures

in the ‘syndemics’ (synergistic epidemics) literature72 and add

a tool for holistic approaches to ‘precision’ public health.73

We stress that CoOL is an inductive–deductive approach and

that researchers need to carefully consider the most appropri-

ate set-up for fair public health actions. CoOL encourages

and enables epidemiologists to examine common combina-

tions of exposures as causes of the outcome of interest. This

could eventually inform the development of more effective,

targeted and impactful public health interventions.
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