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Summary

The human genome contains hundreds of thousands of regions exhibiting copy number variation 

(CNV). However, the phenotypic effects of most such polymorphisms are unknown because only 

larger CNVs have been ascertainable from SNP-array data generated by large biobanks. We 

developed a computational approach leveraging haplotype-sharing in biobank cohorts to more 
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sensitively detect CNVs. Applied to UK Biobank, this approach accounted for approximately half 

of all rare gene inactivation events produced by genomic structural variation. This CNV call set 

enabled a detailed analysis of associations between CNVs and 56 quantitative traits, identifying 

269 independent associations (P < 5 × 10−8) likely to be causally driven by CNVs. Putative target 

genes were identifiable for nearly half of the loci, enabling insights into dosage-sensitivity of 

these genes and uncovering several gene-trait relationships. These results demonstrate the ability 

of haplotype-informed analysis to provide insights into the genetic basis of human complex traits.

Graphical Abstract

In Brief:

Use of haplotype sharing across a biobank enables identification of copy number variants at a finer 

scale than previously possible and links the genotypes to a range of reported phenotypes.

Introduction

Copy number variants (CNVs), which duplicate and delete 50 base pair to megabase-scale 

genomic segments throughout the human genome (Abel et al., 2020; Collins et al., 2020; 

Sudmant et al., 2015), are known to contribute to numerous genomic disorders including 

neuropsychiatric diseases (Marshall et al., 2017; Sanders et al., 2011; Sebat et al., 2007) 

and have been estimated to account for a considerable fraction of all rare loss-of-function 

(LoF) events affecting protein-coding genes (Collins et al., 2020). Beyond disrupting coding 

sequences of genes, CNVs can also have unique functional consequences not producible 

by SNPs: for example, duplications can increase gene dosage, and deletions can eliminate 

regulatory elements. Investigating the broader phenotypic impacts of CNVs thus has the 

potential to uncover new large-effect variants and further our understanding of the genetic 

architecture of complex traits.
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However, well-powered, phenome-wide CNV association analyses to date have been limited 

to considering large CNVs (tens of kilobases or longer) detectable from low-cost SNP-array 

data (Wang et al., 2007) available for biobank-scale cohorts. Moreover, CNV association 

studies have encountered analytical challenges such as how to harmonize imprecise 

breakpoints of CNV calls, how to group CNVs for association testing, and how to filter 

associations that only reflect linkage disequilibrium (LD) with nearby SNPs. Despite these 

difficulties, previous studies have made many important discoveries both by investigating the 

role of known pathogenic CNVs on various phenotypes (Crawford et al., 2019; Kendall et 

al., 2017; Owen et al., 2018) and by conducting association analysis on all CNVs detected 

in large cohorts (Macé et al., 2017; Aguirre et al., 2019; Li et al., 2020; Sinnott-Armstrong 

et al., 2021; Beyter et al., 2021; Chen et al., 2021; Auwerx et al., 2022; Collins et al., 

2022), including UK Biobank (Bycroft et al., 2018). Here we developed a more sensitive 

CNV-detection method leveraging haplotype-sharing within biobank cohorts and applied it 

to UK Biobank, empowering exploration of the phenotypic effects of CNVs at much higher 

resolution than previously possible.

Results

Haplotype-informed copy-number variant detection

We developed a computational approach to CNV detection, called HI-CNV (Haplotype-

Informed Copy-Number-Variation), that substantially increases CNV detection power 

in large cohorts by pooling information across individuals who share extended SNP 

haplotypes. The intuition behind this approach is that in large biobank cohorts, population-

polymorphic CNVs are usually carried by multiple individuals who co-inherited a CNV on a 

shared haplotype originating from a common ancestor. As such, power to detect a CNV can 

be increased by sharing information about its presence (e.g., from genotyping array intensity 

data) across multiple carriers (Figure 1A).

To identify individuals who are likely to share a segment of genome inherited from a 

recent common ancestor (and therefore likely to have co-inherited any CNVs contained 

within the shared genomic tract), we adapted recent approaches that use the positional 

Burrows-Wheeler transform (PBWT) (Durbin, 2014) to rapidly identify identity-by-descent 

(IBD) segments (Zhou et al., 2020). Specifically, for each haplotype of each individual in 

a cohort, we use a PBWT-based algorithm to identify its closest “haplotype neighbors” – 

i.e., the longest IBD matches with other haplotypes in the cohort – spanning each genomic 

position (Figure 1A). Then, given quantitative information about the potential presence of 

a CNV in genetic data from the individual, as well as corresponding information from 

“haplotype neighbors,” we use a hidden Markov model (HMM) to detect CNVs co-inherited 

on shared haplotypes.

To apply our HI-CNV approach to SNP-array genotyping probe intensity data available 

for the UK Biobank cohort, we further developed methods to learn probabilistic models 

that map allele-specific probe intensity measurements to probabilistic information about 

copy-number likelihoods (Figure 1B). Intuitively, genotyping probes within CNVs produce 

distinctive intensity measurements compared to probes not within CNVs. While these 

deviations are difficult to detect given data from one SNP, the signal becomes clearer 
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when consistent deviations are observed across multiple consecutive SNPs (Wang et al., 

2007) – or, for HI-CNV, across multiple individuals co-inheriting a CNV. To optimize signal 

available from SNP-array probe intensities, we estimated SNP-specific genotype cluster 

priors corresponding to nine possible genotypes across copy-number states 1 (deletion), 

2, and 3 (duplication) (Figure 1B), and we also denoised total intensities using principal 

component analysis. Full methodological details are provided in STAR Methods, and we 

have released a portable, open-source HI-CNV software implementation.

Modeling haplotype sharing increases CNV detection power in UK Biobank

We applied HI-CNV to detect CNVs across all UK Biobank participants with SNP-

array genotyping, focusing our main analyses on CNVs called in 452,500 UK Biobank 

participants of European ancestry. HI-CNV detected >6 times as many CNVs per individual 

as the widely-used PennCNV method (Figure 1C), producing an average of 31.1 CNV 

calls per individual (18.4 deletions and 12.7 duplications spanning an average of 430kb and 

899kb, respectively; Figures 1C and 1D; Table S1). In contrast, previous PennCNV-based 

analyses of UK Biobank SNP-array intensity data produced ~4–6 CNV calls per individual 

depending on quality-control filters applied (Aguirre et al., 2019; Kendall et al., 2017). 

Validation analyses using whole-genome sequencing (WGS) pilot data available for 43 

participants estimated a validation rate of 91% for HI-CNV, similar to that of PennCNV 

(Figure 1E; Table S1; STAR Methods). This estimate was corroborated by further validation 

analyses using subsequently-released WGS for 500 participants (STAR Methods), with the 

validation rate increasing modestly with CNV length and with call confidence, as expected 

(Figure S1A; Table S1).

HI-CNV’s increased detection sensitivity was driven by improved ability to detect CNVs 

on the scale of 10kb or shorter (Figure 1F; Table S1), which account for the majority 

of all CNVs (Abel et al., 2020; Collins et al., 2020; Sudmant et al., 2015) but have 

traditionally been difficult to detect from SNP-array data. We designed HI-CNV with the 

goal of sensitively detecting low-frequency and rare CNVs of length >5kb (versus ~50kb 

for previous SNP-array-based analyses of UK Biobank), focusing on CNVs with minor 

allele frequency (MAF) < 5% because of their potential to be more deleterious and because 

SNP-array designs tend to avoid common CNV regions. Among such CNVs called from 

WGS pilot data and spanning at least two SNP-array probes (the minimum required by 

our approach), HI-CNV achieved a recall rate of 81% (Figure S2A; Table S1). Recall was 

unsurprisingly much lower (6%) when considering all MAF<5% CNVs called from WGS 

data (i.e., removing restrictions on size and array-overlap), consistent with most CNVs being 

shorter than the resolution of SNP-array probe spacing. However, recall of gene-overlapping 

CNVs was substantially higher (24%) because the UK Biobank SNP-array was designed 

to prioritize inclusion of coding variants (Bycroft et al., 2018). Moreover, the HI-CNV call 

set appeared to account for approximately half of the 10.2 genes per genome estimated to 

be altered by rare structural variants (Collins et al., 2020): restricting to rare (MAF < 1%) 

whole-gene duplications and CNVs predicted to cause loss-of-function (pLoF), a mean of 

5.0 genes per individual were altered by such CNVs (2.8 pLoF and 2.2 gene duplications). 

Across 18,251 genes, whole-gene duplications and pLoF CNVs were called in a median 
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of 6 and 8 individuals, respectively, with observed counts decreasing with increasing gene 

constraint (Figure 1G).

To explore the extensibility of HI-CNV to smaller cohorts and to other SNP-array data sets, 

we performed two additional analyses. First, we ran HI-CNV on subsamples of the UK 

Biobank data set, observing robust improvements in detection sensitivity even at ~100-fold 

smaller sample sizes (5,000 individuals; Figure 2). Second, we applied HI-CNV to 179,538 

BioBank Japan participants (Nagai et al., 2017) (STAR Methods) and observed performance 

similar to UK Biobank: HI-CNV successfully leveraged haplotype-sharing within BioBank 

Japan to call an average of 28.4 calls per individual, with an estimated validation rate of 93% 

(Figure S1B; Table S1).

Fine-mapping analyses reveal likely-causal CNV-trait associations

HI-CNV’s detection of many previously-undiscovered CNVs in UK Biobank suggested that 

CNV-phenotype association analyses might uncover new CNVs impacting human traits. We 

applied a combination of single-variant and burden-style analyses to test three categories 

of CNVs (gene-level, CNV-level, and probe-level; Figure 3A) for association with 56 

heritable quantitative traits, including anthropometric traits, blood pressure, measures of 

lung function, bone mineral density, blood cell indices, and serum biomarkers (Table S2). 

We performed association analyses on up to 452,500 UK Biobank participants of European 

ancestry using linear mixed models implemented in BOLT-LMM (Loh et al., 2015, 2018a). 

We then removed associations that could potentially be explained by linkage disequilibrium 

with other variants by requiring each association to remain significant (P < 5 × 10−8) after 

conditioning on any other more-strongly-associated SNP, indel, or CNV within 3 megabases 

(STAR Methods). We previously observed that when fine-mapping associations involving 

rare variants (which comprised nearly all CNVs we detected), this pairwise LD filter 

effectively identifies variants likely to causally drive associations (Barton et al., 2021). This 

analysis pipeline resulted in 269 fine-mapped CNV-trait associations at 97 loci involving 

252 likely-causal CNVs (Tables S3 and S4). The CNV calls involved in these associations 

exhibited an even higher WGS-based validation rate (94%) than the overall call set (Figure 

S1C; Table S1; STAR Methods), consistent with the idea that false-positive CNV calls are 

unlikely to confound association analyses.

Many of the 269 likely-causal CNV-phenotype associations had large effect sizes – 

including 59 associations with an absolute effect size greater than 1 standard deviation (s.d.) 

– and effect sizes generally increased with decreasing minor allele frequency (MAF) (Figure 

3B). Only 10 of the 269 associations involved common (MAF > 5%) CNVs, whereas 186 

associations involved CNVs with MAF < 0.1%. The associations affected most categories 

of phenotypes we considered, with blood cell phenotypes accounting for the majority of 

likely-causal associations (137 of 269 associations, involving 40 loci), reflecting their high 

heritability (average SNP-heritability of 0.31 (Barton et al., 2021)) and high representation 

among the quantitative traits we analyzed (19 of 56 phenotypes).

The likely-causal CNV-phenotype associations involved at least 252 unique CNVs (138 

deletions, 114 duplications; Table S4; STAR Methods) which were enriched for multiple 

attributes correlated with functional impact (Figure 3C). Likely-causal CNVs tended to be 
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longer than average (Li et al., 2020) and were much more likely to overlap coding sequences 

of genes (85.8% coding-overlapping vs. 22.1% expected for deletions; 94.7% vs. 43.4% 

expected for duplications; Figure 3C). For the small fraction of likely-causal deletions that 

did not overlap coding sequence (14.2%), roughly half overlapped enhancer annotations 

(42.1% vs. 8.4% expected; P = 7.76 × 10−5). The majority of likely-causal deletions affected 

either one gene (35%) or two genes (18%), facilitating further investigation of potential 

targets of trait-modifying CNVs.

CNV loci corroborate SNP associations and uncover gene-trait relationships

Of the 97 loci involved in the 269 fine-mapped CNV-trait associations, 72 loci had not been 

identified in previous large-scale CNV association studies (Aguirre et al., 2019; Auwerx 

et al., 2022; Beyter et al., 2021; Chen et al., 2021; Crawford et al., 2019; Li et al., 2020; 

Macé et al., 2017; Marshall et al., 2017; Sinnott-Armstrong et al., 2021). These previous 

studies included analyses of UK Biobank in which CNVs were genotyped using PennCNV 

(Aguirre et al., 2019; Auwerx et al., 2022; Crawford et al., 2019), which did not detect 

most likely-causal CNVs smaller than 20 kb (Figure S2B). For roughly half of the 72 

previously unreported CNV loci (35 of 72 loci), we could identify a putative target gene 

(Figures 3D and 3E; Table S4). Among the 25 previously reported loci, half (13 loci) 

corresponded to syndromic CNVs known to cause genetic disorders (STAR Methods). These 

CNVs generally were longer, affected more phenotype categories, and overlapped more 

genes than CNVs at non-syndromic loci (Figure 3F), as expected. Many CNV associations 

corroborated target genes recently implicated by coding variant association studies (Barton 

et al., 2021; Marouli et al., 2017; Sinnott-Armstrong et al., 2021), including rare height-

reducing deletions in CRISPLD2 and ADAMTS17, a rare sex hormone binding globulin 

(SHBG)-increasing deletion in HGFAC, and a rare IGF-1-decreasing partial deletion of 

MSR1 (Figure 3E). Several other CNV associations appeared to uncover genes contributing 

to the architecture of complex traits (Figure 3E).

To confirm the robustness of these associations, we performed two corroboratory analyses 

(STAR Methods). First, for associations involving CNVs predicted to cause loss-of-function 

(pLoF) of a putative target gene, we compared the effects of pLoF CNVs to the effects of 

ultra-rare pLoF SNP and indel variants in the same gene (Backman et al., 2021), which 

represent an independent class of genetic variants (and are guaranteed to be independent of 

overlapping deletion variants). We observed broadly consistent effect sizes between pLoF 

CNVs and pLoF SNP/indel variants (effect size correlation of 0.85, P = 8.0 × 10−21; 

Figure 4A). Among associations that we were well-powered to replicate (i.e., replication 

power >0.5 based on the effect size of the pLoF CNV and the combined allele frequency 

of ultra-rare (MAF<0.001%) pLoF SNPs and indels), we successfully replicated 35 of 

36 associations (at nominal significance, P<0.05). Second, to obtain further confirmatory 

evidence supporting CNV associations implicating gene-trait relationships not previously 

identified (Figure 3E), we directly replicated CNV associations using HI-CNV calls in 

BioBank Japan. Among 14 associations (involving four genes) with suitable phenotyping 

and replication power in BioBank Japan, we observed broadly consistent effect sizes, with 

13 out of 14 associations exhibiting the same effect direction as in UK Biobank (Figure 4B).
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Given the large number of CNV loci identified here, we focus below on describing three 

classes of particularly interesting loci: (1) CNV associations stronger than any nearby SNP, 

(2) loci at which CNVs, together with nearby SNPs, created long allelic series, and (3) 

additional loci implicating putative target genes.

CNV associations stronger than nearby SNPs

Among 169 associations involving non-syndromic CNVs, a subset of 37 associations (22%) 

were stronger than associations of all SNPs within 500kb. Several of these associations 

appeared to uncover gene-trait relationships; here we highlight two loci with such 

associations. First, ultra-rare UHRF2 pLoF CNVs (carried by 19 UK Biobank participants) 

associated with a 1.11 (0.17) s.d. decrease in height (corresponding to 7.2 (1.1) cm shorter 

stature; P = 8.2 × 10−11; Figure 5A; Table S5). This association between UHRF2 and height 

was not visible from SNPs at the locus, none of which reached genome-wide significance 

(Figure 5A).

However, among 185,365 exome-sequenced UK Biobank participants (Szustakowski et al., 

2021), nine carriers of UHRF2 protein-truncating SNP or indel variants (PTVs) exhibited 

1.03 (0.25) s.d. decreased height (P = 3 × 10−5), corroborating the CNV association (Figure 

5A; STAR Methods), which further replicated in BioBank Japan (Figure 4B). UHRF2 
has not previously been implicated in large genome-wide association studies of height, 

demonstrating the utility of CNV association studies and motivating further study of how 

loss of one functional copy of UHRF2 (which encodes an E3 ubiquitin-protein ligase) 

impairs growth.

Another set of associations implicated copy-number variation of SLC2A3 as a modifier of 

age at menarche (P = 1.6 × 10−17), height (P = 7.7 × 10−12), and blood count phenotypes 

(Figure 5B; Table S3). SLC2A3 encodes GLUT3, a glucose transporter expressed in 

multiple tissues, and is prone to non-allelic homologous recombination that produces gene 

dosage-modifying ~130kb duplications and deletions (MAF = 1.9% and 0.4%, respectively, 

in our call set). SLC2A3 CNVs have been observed in many earlier studies, several of 

which have reported nominally significant associations with various clinical phenotypes; 

however, replication of these associations has been mixed (Ziegler et al., 2020). In UK 

Biobank, SLC2A3 deletions associated with delayed menarche (0.20 (0.03) years), increased 

height (0.25 (0.08) cm), and decreased basophil and lymphocyte counts, while duplications 

associated with reciprocal effects of roughly half the magnitude (Figure 5B; Table S5). 

Consistent effects were observed in BioBank Japan (Figure 4B). No individuals carried 

zero SLC2A3 copies (vs. 7.9 such individuals expected; P = 0.0009), consistent with 

previous literature suggesting that homozygous LoF mutations may be incompatible with 

life (Schmidt et al., 2009; Ziegler et al., 2020) (Figure S4A). These results support a 

dosage-sensitive role of GLUT3 in multiple organ systems.

Several other associations provided examples of loci at which SNP associations appeared to 

tag more-strongly-associated CNVs. Among the 37 associations for which a non-syndromic 

CNV attained the strongest association within 500kb, 21 involved loci at which a nearby 

SNP also reached significance. For six of those associations, the top SNP association 

became non-significant upon conditioning on the CNV. For example, a low-frequency 
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(MAF = 2.2%) deletion upstream of BMP5, which encodes bone morphogenetic protein 

5, associated strongly with increased bone mineral density (0.12 (0.01) s.d.; P = 9.2 × 10−82) 

and appeared to explain strong SNP associations nearby (P = 3.8 × 10−51, conditional P = 

0.24; Figure 5C; Table S5), highlighting the importance of including structural variants in 

GWAS fine-mapping. BMP5 SNP and indel PTVs associated with stronger effects on bone 

mineral density (0.48 (0.17) s.d.; P = 0.005), suggesting that the deletion might affect an 

upstream regulatory region for BMP5, and motivating further exploration of allelic series 

including CNVs and SNPs.

Allelic series involving both regulatory and gene-altering CNVs

Several CNV-trait associations contributed to long allelic series involving both CNVs that 

appeared to modify regulatory elements as well as CNVs that directly affected genes, 

providing opportunities to explore the effects of such mutations relative to one another 

and to SNP and indel polymorphisms. At the α-globin locus, at which copy-number 

polymorphisms of HBA2 and HBA1 (both encoding α-globin) are known to cause 

thalassemias, an extended allelic series containing eight classes of CNVs enabled further 

insights into genetic control of alpha-globin expression (Figures 6A and S5; Table S5). 

α-globin and β-globin together compose hemoglobin, and both the production and balance 

of α- and β-globin are important for normal erythropoiesis (such that relatively too little 

α-globin can lead to α-thalassemia whereas α-globin duplication can increase the severity 

of β-thalassemia) (Piel and Weatherall, 2014; Taher et al., 2021). In UK Biobank, ultra-rare 

deletions that spanned either the α-globin gene pair, the upstream α-globin locus control 

region (HS-40), or the entire α-globin locus all associated with strongly decreased (~3 s.d.) 

mean corpuscular hemoglobin (MCH) and increased red blood cell (RBC) counts, consistent 

with such mutations causing α-thalassemia by inactivating the locus (Hatton et al., 1990; 

Hay et al., 2016; Liebhaber, 1990; Piel and Weatherall, 2014; Wilkie et al., 1990). “Silent” 

deletions of only HBA2 associated with a relatively milder 1.7 (0.2) s.d. decrease in MCH. 

Intriguingly, duplications of these genomic elements exhibited a further range of effects: 

while duplications that increased α-globin gene dosage by 1–2 copies appeared to have little 

or no impact on MCH, duplications of the entire α-globin locus appeared to have an effect 

similar to loss of one α-globin gene (1.9 (0.2) s.d. lower MCH). This allelic series suggests 

that increased and decreased α-globin expression result in similar hematological phenotypes 

(consistent with the importance of balance in α- and β-globin) and that enhancer function 

rather than α-globin gene dosage primarily limits increases in α-globin expression. These 

results illustrate the ability of biobank-scale CNV analyses to extend knowledge even at 

well-studied loci.

Some allelic series involved known gene-trait relationships but appeared to reveal CNV 

effects with no SNP analogues. At JAK2, ultra-rare CNVs predicted to cause loss of 

JAK2 function associated with a 1.16 (0.15) s.d. increase in platelet counts (P = 9.9 × 

10−15; Figure 6B; Table S5). This association, which replicated in an analysis of SNP 

and indel PTVs (β = 0.89 (0.11) s.d., P = 1.1 × 10−15; Figure 6B), corroborated previous 

reports of an unexpected negative regulatory role for Jak2 in thrombopoiesis (Meyer et 

al., 2014). Interestingly, a distinct set of ultra-rare deletions centered ~220kb upstream of 

JAK2 associated with a 0.54 (0.09) s.d. increase in platelet counts (P = 9.5 × 10−9; Figure 
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6B; Table S5), roughly half the effect size of pLoF variants. The focal <4kb region shared 

by these deletions matched a strong megakaryocyte-specific accessible chromatin region 

previously implicated by common-SNP association and fine-mapping studies (Ulirsch et al., 

2019) (Figure 6B) that appeared likely to regulate JAK2 (Table S5). However, deletion of 

the entire enhancer element associated with a five-fold larger effect on platelet counts than 

the single-base pair modifications produced by SNPs within the enhancer (Figure 6B; Table 

S5), highlighting the ability of CNVs to enable further insights into complex trait genetics 

by altering the genome in ways that SNPs cannot.

Copy-number variants also contributed to an extended allelic series at IRF8, which encodes 

a transcription factor critical to monocyte differentiation (Kurotaki et al., 2013). Strong SNP 

associations with monocyte counts have previously been observed at the IRF8 locus, led 

by a common noncoding 10bp insertion in IRF8 with a mild effect size (0.102 (0.002) 

s.d.; P = 7.8 × 10−587; Figure 6C; Table S5). Multiple SNPs downstream of IRF8 also 

associated independently with monocyte counts (consistent with the presence of multiple 

distal enhancers (Durai et al., 2019; Schönheit et al., 2013)), including a low-frequency SNP 

(rs11642657; MAF=0.8%) with a larger effect size (0.39 (0.01) s.d.; Figure 6C; Table S5). 

CNVs provided further insights into complex genetics at this locus: loss of one functional 

copy of IRF8 (identified in 10 carriers of either pLoF CNVs or PTVs) appeared to produce 

a larger increase in monocyte count (0.94 (0.28) s.d.; P = 0.0009), while a downstream 

deletion near rs11642657 had a moderate effect size similar to this SNP (0.28 (0.04) s.d.; P = 

4.7 × 10−11), suggesting the presence of an important regulatory region (Figure 6C).

Some allelic series appeared to uncover gene-trait associations. Ultra-rare deletions 

at R3HDM4, a gene with unknown function, associated with 0.54 (0.08) s.d. higher 

reticulocyte counts (P = 3.5 × 10−11; Figure 6D; Table S3). This association was 

corroborated by R3HDM4 PTVs (β = 0.52 (0.10) s.d., P = 2.7 × 10−7), and a 

common intronic SNP also exhibited a mild-effect but strongly significant association 

with reticulocyte counts (β = 0.041 (0.002) s.d., P = 6.6 × 10−86; Figure 6D; Table S5). 

Interestingly, closer inspection of the deletions showed that they consisted of both exon-

overlapping, pLoF deletions as well as intronic deletions falling fully within the first intron 

of R3HDM4, yet associating with a similar increase in reticulocyte counts (0.45 (0.10) s.d.; 

Figure 6D). These results suggest a key regulatory role of the intronic region spanned by the 

deletions, which contains an accessible chromatin region (in erythroblasts) with predicted 

R3HDM4 enhancer function (Ernst and Kellis, 2017; Fishilevich et al., 2017). Despite their 

associations with reticulocyte counts, neither type of deletion appeared to affect red blood 

cell counts (P = 0.17). These observations, which will require further understanding of 

R3HDM4 function to explain, again show the ability of regulatory CNVs to have significant 

phenotypic impacts, sometimes as strong as gene-dosage altering CNVs.

Diverse potential functional impacts of CNVs

The remaining likely-causal CNVs that appeared to uncover gene-trait associations (Figure 

3E) seemed to alter gene dosage or function via a diversity of genomic modifications. 

Four rare deletions appeared to reduce or abolish gene function in a variety of ways. Two 

deletions associated with height: an inframe deletion spanning DIS3L2 exon 9 previously 
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reported to reduce ribonuclease activity and cause Perlman syndrome (an autosomal 

recessive disease characterized by congenital overgrowth) (Astuti et al., 2012) surprisingly 

appeared to decrease height by 0.44 (0.04) s.d. in heterozygous carriers (P = 3.9 × 10−22), 

and a whole-gene deletion of SLC35E2B associated with modestly decreased height and 

increased MCH (Table S3). Interestingly, while both associations with height replicated in 

BioBank Japan and reciprocal duplications associated with increased height (Figures 4B, 

S4B, and S4C), pLoF variants in DIS3L2 appeared not to affect height (Figure 4A), such 

that further work will be necessary to decipher whether DIS3L2 exon 9 CNVs act through 

altering function of DIS3L2 or via a regulatory effect on a nearby gene (e.g., NPPC; STAR 

Methods). Two other deletions associated with ~0.2–0.3 s.d. effects on platelet traits: an 

inframe deletion spanning DOK3 exon 3 and a deletion spanning the final exon of PARVB 
(encoding 26 of 364 amino acids) (Table S3).

Another gene-trait association involved ultra-rare (MAF=0.003%), large (>700 kb) 

duplications that appeared to target a single gene, CXCR4, and associated with a 0.99 (0.17) 

s.d. decrease in monocyte counts (P = 5.5 × 10−9, Table S3). Gain-of-function mutations 

within CXCR4 (chemokine receptor 4) cause autosomal dominant WHIM syndrome, an 

immunodeficiency disease (Hernandez et al., 2003). Here, duplication of CXCR4 appeared 

to produce relatively milder decreases in leukocyte counts (including 0.5 (0.2) s.d. reduced 

neutrophil and lymphocyte counts) with no apparent disease phenotypes.

A final association with platelet distribution width involved a low-frequency (MAF=0.7%) 

variant that initially appeared to be a duplication at MTMR2 (Table S3) but was surprisingly 

absent from CNV reference data sets (Byrska-Bishop et al., 2021; Collins et al., 2020). 

Closer examination of sequencing reads from exome-sequenced carriers revealed that the 

structural variant actually constitutes a retroposition of the spliced MTMR2 transcript into 

an intron of LRCH1 (STAR Methods). A common SNP haplotype in a different intron of 

LRCH1 strongly and independently associated with increased platelet distribution width (P 

= 2.5 × 10−172), and both the SNP association and the insertion variant association (P = 

3.5 × 10−17) appeared to be mediated by reduced LRCH1 expression (based on analyses 

of GTEx data (Aguet et al., 2020); STAR Methods), with the insertion exhibiting four-fold 

larger effects (Figure S4D and Table S5). This unexpected finding from SNP-array analysis 

hints at further discoveries that will be enabled by sequencing technologies capable of 

comprehensively genotyping structural variants.

Associations of CNVs with disease traits

Analyses of CNVs for association with 757 disease phenotypes curated by UK Biobank 

(STAR Methods) recovered known associations. Among 68 significant associations (P < 

1 × 10−9) that remained after LD-clumping, 64 associations involved syndromic CNVs, 

three associations involved other known loci (HBA and HBB for thalassemia and RHD for 

maternal-fetal problems), and the remaining association appeared on follow-up to be a false 

positive (Table S6). These results reflect the challenge of performing disease analyses in 

generally-healthy population cohorts; larger CNV call sets or case-control cohorts will be 

necessary to power discovery of new CNV-disease associations.
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Contrasting effects of deletions and duplications

Total genomic deletion burden and duplication burden have each been shown to associate 

with deleterious effects on several human traits (Dauber et al., 2011; Macé et al., 2017; 

Wheeler et al., 2013). We similarly observed associations of deletion and duplication burden 

with decreased height and years of education (even after excluding syndromic CNVs), 

with deletions appearing to be roughly four-fold as deleterious as duplications (Figures 

7A and 7B; Table S7). The consistent negative effect directions of deletion burden and 

duplication burden contrasted with the opposite effect directions that we observed at several 

loci involving focal reciprocal CNVs (Table S3).

To more thoroughly explore the relative effects of focal deletions and duplications, we 

examined gene-trait pairs for which we had previously identified PTVs likely to alter 

quantitative traits (Barton et al., 2021). For each gene, we compared the effects of likely-

causal PTVs to those of whole-gene deletions and duplications (STAR Methods). As 

expected, gene deletions acted similarly to PTVs, with 16 of 41 genes exhibiting nominally 

significant deletion associations (Figure 7C), consistent with available power (Figure 7D). 

In contrast, gene duplications tended to act in the opposite direction as PTVs and with 

smaller effect magnitudes: 27 of 139 genes exhibited nominally significant duplication 

associations (Figure 7E), consistent with duplications tending to have less than half the 

effects of deletions (Figure 7F; Table S7). These results suggest a contrast between CNV 

burden, which may be driven by large CNVs that disrupt many genes and tend to be 

deleterious regardless of deletion or duplication status, versus focal CNVs, which may tend 

to change the dosage of a specific key gene, resulting in reciprocal effects of deletions and 

duplications.

Discussion

These results demonstrate the power of haplotype-informed structural variant analysis that 

leverages pervasive distant relatedness within large biobank cohorts to pool information 

about variants co-inherited by individuals who share extended SNP haplotypes. Applied to 

explore CNV-phenotype associations in UK Biobank, this approach revealed many ways 

in which genetic variation influences complex traits. At several loci, large-effect CNVs 

uncovered putative target genes, and at several other loci, CNVs, together with nearby SNPs, 

created long allelic series illustrating the ability to CNVs to produce functional effects with 

no SNP analogues (e.g., gene copy-gain and regulatory element deletion or duplication).

Beyond the specific biological findings reported here, our study also provides a careful 

analytical approach for handling the statistical subtleties of performing association and 

fine-mapping analyses on difficult-to-call structural variants that can span large genomic 

regions. Additionally, the observation of several CNVs that represented lead associations at 

loci underscores the importance of considering structural variation even when performing 

statistical fine-mapping of SNP associations (Beyter et al., 2021; Mukamel et al., 2021).

These results also motivate further exploration of the far-larger set of CNVs that were not 

accessible to our analyses. While our approach enabled detection of 6-fold more CNVs than 

previous analyses of UK Biobank, and these CNVs appeared to account for roughly half of 
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the rare LoFs estimated to arise from structural variation (Collins et al., 2020), the CNVs 

we detected from SNP-array data still represent only a small fraction of the thousands of 

CNVs typically present in each human genome (Abel et al., 2020; Collins et al., 2020). We 

anticipate that future studies analyzing short- and long-read sequencing data will provide 

many more insights into the phenotypic consequences of copy-number variation.

Limitations of the Study

The primary limitations of our study arose from inherent technical limitations of SNP-array 

probe intensity data. We were unable to ascertain CNVs smaller than the resolution of the 

SNP array, and we were also unable to genotype most common CNVs (MAF > 5%) due 

to inadequate SNP-array coverage and breakdown of modeling assumptions. Similarly, we 

were unable to genotype multi-copy CNVs due to limited differentiation of copy-number 

states in probe intensity data (Figure S6 and STAR Methods). These limitations could 

potentially be overcome by extending the HI-CNV framework to whole-exome or whole-

genome sequencing data, which is a promising direction for future research, especially 

at loci that are challenging to genotype. A separate limitation of our study is that while 

we successfully replicated many of the CNV-phenotype associations we reported, other 

associations have yet to be externally validated, and in all cases experimental work will be 

necessary to conclusively demonstrate causality and determine mechanism.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Po-Ru Loh (poruloh@broadinstitute.org).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Summary statistics have been deposited at Zenodo and are publicly available as 

of the date of publication. DOIs are listed in the key resources table.

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

UK Biobank genetic and phenotypic data—Genome-wide SNP-array data, including 

allelic dosages of pairs of alleles (labeled A and B) for 805,426 biallelic variants (784,256 

autosomal), was previously generated for 488,377 UK Biobank participants (Bycroft et al., 

2018). For CNV-calling, these allelic intensities are typically transformed to measures of 

total intensity (LRR) and relative intensity (B-allele frequency, BAF). We analyzed the LRR 

values provided by UK Biobank after first applying two de-noising steps: (i) GC-correction 
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of total allelic intensities and (ii) principal component (PC)-correction of LRR (Dennis et al., 

2021); and we directly computed relative allelic intensities (see Transforming and denoising 

SNP-array genotyping intensities). We also analyzed pilot whole genome sequencing (WGS) 

data available for 48 individuals (for validation analyses) and whole exome sequencing 

(WES) data available for 200,643 individuals (Szustakowski et al., 2021) (for follow-up 

analyses) as well as subsequently-released WGS data for 500 individuals (for further 

validation).

We performed CNV analyses on the subset of 487,409 participants included in the UK 

Biobank imputed data set (Bycroft et al., 2018). We focused our primary analyses on 

individuals of self-reported European ancestry, excluding individuals with trisomy 21, blood 

cancer, or those who had withdrawn at the time of our study (see Quality control filtering 

in UK Biobank), resulting in 454,759 participants with array data, 43 individuals with WGS 

data, and 186,105 individuals with WES data.

We analyzed 56 heritable quantitative traits measured on the majority of UK Biobank 

participants. These traits included anthropometric traits, blood pressure, measures of lung 

function, bone mineral density, blood cell indices, and serum biomarkers (Table S2). Quality 

control and normalization of the quantitative traits was previously described (Barton et al., 

2021; Loh et al., 2018a).

Overview of HI-CNV method for haplotype-informed CNV detection—We 

reasoned that CNV detection sensitivity from SNP-array data could be considerably 

increased via two orthogonal strategies: (a) estimating SNP-specific priors for allele 

combinations corresponding to CNV states (to enable more accurate assessment of 

probabilistic information about copy-number variation provided by probe intensities); and 

(b) integrating probe intensity data across individuals likely to have co-inherited a large 

genomic tract. To estimate SNP-specific priors for allele combinations corresponding to 

CNV states, we (i) directly estimated SNP-specific genotype cluster priors at a subset of 

SNPs covered by large, easily-called CNVs; and then (ii) used these SNPs as a reference 

set from which SNP-specific priors for other SNPs could be predicted (based on which 

SNPs in the reference set exhibited most-similar probe intensity patterns). To incorporate 

probe intensity data across individuals likely to have co-inherited a large genomic tract, for 

each individual and genomic position on the SNP-array, we used a PBWT-based algorithm 

to find the 10 longest identical-by-descent (IBD) matches (per haplotype of the individual) 

spanning the position under consideration.

We note that at loci containing multiple different types of copy-number polymorphism (e.g., 

CNVs with different sizes or breakpoints), haplotype-sharing information is still helpful 

even though different CNVs are expected to reside on different haplotypes (as they arose 

from distinct mutational events): as long as the shared haplotype postdates the mutational 

event that gave rise to a specific CNV, the individuals sharing that haplotype will still all 

carry the exact same CNV. In this respect, the different CNVs at a locus all behave like 

independent variants from the point of view of haplotype-sharing analysis.
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We used a hidden Markov model to call CNVs, integrating probabilistic information about 

copy-number state across an individual and their “haplotype neighbors” by weighting each 

neighbor’s information according to length of IBD-sharing. In more detail, at each SNP, for 

the individual and for each haplotype neighbor, we computed Bayes factors for deletion and 

duplication states based on genotyping intensities from the corresponding sample. We then 

created a weighted sum of log Bayes factors at each SNP, giving higher weights to haplotype 

neighbors with longer IBD. We ran this analysis using several different weighting schemes 

(trading off sensitivity to more recent vs. older mutations) and compiled calls made across 

these weighting schemes.

We filtered CNV calls to deletions larger than 75bp and duplications larger than 500bp 

and removed individuals with more than 100 CNV calls. Many UK Biobank samples with 

aberrantly many CNV calls appeared to share rare technical artifacts in LRR that had 

escaped denoising. We therefore computed the first 10 principal components of LRR in 

these aberrant individuals, ranked all individuals by the amount of LRR variance explained 

by these artifact PCs, and further removed individuals in the top 0.5%. Finally, for all 

downstream analyses, we removed calls on any chromosome in which we had previously 

detected a mosaic CNV (Loh et al., 2020) as well as calls in regions with frequent somatic 

events. After these quality control filters, we had called CNVs in 452,500 UK Biobank 

participants (including 43 individuals with WGS data and 185,365 individuals with WES 

data). Further methodological details are available below (see Transforming and denoising 

SNP-array genotyping intensities; Estimating genotype cluster parameters; Finding longest 

identical-by-descent (IBD) matches per haplotype; Calling CNVs using intensity data across 

haplotype neighbors; Filtering, merging, and genotyping CNVs; and Quality control filtering 

in UK Biobank).

PennCNV call set in UK Biobank—We compared HI-CNV calls to previously-

generated PennCNV (Wang et al., 2007) calls made by analyzing Affymetrix CEL files 

(UK Biobank Return 1701) (Crawford et al., 2019). Following suggested quality control 

procedures (Kendall et al., 2017), we filtered individuals with 30 or more calls, a genotype 

call rate less than 96%, or an absolute waviness factor greater than 0.3 and filtered individual 

CNV calls covered by <10 probes or with low probe density (< 1 probe per 20kb). To 

facilitate comparison to our HI-CNV call set, we then applied the same additional filtering 

of calls on chromosomes containing mosaic CNVs and in regions with frequent somatic 

events.

Precision and recall of HI-CNV and PennCNV call sets—To benchmark 

performance of HI-CNV and PennCNV, we analyzed independent WGS data available for 

43 individuals using CNVnator (Abyzov et al., 2011) and DELLY (Rausch et al., 2012). To 

assess the precision, or validation rate, of array-based calls we computed the proportion of 

HI-CNV (respectively, PennCNV) calls that were either (1) replicated by CNVnator calls 

or (2) exhibited enrichment or depletion of read-depth (computed by CNVnator) consistent 

with the CNV call. To assess recall, or sensitivity, of HI-CNV and PennCNV, we analyzed 

calls from DELLY, which produced a merged call set across WGS samples that was helpful 

for computing recall of CNVs within allele frequency ranges. For each DELLY call, we 
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annotated whether HI-CNV (respectively, PennCNV) called an overlapping event. Further 

details on computing precision and recall are provided below (see Summary measures of UK 

Biobank HI-CNV callset).

Stratifying carrier counts of gene dosage-modifying CNVs by LOEUF score
—For each protein-coding gene, we computed the number of UK Biobank participants 

of European ancestry carrying whole-gene deletions, whole-gene duplications, and CNVs 

predicted to cause loss of function (pLoF; see Creating CNV genotypes for association 

tests). We then annotated each gene with its LOEUF sextile bin (‘oe_lof_upper_bin_6’ from 

the pLoF Metrics by Gene TSV file downloaded from https://gnomad.broadinstitute.org/

downloads), which estimates strength of selection against protein-truncating mutations 

(Karczewski et al., 2020). We restricted to genes with a non-missing LOEUF sextile bin and 

genes with only one annotated canonical transcript. In Figure 1G, we reversed the order of 

LOEUF sextile bins such that higher-numbered bins correspond to more-constrained genes.

Association testing and statistical fine-mapping—We performed CNV-phenotype 

association analyses on three distinct classes of CNVs defined based on 1) SNP-array 

probe overlap, 2) gene overlap, and 3) specific CNVs. Analyses on the SNP probe level 

tested the hypothesis that a change in copy number (deletion or duplication, respectively) 

at the genomic location of the SNP alters the phenotype. Analyses on the gene level tested 

the hypothesis that a change in copy number affecting the gene in question (whole-gene 

deletion, whole-gene duplication, and pLoF, respectively) alters the phenotype. Analyses on 

the CNV level tested whether a specific CNV (allowing for slightly differing endpoints in 

calls from different samples) alters the phenotype. These tests comprised both burden-style 

analyses (the probe- and gene-level tests) and single-variant analyses (the CNV-level tests), 

for a total of ~1.7 million tests. Given that these tests contained a high degree of redundancy 

(e.g., because probe-level tests at consecutive SNPs tended to be very strongly correlated), 

we used the standard genome-wide significance threshold (P < 5 × 10−8) to determine 

significant associations.

We conducted association tests using BOLT-LMM (Loh et al., 2015, 2018a) (--

lmmForceNonInf) with assessment center, genotyping array, sex, age, age squared and 20 

genetic principal components included as covariates. We fit the mixed model on directly 

genotyped autosomal variants with MAF > 10−4 and missingness < 0.1 and computed 

association test statistics for CNVs in the three categories defined above; a similar pipeline 

produced association test statistics for SNP and indel variants imputed by UK Biobank 

(the imp_v3 release) and variants we previously imputed from the first tranche of exome-

sequencing of 49,960 participants (Barton et al., 2021). We included all participants with 

non-missing phenotypes in the QC-ed European-ancestry HI-CNV call set described above.

To filter significant associations to a set of likely-causal associations, we used a pipeline we 

previously developed (Barton et al., 2021) to eliminate associations that could be explained 

by linkage disequilibrium (LD) with nearby variants (here, either SNP or indel variants 

from the UK Biobank imp_v3 release or variants we had imputed from WES (Barton et al., 

2021)). This filter required CNVs to remain significant after conditioning on any other more 

strongly associated variant nearby. More explicitly, for every CNV i significantly associated 
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with a given phenotype, we calculated its correlation rij with each more strongly associated 

variant j (including other CNVs and imputed SNPs and indels) within 3Mb using plink ‘--r’ 

(Chang et al., 2015). We then computed the approximate chi-square association statistic for 

CNV i conditioned on variant j as:

χi ∣ j
2 ≈ χi2 1 − rijsign βiβj

χj2

χi2

2
.

We defined likely-causal associations as those with the property that χi ∣ j
2 ≥ 29.7168 (P < 5 

× 10−8) for all variants j more strongly associated with the trait than CNV i. We previously 

observed that this pairwise LD-based filter was effective for fine-mapping rare variant 

associations (Barton et al., 2021).

Defining and annotating CNV loci—To group phenotype-associated CNVs into 

genomic loci, we first identified a set of unique CNVs contributing to likely-causal 

associations (accounting for uncertainty in CNV breakpoints and for probe-level and gene-

level tests aggregating signal across multiple CNVs; see CNVs contributing to likely-causal 

phenotype associations). We then ordered this set of likely-causal CNVs from smallest to 

largest, and if a CNV fell within 100kb of a previous CNV, we considered it to be part of the 

same locus. We annotated a likely-causal CNV as syndromic if it overlapped a previously-

curated pathogenic CNV (Crawford et al., 2019) by more than 50%. We identified putative 

target genes of non-syndromic, likely-causal CNVs either by observing that a focal CNV 

association only overlapped a single gene or by finding independent supporting evidence for 

a particular gene within or near the CNV region (specifically, a coding variant association or 

experimental literature). Further details on defining and annotating loci are provided below 

(see Association testing and statistical fine-mapping).

Follow-up analyses at highlighted loci—At a subset of loci we investigated in 

greater detail (Figures 5 and 6), we identified carriers of high-confidence loss-of-function 

SNP and indel variants (annotated using LOFTEE (Karczewski et al., 2020)) among the 

185,365 individuals with whole-exome sequencing data (Szustakowski et al., 2021) in our 

analysis set. To increase power to assess phenotypic impacts of SNP and indel PTVs, we 

residualized phenotypes for polygenic predictions of the phenotype using array-typed SNPs 

(omitting those within 2Mb of the gene of interest) that we generated using BOLT-LMM 

‘—predBetasFile’ in 10-fold cross-validation (emulating linear mixed model association 

analysis) (Mefford et al., 2020). Residualized phenotypes could then be modeled as a 

function of SNP and indel PTV carrier status, as well as carrier status for other CNVs or 

SNPs of interest. We performed these analyses after our initial association analyses, such 

that numbers of carriers of CNVs differ slightly between Table S3 and the locus plots in 

Figures 5 and 6 (generated using karyoploteR (Gel and Serra, 2017)) due to participant 

withdrawals.

Binary association testing—We restricted disease association analyses to an unrelated 

subset of N=409,234 UK Biobank participants (within our primary European-ancestry 
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sample set that passed quality control filters). Out of 1,126 “first-occurrence” binary disease 

phenotypes curated by UK Biobank, we tested 757 disease phenotypes which had at 

least 100 cases at the time of our study. We tested variants for association with binary 

traits using the BinomiRare test (Sofer, 2017) to obtain P-values robust to case-control 

imbalance while adjusting for age, sex, and 20 PCs. As previously described (Barton et al., 

2022), for computational efficiency, we reimplemented the BinomiRare test and applied a 

binomial approximation when the number of observed cases among carriers exceeded 100. 

We identified approximately-independent CNV-disease associations using LD-clumping 

implemented in plink (Chang et al., 2015) (setting the LD threshold to 0.25 and the physical 

distance threshold to 250kb) and restricted results to CNV associations not within the MHC 

region that reached a significance threshold of P < 1 × 10−9.

HI-CNV analysis of BioBank Japan—We analyzed genotyping data previously 

generated for N=179,538 BioBank Japan participants using Illumina BeadChip platforms 

(either OmniExpressExome or a combination of OmniExpress and HumanExome) 

(Akiyama et al., 2017; Nagai et al., 2017). We analyzed genotyping probe intensities for 

751,621 autosomal variants that passed quality control filters, extracting LRR values from 

Illumina GenomeStudio Final Report files and directly computing relative allelic intensities. 

We ran HI-CNV using haplotypes phased as previously described (Terao et al., 2020).

Transforming and denoising SNP-array genotyping intensities—UK Biobank 

provided genotyping intensity data generated by Affymetrix in two formats:

1. int files containing intensity values for the A and B alleles of each genotyped 

variant

2. baf and l2r files containing B allele frequency (BAF) and log2 R ratio (LRR) 

transformed intensity values (measuring relative and total genotyping intensities 

across the two alleles) used by typical CNV-calling pipelines.

Affymetrix’s genotype-calling algorithm modeled relative and total genotyping intensities 

by estimating bivariate normal distributions corresponding to “SNP clusters” for the three 

possible diploid (copy number 2; CN=2) genotypes (AA, AB, BB). We wished to extend 

this genotyping framework by additionally estimating bivariate normal SNP clusters for each 

possible genotype cluster corresponding to heterozygous CNVs, i.e., deletions (CN=1: A, B) 

and duplications (CN=3; AAA, AAB, ABB, BBB).

To do so, we required relative and total genotyping intensity measurements that were 

reasonably well-modeled by normal distributions. For relative genotyping intensities, the 

BAF values provided by UK Biobank did not meet this criterion because they had been 

truncated to fall between 0 and 1 (such that many individuals with homozygous genotypes 

had BAF of either 0 or 1). We therefore computed relative genotyping intensities from the 

int data for the A and B alleles by applying a polar-like transformation (Peiffer et al., 2006):

θ = 2
π ⋅ arctan B

A (1)
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For total genotyping intensities, we analyzed the LRR (l2r) values provided by UK Biobank 

after first applying two denoising steps described below.

GC-correction of total allelic intensities (LRR): We first corrected LRR values for “GC 

waves” (Diskin et al., 2008) using a simplified version of a previously-described pipeline 

(Jacobs et al., 2012; Loh et al., 2018b). Specifically, for each sample, we regressed LRR on 

proportions of GC and CpG content in 9 windows centered around each variant (spanning 

50, 100, 500, 1k, 10k, 50k, 100k, 250k, and 1M bp) and analyzed the residuals. We 

computed GC content using bedtools (Quinlan and Hall, 2010) on the human reference 

(hg19), and we computed CpG content using the EpiGRAPH CpG annotation (Bock et al., 

2007).

Principal component (PC)-correction of LRR: Even after GC-correction, top principal 

components of the LRR matrix explained large fractions of variance, indicating that the LRR 

data could be further-denoised by projecting out top PCs capturing unmodeled technical 

noise (Cooper et al., 2015). We took two precautions to guard against top PCs inadvertently 

capturing real signal from common CNVs:

1. We computed principal components on genome-wide LRR values for all 

autosomal variants at once (separately for each genotyping batch), reasoning that 

technical artifacts should behave similarly genome-wide (whereas inter-sample 

correlations in LRR driven by copy number variation would be locus-specific)—

such that genome-wide PCs are more likely to pick up technical artifacts and less 

likely to “overfit” to local features.

2. We computed LRR PCs using only white British samples in order to reduce the 

potential for PCs to capture ancestry effects. (We then projected top PCs out of 

all samples in the genotyping batch: i.e., we regressed each sample’s LRR on top 

PCs and took the residuals).

We applied the above PC-correction procedure independently to each of the 106 genotyping 

batches, projecting the top 50 PCs out of LRR for each batch. We observed that these top 

50 PCs explained an average of 58.5% of LRR variance. Additional PCs provided little 

marginal increase in variance explained (e.g., 100 PCs explained 61.6% of variance on 

average across batches).

Estimating genotype cluster parameters—SNP-array genotyping platforms use 

allele-specific oligonucleotide probes to quantify the abundance of each of two alleles 

(A and B) in a DNA sample. Genotyping of biallelic variants in regions of the genome 

that do not vary in copy number can then be performed by clustering measured probe 

intensities (across a batch of samples) into clusters corresponding to the three possible 

diploid genotypes (AA, AB, BB). Such clustering is usually performed using SNP-specific 

priors on the expected distribution of bivariate probe intensities assuming each possible 

genotype (AA, AB, BB), which for technical reasons can vary substantially among SNPs. 

Genotyping in this manner typically produces highly accurate genotype calls: e.g., ~99.9% 

accuracy with <1% missingness at most SNPs in UK Biobank (Bycroft et al., 2018).
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SNP-array probe intensities are also informative of copy-number variants that overlap SNPs 

on an array, resulting in measured intensities that deviate from the clusters corresponding 

to the usual three diploid genotypes (AA, AB, BB) (Colella et al., 2007; Wang et al., 

2007). Because these deviations are less dramatic than the differences in probe intensities 

that separate diploid genotypes, CNV-calling from the Affymetrix SNP-arrays used by UK 

Biobank (which produced relatively noisy probe intensity measurements) has tended to 

require combining signal across at least ~10 SNPs, resulting in detection of only an average 

of ~4–6 CNVs per sample (Aguirre et al., 2019; Kendall et al., 2019).

We reasoned that CNV detection sensitivity from SNP-array data could be considerably 

increased via two orthogonal strategies: (a) estimating SNP-specific priors for allele 

combinations corresponding to CNV states, thereby enabling more accurate assessment of 

probabilistic information about copy-number variation provided by probe intensities; and 

(b) incorporating probe intensity data from individuals likely to have co-inherited a large 

genomic tract. In this section we describe strategy (a), which was previously employed 

by the Birdsuite software (Korn et al., 2008); here, we leverage large-scale genotyping of 

thousands of samples to learn more information about SNP-specific priors from the data, 

requiring less extrapolation. The basic idea of our approach was to (i) directly estimate 

SNP-specific genotype cluster priors at a subset of SNPs covered by large, easily-called 

CNVs; and then (ii) use these SNPs as a reference set from which SNP-specific priors 

for other SNPs could be predicted (based on which SNPs in the reference set exhibited 

most-similar probe intensity patterns).

Partitioning samples into LRR-noise deciles: We first estimated a per-sample parameter 

reflecting overall amount of technical noise in probe intensities, which varied among 

samples. We computed this per-sample parameter as the RMSE (in standardized units) of 

LRR across autosomal variants on the SNP-array. That is, for each genotyped variant, we 

standardized LRR to have mean 0 and variance 1 across samples, and then for each sample, 

we computed the sample’s “noise scale factor” as the root-mean-square of standardized LRR 

across all autosomal variants.

We used these estimated noise scale factors to partition UK Biobank samples into noise 

deciles for downstream modeling of probe intensities, reasoning that the shapes and 

positions of probe intensity distributions might change somewhat depending on the amount 

of technical noise present in a sample. We also further adjusted for within-decile variation 

in noise scale factors when estimating Bayes factors for copy-number states given observed 

probe intensities (both in our initial LRR-based model and our final HI-CNV model; see the 

descriptions of these computations below for details).

Generating reference data via LRR-based calling of large CNVs: To obtain examples of 

probe intensities corresponding to copy-loss and copy-gain genotypes (loss = {A, B}; gain 

= {AAA, AAB, ABB, BBB}), we implemented a simple hidden Markov model (HMM) 

that called loss and gain events in each sample independently using only LRR values 

together with heterozygous SNP calls (used as evidence against deletions). This approach 

was designed to efficiently generate a high-confidence callset of large CNVs, providing data 

about probe intensity distributions for SNPs within these CNVs.
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Specifically, the HMM contained three copy-number states (CN = 1, 2, 3), with transition 

and emission parameters defined as follows:

• Transition penalties of 10−3 were assessed for jumping between adjacent states 

and 10−6 for jumping between CN=1 and CN=3.

• Emission probabilities were computed assuming that LRR was generated from a 

Gaussian distribution with:

– Mean equal to 0 for CN=2; mean equal to the empirical mean LRR in 

large deletions and duplications (estimated by iteratively running this 

HMM algorithm) for CN=1 and CN=3, respectively.

– Standard deviation estimated per-SNP as the empirical standard 

deviation of LRR across samples in a noise decile, multiplied by the 

relative noise scale factor (relative to the median-noise sample in the 

decile) for the sample being analyzed.

• To limit the influence of outliers, relative emission probabilities for CN=1 vs. 

CN=2 and CN=3 vs. CN=2 were cropped to the range [10−4, 104].

• An additional (multiplicative) emission penalty was assessed for the CN=1 state 

if a SNP had been called as heterozygous (since all SNPs within a deletion 

should be hemizygous). This penalty factor ranged from 5 × 10−6 (for the 

highest-confidence SNP calls) to 1 (for zero-confidence calls) according to 

genotype call confidence values provided by Affymetrix.

We used the Viterbi algorithm to identify putative CNVs (as segments of CN=1 and CN=3 

states in the most likely path through the HMM). We then created a stringent set of (sample, 

SNP) pairs very likely to provide examples of probe intensity measurements arising from 

copy-loss or copy-gain states by restricting to:

• SNPs well within deletion calls spanning 15+ SNPs (>3 SNPs from either end).

• SNPs well within duplication calls spanning 50+ SNPs (>10 SNPs from either 

end).

We required deletions and duplications to be large both to minimize false positives in our 

reference data and to avoid ascertainment bias (which could occur for shorter CNVs if calls 

were only made in carriers for which LRR was especially large due to measurement noise). 

More precisely, because short CNVs are difficult to detect (especially from LRR alone in a 

single sample), including such CNV calls when creating reference CNV genotype clusters 

could bias the clusters to be too low (for DELs) or too high (for DUPs), similar to how 

“winner’s curse” biases effect size estimates to be too large in GWAS.

We also stringently trimmed the ends of CNV calls to avoid uncertainty in breakpoints 

(which was larger for duplications than for deletions), prioritizing data quality over quantity 

because reference data is sufficiently abundant in data sets containing thousands of samples. 

We note that because we did not attempt to model CN=0 or CN=4+ states, the reference 

data set we generated included a small fraction of homozygous CNVs; however, most 

of the large CNVs that we considered in this analysis were rare (MAF<0.01), such that 
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the vast majority of DEL or DUP calls made by our preliminary LRR-based CNV caller 

could be assumed to be CN=1 or CN=3 (rather than CN=0 or CN=4). We could therefore 

simply ensure that our subsequent estimation of cluster priors (described below) was robust 

to outliers, circumventing the need to explicitly distinguish heterozygous vs. homozygous 

CNV genotypes.

Estimating parameters for clusters with available reference data: After identifying 

high-confidence within-CNV SNPs, we next needed to assign probe intensities from such 

SNPs (transformed to the (θ = 2
π arctan B

A , LRR) scale) to genotype clusters for CN=1 (A, B) 

and CN=3 (AAA, AAB, ABB, BBB). We did so by dividing the (θ, LRR) plane into zones 

designed to typically contain most data points from each possible cluster (Figure S7A). We 

defined these zones in a SNP-specific, noise-decile-specific manner based on the locations 

and orientations of CN=2 clusters (i.e., distributions of AA, AB, BB genotype calls from 

standard SNP-array genotyping):

• For CN=1, we split the plane left/right at the θ value of the CN=2 het (AB) 

cluster center.

• For CN=3, we additionally split each of the above half-planes at a line passing 

through the point 2/3 of the way from the CN=2 het (AB) cluster center 

to the CN=2 hom (AA or BB) cluster center. We drew these lines parallel 

to regression lines indicating the relationship between LRR (treated as the 

independent variable) and θ (treated as the dependent variable) among points 

in the respective CN=2 hom clusters: e.g., we approximately separated AAA and 

AAB clusters by drawing a line “parallel to the AA cluster” located 2/3 of the 

way from the AB cluster to the AA cluster. (If one of the CN=2 hom clusters 

was very rare (n<25), we did not perform the additional split, assuming that the 

corresponding AAA or BBB cluster would have negligibly low frequency.)

After provisionally assigning within-CNV probe intensity data points to clusters according 

to the above zones, we next removed outliers farther from the median (in either coordinate, θ 
or LRR) than twice the interquartile range.

The above partitioning and outlier removal strategy worked well for most clusters, but visual 

inspection of the data showed that a sizable minority of provisional clusters still contained 

data points that should have been assigned to other clusters. We therefore applied a few 

post-processing filters to flag questionable-quality clusters for exclusion from our reference 

set:

• Exclude all CN=1 minor-allele clusters for SNPs with MAF<0.05. Some of these 

provisional clusters contained a nontrivial fraction of data points that actually 

corresponded to CN=0, so we just excluded all such clusters (as we had no 

shortage of reference data from more-robust CN=1 clusters).

• Exclude any CN=3 cluster that overlaps with a neighboring CN=3 cluster with 

higher frequency (i.e., more data points). The rationale for this filter was that 

higher-frequency clusters tend to be only mildly affected by mis-assigned points 
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that actually belong in lower-frequency clusters, but not vice versa. We defined 

“overlap” as follows:

– For the two CN=3 heterozygous clusters (AAB, ABB), we required 

the θ-distance between the center of the cluster and the center of 

each of each neighboring CN=3 cluster to be at least the sum of the 

cluster width and the neighboring cluster width: 2 · (s.d.(θ)cluster + s.d.

(θ)neighbor).

– For the two CN=3 homozygous clusters (AAA, BBB) (which tended 

to be more affected by this problem), we required separation from the 

neighboring (het) CN=3 cluster center to be at least 2.5 · (s.d.(θ)cluster + 

s.d.(θ)neighbor).

• Exclude any cluster with aberrantly large variance in either coordinate (θ or 

LRR): i.e., variance greater than 1.5 times the sum of variance (of the same 

coordinate) in each of the three CN=2 clusters (AA, AB, BB). This filter tended 

to catch remaining CN=1 clusters containing CN=0 data points.

• Exclude all clusters from ultra-rare SNPs (n<25 het calls among samples in the 

noise decile).

For each noise decile, for each SNP, for each of the possible genotypes corresponding to 

CN=1 (A, B) and CN=3 (AAA, AAB, ABB, BBB), we considered the genotype cluster to be 

a suitable reference cluster if it contained at least 10 data points (after outlier removal) and 

had not been excluded by any of the above filters. Approximately 1% of all clusters satisfied 

this criterion. For each such cluster, we then estimated its five bivariate normal parameters

—mean(θ), mean(LRR), var(θ), var(LRR), and cov(θ, LRR)—from its data points (Figure 

S7B).

Finally, we also estimated bivariate normal cluster parameters for CN=2 genotype clusters 

simply by assigning all samples with non-missing genotype calls (from standard SNP-array 

genotyping) to the corresponding cluster (and then removing outliers with either coordinate 

(θ or LRR) farther from the median than three times the interquartile range). As above, 

we required at least 10 data points to be assigned to a cluster in order to proceed with 

estimation of bivariate normal parameters; otherwise we set the cluster to missing. We did 

not attempt to identify and exclude data points corresponding to CNVs from this analysis 

given that (i) the vast majority of variants included on most SNP arrays are (by design) not 

in regions of the genome that harbor common copy-number variation; and (ii) our focus was 

on identifying rare, potentially-deleterious CNVs.

Predicting cluster parameters for all genotyped variants: Having determined 

approximate location and shape parameters for a small fraction of all CN=1 and CN=3 

genotype clusters (~1% in UK Biobank) using the above procedure, we then sought to use 

this information to predict bivariate normal parameters at genotyped SNPs throughout the 

genome (most of which had insufficient or questionable-quality data from overlapping large 

CNVs). For each cluster to be predicted, the basic idea of our approach was to find the 

20 reference SNPs with CN=2 clusters most similar to CN=2 clusters of the query SNP in 
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question, and then predict the target cluster of the query SNP based on the location and 

shape of the corresponding cluster in the 20 reference SNPs. This approach is illustrated in 

Figure S7C and described below.

Explicitly, for each noise decile, for each SNP, for each side (left/right) of the cluster plot, 

for each CN=1 and CN=3 cluster on the side under consideration (i.e., A, AAA, AAB on 

the left side; B, ABB, BBB on the right side), we matched the SNP’s CN=2 clusters on 

the side under consideration (i.e., AA, AB on the left side; AB, BB on the right side) to 

the corresponding CN=2 clusters of reference SNPs at which the cluster had been estimated 

(typically ~10,000 SNPs in UK Biobank). We used squared Hellinger distance as a metric 

for assessing agreement between corresponding CN=2 clusters, summing across the two 

CN=2 clusters on the side under consideration. For example, for the left side:

d(query,ref ) = H2 AAquery , AAref + H2 ABquery , ABref (2)

where “query” denotes the SNP with clusters being predicted, “ref” denotes a reference 

SNP, and Hellinger distances are computed between the bivariate normal distributions at 

the “query” and “ref” SNPs for each of the two left-side CN=2 clusters (AA and AB). 

We computed Hellinger distances on bivariate normal distributions for CN=2 clusters that 

we estimated cohort-wide (instead of within noise deciles) to allow more-robust cluster-

matching at rare SNPs, which had few data points in the het and hom-minor CN=2 clusters.

After ranking reference SNPs in this manner, we selected the top 20 reference SNPs that 

genotyped most similarly to the SNP whose cluster was being predicted. By design, such 

“ref” SNPs had CN=2 clusters that closely matched those of the “query” SNP; however, this 

alignment was not perfect. To adjust for small offsets between “query” SNP vs. “ref” SNP 

CN=2 cluster centers, we shifted each “ref” SNP’s CN=1/CN=3 clusters by the estimated 

offset (measuring the offset at the CN=2 cluster closest to the cluster being predicted, in the 

noise decile under consideration). Finally, we predicted bivariate normal parameters for the 

missing cluster of the “query” SNP by computing its mean and covariance assuming that it 

was an equal mixture of the 20 reference clusters.

This approach also allowed us to predict clusters for rare SNPs at which the hom-minor 

CN=2 cluster was missing (due to insufficient data points). For such SNPs, we predicted 

all clusters (CN = 1, 2, 3) on the missing (minor-allele) side using the same approach as 

above, but defining most-similar reference SNPs based on the opposite-side CN=2 clusters 

(hom-major and het).

We developed the above approach using cross-validation analyses (in which we attempted 

to predict held-out reference clusters using other reference SNPs), and visual inspection 

of predicted clusters corroborated good cross-validation performance as well as good 

containment of CNV data points in clusters for which coverage by large CNVs had been too 

low to estimate reference clusters.

Finding longest identical-by-descent (IBD) matches per haplotype—Beyond 

optimizing modeling of genotyping probe intensities, the main source of HI-CNV’s 
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improved detection sensitivity is its use of IBD-sharing across distantly related individuals 

to amplify weak signals of CNV presence. This approach is inspired by the idea of 

validating variant calls in related samples (e.g., trios) by checking for Mendelian inheritance, 

a paradigm that is frequently used to benchmark variant callers or increase confidence 

in difficult-to-call variants. HI-CNV leverages the fact that population-scale cohorts such 

as UK Biobank contain extensive distant relatedness, such that any polymorphic variant 

present in at least a few individuals is likely to have been co-inherited on a long, readily-

identifiable shared haplotype. In such scenarios, combining probabilistic information about 

CNV presence across individuals who share long IBD can dependably aid detection. This 

idea builds upon previous approaches that modeled linkage disequilibrium between CNVs 

and common SNPs by considering short ancestral haplotypes (Coin et al., 2010) and that 

performed SNP-haplotype-based refinement of CNV likelihoods (Handsaker et al., 2011, 

2015).

In this section, we describe the algorithm we implemented to efficiently identify top IBD 

matches within very large cohorts such as UK Biobank: specifically, for each haplotype of 

each individual, and for each genomic position on the SNP-array, we wished to find the 

longest 10 IBD matches spanning the position under consideration. While several methods 

based on the positional Burrows-Wheeler transform (PBWT) (Durbin, 2014) have recently 

been developed for rapid IBD detection in large cohorts (Freyman et al., 2021; Naseri et al., 

2019; Zhou et al., 2020), these methods aim to find all IBD segments above a fixed length 

(e.g., 2 or 3 cM) shared by pairs of haplotypes in a cohort—which could either result in too 

much output for our purposes (at loci containing very many IBD matches) or too little output 

(for haplotypes with only smaller lengths of IBD-sharing). We therefore implemented a 

simple PBWT-based algorithm (using a seed-and-extend approach similar to hap-IBD (Zhou 

et al., 2020) tailored to the specific task of finding longest-IBD matches. (Note that here we 

will be loose about the definition of “IBD”; a short, ~1-cM match might not arise from a 

recent-enough common ancestor to typically be considered “IBD” but might still be helpful 

for calling common CNVs contained within it that arose long ago, such that CNV genotypes 

segregate well with relatively short haplotypes.)

Identifying seed matches using the positional Burrows-Wheeler transform 
(PBWT): The first step of our approach was to identify a set of long identical-by-state 

(IBS) segments among pairs of phased SNP-haplotypes, serving as seeds for extension 

into (potentially longer) IBD segments. We performed this search using the PBWT, which 

produces, at each genotyped SNP, a lexicographic sort of haplotype suffixes (when operating 

right-to-left) from which longest-IBS matches starting at each position can readily be 

obtained as bands of consecutive sorted haplotype suffixes (Durbin, 2014). Explicitly, every 

32 SNPs processed by the PBWT, we augmented our set of IBS seed segments by selecting, 

for each haplotype, a band of adjacent haplotypes corresponding to K = 5 (first algorithmic 

iteration; see below) or K = 10 (second algorithmic iteration) longest IBS-suffix matches 

spanning at least 128 SNPs. For any IBS-suffix match that extended a sub-IBS-suffix 

previously selected, we eliminated the redundant, previously-selected sub-IBS-suffix from 

the seed set.
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Extending IBD seeds: Most IBD segments do not consist of a single segment of 

perfect IBS (i.e., exact matching of a contiguous sequence of alleles along a pair of SNP-

haplotypes); instead, IBD segments usually contain a sequence of IBS segments punctuated 

by mismatches (typically arising from genotyping errors or gene conversions). For each IBS 

seed identified by the PBWT-based algorithm above, we therefore attempted to extend the 

IBS segment into a longer IBD segment using an approach similar to hap-IBD (Zhou et al., 

2020). (We did not attempt to model phase switch errors given that our phased haplotypes 

for UK Biobank had chromosome-scale accuracy (Loh et al., 2020).)

Explicitly, we attempted to extend each IBS seed to the left and right in an error-tolerant 

manner based on matching scores that we computed on blocks of 64 SNPs (using fast 

parallelization of bitwise operations):

 64‐SNP match score  = 1 − 2 × ( #  "soft"errors) − 4 × ( #  "hard"errors),  (3)

where “soft” and “hard” errors were defined based on genotype call confidences (on a 0–1 

scale) provided by Affymetrix and UK Biobank. Specifically:

• We ignored errors at SNPs for which either sample in the pair had an estimated 

genotype error probability >0.002.

• Otherwise, we considered a “soft” error to be a mismatch at a SNP for which 

at least one sample had an estimated genotype error probability in the range 

0.0001–0.002.

• The remaining errors (involving SNPs with very confident genotypes in both 

samples) were considered “hard” errors.

Under this scoring scheme, perfect matches of 64-SNP blocks incremented the score of a 

segment being extended by 1, while matches with non-ignored errors reduced the score by 

1 or more (depending on the number and type of errors). Upon encountering a negatively-

scored block, we required the total score to break even within the next 12 blocks; otherwise, 

we ended IBS seed extension at the first error encountered within the block. This approach 

effectively required that each “soft” error be counterbalanced by 127 matched SNPs and 

each “hard” error be counterbalanced by 255 matches.

Filtering to longest IBD matches per position per haplotype: From the list of IBD 

segments identified above, we wished to efficiently identify, for each haplotype and at 

each SNP-array position, a list of the top-K longest IBD segments spanning this position. 

To do so, we first post-processed the set of IBD segments by merging any duplicated or 

overlapping segments (involving the same pair of haplotypes). Then, for each haplotype, 

we identified top-K longest IBD matches at each SNP-array position using the following 

algorithm:

• Sort all IBD matches involving the haplotype by start coordinate.

• Walk left to right across the chromosome, maintaining an “active set” of IBD 

matches spanning the current position, sorted in two ways: (i) by IBD length 

(longest to shortest); and (ii) by end coordinate (left to right). At each position:
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– Update the active set if:

♦ Current position starts a new IBD match: add new match to 

active set.

♦ Current position ends an IBD match in the active set: delete 

ended match.

– Read off the top-K longest matches spanning the current position from 

the active set.

Correcting potential genotype errors: Our identification of top IBD matches for each 

haplotype at each genomic position provided an opportunity to correct some of the 

occasional SNP-allele mismatches that interrupted IBS within IBD tracts. Doing so could 

potentially improve the quality of IBS seeds identified by the PBWT, which is not robust to 

mismatches. We therefore implemented an “error-correction” strategy in which we used IBD 

information to identify haploid SNP-alleles that were inconsistent with haplotypes sharing 

longest IBD, and we subsequently ran a second iteration of the entire IBD-finding algorithm 

after modifying these SNP-alleles. We limited error-correction to SNP-alleles for which the 

genotype error probability estimated by Affymetrix was >0.002.

In more detail, for each haplotype, for each SNP-allele corresponding to a low-confidence 

genotype call, we identified the longest five IBD matches spanning the SNP-allele, as 

described above. We then examined the corresponding SNP-allele in each of the 5 IBD-

neighbor haplotypes for which the SNP in question was located > 0.5 cM from the edge of 

the IBD segment. If at least four IBD-neighbors satisfied this requirement and only at most 

one of them agreed with the SNP-allele in the original haplotype, we recorded a likely error.

After analyzing all haplotypes in the above manner, we flipped the (haploid) SNP-allele 

genotypes at all recorded likely errors. We also used the information about potential errors 

to perform quality control on SNPs: for any SNP with likely errors in 0.25% or more 

haplotypes, we ignored this SNP in the next iteration of IBD-finding.

This algorithm produced long IBD calls for most haplotypes in UK Biobank at most 

genomic locations. For example, the longest match (“closest haplotype neighbor”) was 

>1cM 98% of the time, >5cM 80% of the time, and >10cM 58% of the time; the 5th longest 

haplotype match was >1cM 94% of the time, >5cM 51% of the time, and >10cM 18.5% of 

the time; and the 10th longest haplotype match was >1cM 90.5% of the time, >5cM 35% of 

the time, and >10cM 8% of the time.

Calling CNVs using intensity data across haplotype neighbors—The methods 

described in the previous sections provided the two key ingredients of the HI-CNV 

algorithm: (i) detailed, SNP-specific (and sample noise decile-specific) priors on probe 

intensities produced by different genotypes; and (ii) information about longest IBD matches 

for each haplotype at each genomic location. Here we describe the algorithm that we used 

to convert probe intensity data into probabilistic information about copy-number state and 

robustly integrate such information from individuals and their “haplotype neighbors” to call 

CNVs.
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Estimating per-SNP Bayes factors for copy-number states: Our first task was to quantify 

the extent to which a given SNP-array measurement—i.e., observed relative intensity (θ) and 

total intensity (denoised LRR) for a given sample—supported the presence of a copy-gain, 

copy-loss, or no CNV spanning the SNP. We performed this quantification by estimating 

approximate Bayes factors for copy-gain vs. no CNV and for copy-loss vs. no CNV. To do 

so, we computed the probability density at the observed intensity data point (θ, LRR) for 

each of the bivariate normal genotype clusters we estimated above: two probability density 

values for the CN=1 clusters (A, B), three for the CN=2 clusters (AA, AB, BB), and four 

for the CN=3 clusters (AAA, AAB, ABB, BBB). We also included a cluster that accounted 

for occasional CN=0 data points; we situated this cluster at a constant offset below the 

CN=2 het (AB) cluster, with twice its variance parameters. We then computed maximum 

probability densities among the values obtained from copy-gain clusters (AAA, AAB, ABB, 

BBB), copy-loss clusters (A, B, and CN=0), and noCNV clusters (AA, AB, BB) and set the 

approximate Bayes factors for copy-gain vs. no CNV and copy-loss vs. no CNV to equal the 

ratios of the relevant maxima. Finally, we cropped these ratios to the range [3 × 10−3, 103/3] 

to limit the influence of potential outlier values.

We note that our use of maximum probability density values across genotype clusters within 

a copy-number state (e.g., AAA, AAB, ABB, BBB for CN=3) does not result in true Bayes 

factors: a formal Bayesian analysis would require a generative model that, for a given CN 

state, first defines a probability distribution over the genotype clusters corresponding to the 

CN state. We did not attempt to model the relative frequencies of genotype clusters because 

in practice, such modeling only becomes relevant for rare SNPs (with highly unbalanced 

cluster probabilities); but for such SNPs, almost all observations come from major-allele 

clusters, such that detailed modeling of cluster frequencies is rarely relevant. We found 

that in practice, CNV detection using the approximate Bayes factors we computed already 

increased detection sensitivity relative to previous PennCNV analyses of UK Biobank (Table 

S1; HI-CNV0 denotes analysis using our approximate Bayes factors without incorporating 

information from haplotype neighbors).

An additional detail regarding our computation of bivariate normal probability density 

values is that we applied individual-specific scale factors to the per-noise-decile bivariate 

normal clusters we had estimated. We did so because even though we estimated cluster 

parameters separately for each LRR-noise decile of samples, the samples within a decile 

still exhibited varying levels of noise. To account for this remaining variation in noise, we 

scaled all genotype cluster standard deviation parameters for a given sample by the ratio of 

s.d.(LRR) in the sample to the median s.d.(LRR) in the sample’s decile.

Masking genotyping intensities potentially influenced by nearby SNPs: We found that 

for some variants on the UK Biobank SNP-array, the presence of nearby SNPs (within 

±30 bp) resulted in genotyping intensities similar to deletions, presumably because the 

additional nearby variant caused the local sequence no longer to hybridize to either of the 

oligonucleotide probes for the A or B allele of the variant being genotyped. To prevent 

such scenarios from potentially producing spurious deletion calls, we attempted to mask all 

genotyping intensity measurements that might be influenced by nearby SNPs. We did so by 

masking, in each individual, intensity data from all variants for which a nearby SNP (within 
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±30 bp) had been imputed (in the UKB imp_v3 release) with an imputed dosage >0.1 for 

the minor allele. This filter removed only a small fraction of the available data: at a typical 

heterozygosity rate of ~1 heterozygote per 1,000 basepairs, filtering when observing a SNP 

in the 60 bases within ±30 bp of a genotyped variant results in a variant being filtered ~6% 

of the time.

We also applied a similar mask to multi-allelic SNPs. Intuitively, a probe designed to look 

for the two most common alleles at a site may make carriers of a third allele look like 

carriers of deletions (no signal for either of the two common alleles). As such, we masked 

genotype intensities for imputed carriers of a third allele at a given SNP.

Hidden Markov model (HMM) using IBD-based weights: As in previous CNV-calling 

methods such as PennCNV (Wang et al., 2007), we used a hidden Markov model to identify 

sequences of consecutive SNPs at which genotyping intensity measurements consistently 

indicated the presence of a CNV (based on the Viterbi path passing through copy-gain 

or copy-loss states). Here, we needed to adapt this approach to incorporate probabilistic 

information not only from an individual but also from haplotype neighbors sharing IBD 

tracts. This task was nontrivial because fully modeling genotyping intensity data from 

all of these samples would require considering a combinatorial state space including the 

copy-number states of all haplotype neighbors (which might or might not match that of the 

individual in question, depending on recentness of IBD-sharing).

To retain computational tractability, we therefore incorporated information from haplotype 

neighbors using a simple heuristic approach somewhat analogous to a variational 

approximation. Specifically, at each genotyped SNP, we simply augmented the approximate 

Bayes factors for the individual (for copy-gain vs. no CNV and copy-loss vs. no CNV) with 

the corresponding Bayes factors from each haplotype neighbor, downweighted in such a way 

as to reflect the possibility that haplotype neighbors with shorter IBD-sharing might be too 

distantly related to the individual to have co-inherited a CNV. We ran this analysis using 

several different weighting schemes (trading off sensitivity to more recent vs. older CNV 

mutations, as described below) and compiled calls made across these weighting schemes (as 

described in the next section).

• HMM states. We used a three-state HMM with copy-gain, copy-loss and no-

CNV states. We did not attempt to have the HMM distinguish between CN=1 

and CN=0 or between CN=3 and higher copy numbers given that our focus was 

on detecting rare biallelic CNVs.

• Emission probabilities. Given that we ultimately wanted to perform inference 

based on the Viterbi path through the HMM, we could perform all computations 

in log space and work only with relative emission probabilities (i.e., log Bayes 

factors). As described above, at each SNP, our genotype cluster models allowed 

us to compute approximate log Bayes factors for copy-gain vs. no CNV and 

for copy-loss vs. no CNV from the genotyping intensities of the individual 

and likewise for each of the individual’s haplotype neighbors. To aggregate 

this information into a single log Bayes factor for copy-gain (respectively, copy-

loss) vs. no CNV, we computed a weighted sum in which the individual’s log 
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Bayes factor received a weight of 1 (corresponding to fully utilizing probabilistic 

information about CNV status from the individual’s genotyping intensities) and 

the haplotype neighbors’ log Bayes factors received weights between 0 and 1 

depending on their lengths of IBD-sharing (so as to downweight information 

from individuals with shorter, less-confident IBD with the individual).

Explicitly, we considered a 1-parameter family of weighting functions that 

map a given IBD length to the probability that the time to the most recent 

common ancestor (TMCRA) is within T generations. Intuitively, this weighting 

scheme optimizes for detecting CNVs that arose roughly T generations ago 

(by incorporating information from haplotype neighbors who share more recent 

IBD— and thus have genotyping intensities informative of the co-inherited 

CNV—while discarding information from haplotype neighbors with TMRCA 

predating the CNV mutation). To power detection of CNVs of different ages, 

we ran HMM inference using six different values of T ∈ {0,5,10,25,50,100} 

generations, where T = 0 corresponds to ignoring haplotype neighbors entirely 

(i.e., performing single-sample analysis). For each T > 0, we performed two 

HMM runs, incorporating information from neighbors of each of the individual’s 

two haplotypes in turn.

To calculate the approximate probability that an IBD segment of length l 
Morgans has TMRCA (denoted t) less than T generations, we used the 

following derivation. For a population of constant size 2N haplotypes (N diploid 

individuals), we have (from page 117 of (Palamara, 2014)):

P (t ∣ l, 2N) = t2
2 (2N)−1 + 2l 3e−t (2N)−1 + 2l .

Letting N → ∞, we obtain:

P (t ∣ l) = t2
2 (2l)3e−t(2l)

Integrating from T to infinity,

P (t ≥ T ∣ l) = ∫T
∞ t2

2 (2l)3e−t(2l)dt = e−2lT 1 + 2lT + 1
2(2l)2T2 .

Thus, the probability that an IBD segment of length l Morgans has TMRCA 

within T generations is approximately given by:

P (t < T ∣ l) = 1 − P (t ≥ T ∣ l) = 1 − e−2lT 1 + 2lT + 1
2(2l)2T2 .

• Transition probabilities. We specified a transition probability matrix similar 

to PennCNV (Wang et al., 2007) in which the probabilities of changes in copy-

number state between two consecutive probes depended on the distance between 
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the probes (corresponding to the idea that copy-number state changes between 

nearby probes should be less likely than between distant probes).

Explicitly, we used the transition matrix:

To
CN = 1 CN = 2 CN = 3

CN = 1 e−di/Ddel 1 − 10−4 1 − e−di/Ddel 10−4 1 − e−di/Ddel

From CN = 2 p21 = min e−di/D

# del/ # probes
1 − p21 − p23 p21 = min e−di/D

# dup/ # probes

CN = 3 10−4 1 − e−di/Ddup 1 − 10−4 1 − e−di/Ddup e−di/Ddup

where di is the distance between probes, # del and # dup are the average number 

of deletions and duplications called using SNP-array data (set to 15 and 5, 

respectively), Ddel, Ddup are the average lengths of deletions and duplications 

(both set to 100kb), D is the genome size divided by the number of copy number 

variants (set to 3 × 109/20 = 150 Mb) and finally # probes is the number of SNPs 

on the array (set to 784,256 autosomal variants for UK Biobank).

Filtering, merging, and genotyping CNVs—In the previous sections, we described 

how we set up HMMs to call CNVs using information from haplotype neighbors. 

We incorporated such information via a set of IBD length-based weighting schemes 

(parameterized by a TMRCA parameter T ∈ {0,5,10,25,50,100} generations). Here we 

describe how we post-processed CNV calls from these HMMs to obtain a high-confidence 

set of CNVs (that merged calls across different values of T) and how we subsequently 

genotyped CNVs across samples. We note that the merging approach described below does 

not prioritize calls made using lower vs. higher values of T; the motivation for running the 

HMM using different values of T was not that some TMRCA parameters are inherently 

better than others, but rather that depending on the age of a CNV mutation, higher or lower 

values of the TMRCA parameter might offer more detection sensitivity.

Filtering and post-processing CNV calls from each HMM run: For each individual, 

for each run of the HMM (parameterized by T and by the haplotype of the individual 

used to identify neighbors), we extracted potential deletions (respectively, duplications) 

as consecutive sequences of copy-loss (respectively, copy-gain) states in the Viterbi path 

through the HMM. For each such sequence of states, we computed the log10 Bayes factor 

(BF) supporting the putative CNV event (as the sum of log10 BFs across the sequence 

of SNPs within the segment, including information from the focal individual as well as 

haplotype neighbors as in the HMM). We then applied an initial set of filters to these 

potential CNV segments: we required putative deletions to span at least 50 bp, and we 

required duplications to span at least 500 bp and have log10BF > 9 support.

We further post-processed the segments that survived filtering by bridging short gaps 

between consecutive segments of the same copy-number state (because the Viterbi path 

through long CNVs was sometimes interrupted by short sequences of no-CNV states). 
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Specifically, we bridged gaps between nearby CNV segments if either (i) they included 

≤4 probes and spanned <20 kb; or (ii) they spanned ≤20% of the combined length after 

bridging.

Merging CNV calls across HMM runs: To synthesize post-processed CNV calls across 

HMM runs from different values of the TMRCA parameter T (which had differing 

sensitivity to CNVs of different mutational ages and also exhibited stochastic variation in 

endpoints), we next performed a deduplication step to identify a nonredundant set of CNVs 

discovered in each individual. We performed this deduplication procedure on the aggregate 

set of CNV calls made across values of T and across which of the individual’s haplotypes 

had been used to identify neighbors. (Homozygous CNVs present on both haplotypes were 

collapsed into a single call during this step but handled later in a separate genotyping step 

described below.)

Specifically, we considered two CNV calls of the same type (DUP or DEL) to be duplicates 

if their endpoints matched within 4 SNP-array probes (i.e., Δ start ≤4 and Δ end ≤4). For 

each such duplicate pair, we retained the call with higher log10BF. We refer to the set of 

CNV calls remaining after this procedure as the “deduped” callset.

Because the deduped callset could still contain overlapping CNV calls (that were unwieldy 

for some downstream analyses), we also created a “unioned” callset in which we merged 

overlapping CNV calls of the same type (DUP or DEL). Lastly, we applied a final set of 

length filters on the CNV calls, requiring deletions to be >75 bp and duplications to be >500 

bp (based on empirical validation analyses).

Creating CNV genotypes for association tests: We used the deduped and unioned callsets 

described above to create genotypes for single-variant and burden-style association tests on 

various classes of CNVs (grouping CNVs at the probe, gene, or CNV level). In more detail:

• Probe-level tests: For each probe on the SNP-array, we used the unioned CNV 

callset to determine which individuals had a deletion or duplication spanning the 

given probe. This procedure created two 0/1 genotypes (for DEL and DUP) at 

each probe. (We did not distinguish homozygous from heterozygous genotypes 

for these tests.)

• Gene-level tests: Similarly, for all protein-coding genes, we used the unioned 

CNV callset to construct three gene-level 0/1 genotypes (for DEL, DUP, and 

pLoF):

– Deletion (DEL): 1 if a deletion spans the entire gene (CNV boundaries 

1 probe beyond first and last probe within coding sequence of gene);

– Duplication (DUP): 1 if a duplication spans the entire gene (CNV 

boundaries 1 probe beyond first and last probe within coding sequence 

of gene);

– Predicted loss of function (pLoF): 1 if a deletion spans any part of the 

coding sequence or a duplication is contained within coding sequence 
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(i.e., CNV starting probe is at or after the first probe in coding sequence 

and last probe is at or before the last probe in coding sequence).

We created these genotypes using canonical transcripts for 20,091 

genes (downloaded from https://github.com/im3sanger/dndscv/blob/master/data/

refcds_hg19.rda).

• CNV-level tests: For each CNV in the deduped callset with ≥ 5 carriers within 

the entire cohort, we constructed four versions of 0/1/2-genotypes for the CNV 

(parameterized by δ = {0,1,2,3}), reflecting four levels of tolerance to noise 

in breakpoints of CNV calls. Specifically, for a given CNV to be genotyped 

and a given value of δ, we considered an individual to be a carrier if the 

individual had a deduped CNV call with breakpoints that matched to within 

probes (i.e., Δ start ≤ δ and Δ end ≤ δ). We considered an individual to be 

homozygous for a CNV if for some T > 0, both HMM runs (using neighbors 

from the individual’s haplotype 1 and haplotype 2, respectively) had produced an 

approximately-matching CNV call with strong support from haplotype neighbors 

(i.e., neighbor-only log10BF > 6).

HI-CNV software implementation—To enable haplotype-informed CNV detection on 

data sets beyond UK Biobank, we have developed a portable, open-source HI-CNV software 

implementation designed to be readily applicable to other SNP-array-genotyped cohorts 

(10.5281/zenodo.7034987). This software package follows the same series of steps as our 

analysis of UK Biobank (described in the previous sections) with a few minor modifications 

to improve usability and generalizability:

• LRR-denoising is performed using only principal component analysis, skipping 

the GC correction step (which appears to be obviated by PCA).

• LRR principal components are computed using at most 5,000 randomly sampled 

individuals per genotyping platform (which is sufficient to estimate top PCs and 

capture technical noise).

• Samples are partitioned into <10 LRR noise quantiles in data sets of <200,000 

samples (to prevent sample noise quantiles from becoming too small to 

accurately estimate genotype clusters).

• For LRR-based calling of large CNVs (used to generate reference genotype 

cluster data), expected LRR for DELs and DUPs are estimated via an iterative 

expectation-maximization (EM) approach (to allow for platform-dependent 

effects of CNVs on LRR).

• Genotype call confidences are not considered when identifying haplotype 

matches (because genotyping confidence data is not always available and 

accounting for confidences in UK Biobank was only slightly beneficial).

Quality control filtering in UK Biobank—To further improve robustness of the UK 

Biobank HI-CNV callset, we performed several stages of filtering at the sample-level, 

chromosome-level, and CNV-level.
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Individuals with trisomy 21 or blood cancer: To identify individuals with trisomy 21 

we computed each individual’s mean denoised LRR across probes on chromosome 21. We 

identified 15 individuals (in the full UK Biobank cohort) with outlier values of chromosome 

21 mean LRR consistent with potential trisomy 21 and removed these individuals from 

analysis.

To filter individuals whose DNA samples might be affected by blood cancers or 

premalignant conditions, we removed all individuals who self-reported any blood cancer 

at assessment or had a recorded date of first occurrence of blood cancer <5 years after 

assessment.

Technical artifacts producing aberrantly many CNV calls: We found that a small subset 

of samples with very low lymphocyte counts and red blood cell counts had aberrantly many 

duplication calls, apparently due to a technical artifact in LRR that had escaped denoising. 

We therefore filtered all samples with >100 CNV calls. Additionally, to identify individuals 

potentially affected more subtly by this type of artifact, we computed the first 10 principal 

components of LRR in these aberrant individuals, ranked all individuals by the amount of 

LRR variance explained by these artifact PCs, and removed individuals in the top 0.5% 

(corresponding to >1.1% of LRR variance explained by the 10 PCs).

Chromosomes with mosaic chromosomal alterations: For individuals with a mosaic 

chromosomal alteration call with cell fraction greater than 20% (Loh et al., 2020), we set all 

probe-level, gene-level, and CNV-level genotypes on the affected chromosome(s) to missing.

Somatic CNVs: We filtered calls intersecting the following regions (in hg19) frequently 

affected by somatic CNVs:

1. Immunoglobulin genes (IGK: chromosome 2; 89000000 – 90274235, IGH: 

chromosome 14; 106032614 – 107288051, IGL: chromosome 22; 22380474 – 

23265085)

2. T cell receptor genes (TRG: chromosome 7; 38279625 – 38407656; TRB: 

chromosome 7; 141998851 – 142510972; TRA: chromosome 14; 22090057 – 

23021075; TRD: chromosome 14; 22891537 – 22935569)

3. DLEU1 / DLEU2 locus (chromosome 13; 50556688 – 51297372)

Summary measures of UK Biobank HI-CNV callset

Validation rate of HI-CNV and PennCNV callsets: To assess the precision (i.e., validation 

rate) of CNVs called by HI-CNV (or PennCNV), we computed the proportion of HI-CNV 

(respectively, PennCNV) calls that were either (i) replicated by WGS-based CNV calls or 

(ii) exhibited enrichment or depletion of WGS read-depth consistent with the CNV call. 

We performed these analyses using whole-genome sequencing pilot data available for 43 

individuals in our primary analysis set. For both the HI-CNV and PennCNV callsets, we 

removed calls that intersected regions that commonly contain somatic CNVs as well as all 

calls on chromosomes containing high-cell-fraction mosaic chromosomal alterations (see 

above). We note that the WGS data was aligned to hg38, whereas the SNP-array data 
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analyzed by HI-CNV and PennCNV used hg19, so we lifted over the start and end of each 

HI-CNV and PennCNV call to hg38 and removed events which had an unmapped start or 

end.

We used CNVnator (Abyzov et al., 2011) to call CNVs following a standard pipeline 

(https://github.com/abyzovlab/CNVnator), using the -unique flag when extracting read 

mapping data from bam files and a binsize of 100 bp for computing WGS read-depth. We 

restricted to calls with a q0 (fraction of reads mapped with q0 quality) ≤ 0.5 (non-redundant) 

and a q0 not equal to −1 (couldn’t be calculated). We then used the python module 

pytools.io to extract CNVnator read depth data from the root file.

For all CNVs called by HI-CNV (or PennCNV), we annotated whether CNVnator called an 

overlapping CNV containing at least 50% of the probes in the SNP-array-based call. We also 

computed mean normalized read depth across the 100 bp windows spanning the CNV being 

validated (normalized by read depth across entire chromosome). We then compared this 

mean normalized read depth to the distribution of mean normalized read depth across the 

same CNV region among individuals with no CNV call in the region. We used the mean and 

standard deviation from this background distribution to compute a z-score and determine if 

there was a significant excess or depletion of read depth (P < 0.05).

The above computations allowed us to classify CNV calls into three categories containing 

CNVs (1) replicated by CNVnator, (2) supported by read-depth signal in the correct 

direction (e.g., depletion of read-depth for a deletion), (3) with read-depth signal in the 

incorrect direction. We estimated validation rate as the sum of the proportion of CNVs 

replicated by CNVnator and the excess of CNVs with read-depth signal in the correct versus 

incorrect direction: (1) + (2) – (3).

Additional validation of HI-CNV callset: We additionally validated HI-CNV calls within 

a randomly selected subset of 500 individuals with subsequently-released whole-genome 

sequencing data (Halldorsson et al., 2022). For each of these 500 individuals, we lifted the 

individual’s HI-CNV calls (post-QC) from hg19 to hg38 and assessed whether or not WGS 

read depth was higher (respectively, lower) than expected within the putative duplications 

(respectively, deletions) called by HI-CNV.

To calibrate WGS read-depth measurements, which we computed using mosdepth (Pedersen 

and Quinlan, 2018), we adjusted for genome-wide sequencing depth and also for local 

variation in GC content. Specifically, we trained sample-specific GC models by regressing 

observed read depth on GC-content and GC-content squared across a set of “well-behaved” 

1kb bins (defined simply as bins having read depth between 15 and 75 in the 43 WGS 

pilot samples). We then used this model to compute GC-corrected read depth within CNV 

regions (dividing observed read depth by expected read depth based on the GC model), 

and we compared GC-corrected read depth in individuals putatively carrying a CNV to 

GC-corrected read depth in individuals with no CNV call overlapping the putative event 

(after calibrating GC-corrected read depth to have the same mean in each sample across all 

“well-behaved” 1kb bins).
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Recall of HI-CNV and PennCNV callsets: We assessed the recall, defined as the 

proportion of CNVs called by WGS-based analysis for which overlapping calls were 

made by HI-CNV (or PennCNV). We removed WGS-based calls that intersected regions 

that could correspond to somatic events as well as all calls on chromosomes containing 

high-cell-fraction mosaic chromosomal alterations. We restricted analyses to rare or low-

frequency CNVs, i.e., those with AC ≤ 5 in the full set of 48 UK Biobank participants with 

available pilot WGS data. As above, we lifted HI-CNV and PennCNV calls from hg19 to 

hg38 and removed events which had an unmapped start or end.

We used Delly (Rausch et al., 2012) to call CNVs following a standard pipeline for germline 

SV calling (https://github.com/dellytools/delly). We used Delly to assess recall because 

Delly performs joint-calling across a batch of samples and outputs allele frequencies for all 

called events, facilitating assessment of recall of CNVs within allele frequency ranges. We 

considered a Delly call to have been re-identified if a CNV of the same type (DEL/DUP) 

was called overlapping the CNV called by Delly. We assessed the recall of a variety of 

different subsets of CNVs (Figure S2A; Table S1).

Unique CNVs: For some downstream analyses, we wished to analyze the set of unique 

CNVs identified by HICNV. This task was nontrivial because a CNV mutation co-inherited 

by multiple individuals could be called with slightly different breakpoints in different 

carriers. Consequently, the set of unique CNV calls—i.e., unique pairs of (start, end) 

breakpoints for DELs and for DUPs—overcounted the actual number of unique mutational 

events identified.

To obtain a more accurate set of unique CNVs, we performed analyses to assess which 

CNV calls with similar breakpoints were likely to represent the same underlying CNV. 

Specifically, we started with CNV-level genotypes we had created for each unique CNV 

call (using the δ= 2 version of genotyping, in which individuals with CNV call endpoints 

matching within δ= 2 probes were considered to be carriers) and then pruned this set of 

CNV genotype vectors to an approximately independent subset.

Explicitly, given the complete set of δ = 2 CNV-level genotypes, we computed allele 

frequencies and pairwise D’ in unrelated self-reported Europeans using PLINK (Chang et 

al., 2015) and clumped CNVs (with frequency ≥ 5 × 10−6, corresponding to ≥5 carriers per 

CNV) with D’ ≥ 0.5, retaining higher-frequency CNVs. (While CNVs in LD can be distinct, 

we applied this clumping to try to be conservative in reporting numbers of unique CNVs.) 

We then removed all remaining CNVs that overlapped somatic event loci (see Somatic 

CNVs).

Finally, we refined the boundaries of the remaining, independent, δ= 2 CNV-level genotypes 

(because the breakpoints of the CNV calls used to “seed” these CNV-level genotypes could 

be off by 1–2 probes). To perform this refinement, for each remaining δ= 2 CNV genotype 

vector, we identified the most common (start, end) breakpoint pair among the CNV calls that 

contributed to this CNV-level genotype, and we took this most-common breakpoint pair to 

be our best guess of the breakpoints of the underlying CNV.

Hujoel et al. Page 35

Cell. Author manuscript; available in PMC 2023 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/dellytools/delly


Association testing and statistical fine-mapping—We ran BOLT-LMM (Loh et al., 

2015, 2018a) to compute association statistics between CNV genotypes—at the probe, gene, 

and CNV level (see Creating CNV genotypes for association tests)—and 56 quantitative 

traits (Table S2). We then used a pairwise linkage disequilibrium (LD)-based filter (that we 

previously developed for identifying likely-causal rare variant associations (Barton et al., 

2021)) to remove CNV associations that could be explained by LD with a more strongly 

associated variant—either another CNV or an imputed SNP or indel (Barton et al., 2021; 

Bycroft et al., 2018)—within 3 Mb of the start of the CNV.

Filtering and annotating fine-mapped associations: We annotated all CNV-phenotype 

associations that passed our LD-based fine-mapping filter (involving either probe-, gene-, or 

CNV-level tests) with the following information (Table S3):

• Trait associated with the CNV (trait)

• Lead CNV (i.e., the tested CNV genotype vector with highest χ2 association 

statistic) and tied CNVs (all tested CNVs that had identical χ2 value as lead 

CNV; leadCNV,tiedCNVs)

• Number of carriers and allele frequency among self-reported European UK 

Biobank participants (nCarriers,A1FREQ)

• Genomic location: the chromosome, the median start and end location among 

CNV calls considered in the test, size (in kb) using the median start 

and end location; the median location of the probe before and after the 

CNV calls (Chr, medianStart, medianEnd, size_kb, median_loc_before_Start, 

median_loc_after_End)

• Genic context: all genes intersecting the interval between the 

median start and end (either considering full genes or only exons; 

genes_exon_or_intron,gene_exons), genes that intersect an expanded interval ± 

100 kb (genes_100kb).

• Effect size and association strength: beta (effect size), standard error, χ2 and P 

from BOLT-LMM (BETA,SE,CHISQ_BOLT_LMM,P_BOLT_LMM)

• Nearby SNP associations: most associated SNP (imputed in the UK Biobank 

imp_v3 release or from WES [30]) within 1Mb. For each such SNP, we 

annotated the ID of the SNP, the genomic location, the effect size, the P-value, 

and the 2 statistic from BOLT-LMM (mostAssocimpv3_SNP_1Mb,

mostAssocimpv3_SNP_1Mb_BP,

mostAssocimpv3_SNP_1Mb_beta,mostAssocimpv3_SNP_1Mb_P,

mostAssocimpv3_SNP_1Mb_CHISQ, mostAssocWES_SNP_1Mb,

mostAssocWES_SNP_1Mb_BP, mostAssocWES_SNP_1Mbbeta,

mostAssocWES_SNP_1Mb_P, mostAssocWES_SNP_1Mb_CHISQ)
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We filtered all associations that involved CNVs that overlapped regions prone to somatic 

CNVs (see Somatic CNVs). We also filtered associations in the MHC region that had 

escaped our pairwise LD-based fine-mapping filter due to subtle differences in the genetic 

principal components we used as covariates in these analyses vs. the PCs that we had 

previously used as covariates when computing association test statistics for SNPs and indels 

(Barton et al., 2021). We verified (using linear regression analyses) that the difference in PCs 

only affected a small number of associations in the MHC region, at which long-range LD 

influenced one set of PCs more than the other.

Validation of fine-mapped HI-CNV calls: We validated fine-mapped HI-CNV calls using 

WGS read depth in a manner similar to how we validated HI-CNV calls for a subset of 

500 individuals (see Additional validation of HI-CNV callset). In more detail, for each 

fine-mapped CNV-trait pair, we randomly selected a carrier of the involved CNV for 

whom whole-genome sequencing data available (which was possible for 268 of the 269 

fine-mapped CNV-trait associations). We then lifted these CNV calls from hg19 to hg38, 

which succeeded for 259 of the 268 selected carriers of fine-mapped CNVs. After removing 

duplicates (which existed because some CNVs associated with multiple traits), we were left 

with a set of 250 distinct CNV calls, which we validated using the same WGS read-depth 

sign test described in Additional validation of HI-CNV callset.

CNVs contributing to likely-causal phenotype associations: Most of the CNV-phenotype 

associations that passed our fine-mapping filters (and were thus deemed likely-causal) 

involved burden-style tests: probe-level tests that considered all DELs or DUPs spanning 

a genomic position, and gene-level tests that considered all CNVs with a particular effect on 

a gene. CNV-level tests could also potentially include multiple distinct CNVs with slightly 

different breakpoints. We therefore undertook further analyses to roughly identify which 

unique CNVs underlay each association.

For each trait, we identified all δ = 2 CNV-level genotype vectors associated at nominal 

significance (P < 0.05). We then subsetted to genotype vectors that appeared to contribute to 

the association of interest, based on satisfying three additional criteria: (1) D’ ≥ 0.75 with 

the CNV genotype of interest (be it a probe, gene, or CNV level test), (2) MAF < 2 × MAF 

of the CNV genotype of interest, and (3)  length  > 1
2  size of the CNV genotype of interest. 

Finally, among the remaining δ= 2 CNV-level genotypes, we pruned to an independent set 

following the same approach we used to identify unique CNVs (see Unique CNVs).

The above procedure produced a satisfactory set of unique CNVs underlying most 

phenotype associations, but for a few associated CNV genotypes that were very rare or 

combined deletions and duplications (specifically, pLoF gene-level tests), no δ= 2 CNV-

level genotype was both in high D’ with the CNV genotype of interest and nominally 

associated with the trait. In these instances, we did not attempt to further identify specific 

unique CNVs contributing to the association.

Defining CNV loci: The above approach identified a set of CNVs likely to contribute to 

causal phenotype associations. To group these CNVs into loci, we sorted the CNVs by 
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increasing size. For each chromosome, we denoted the smallest CNV on the chromosome 

as belonging to “locus1” and then iterated through other CNVs on the chromosome in 

order of size. For each CNV in turn, if it overlapped or fell within ±100 kb of one or 

more previously-defined loci, we annotated it as belonging to those loci, and otherwise we 

considered it to create a new locus.

Syndromic and non-syndromic loci, CNVs, and associations: We annotated a likely-

causal CNV as syndromic if it overlapped a previously-curated pathogenic CNV (from the 

set of 92 pathogenic CNVs curated by (Crawford et al., 2019)) by more than 50%. We 

annotated a locus as syndromic if any CNV assigned to only that locus was annotated as 

syndromic. To annotate a CNV-phenotype association as being syndromic or non-syndromic, 

we examined all likely-causal CNVs that belonged to a single locus and contributed to 

the association and annotated the association as syndromic if at least one such CNV was 

syndromic.

Replication of phenotype associations

Loss-of-function SNP/indel burden analyses in UK Biobank: For associations involving 

CNVs that we believed acted on a candidate target (focal) gene (Figure 3E), we compared 

the estimated effect of CNVs predicted to cause loss-of-function (pLoF) of the putative 

target gene to the estimated effect of ultra-rare pLoF SNP and indel variants in the same 

gene (recently reported in a whole-exome analysis of UK Biobank that performed SNP/indel 

pLoF burden tests (Backman et al., 2021)). Specifically, we began by compiling a list of all 

gene-trait pairs implicated by CNV-phenotype associations (involving CNVs of any type) 

for which we had identified a putative target gene. For each such gene-trait pair, we then 

examined whether pLoF CNVs associated with the trait. We took forward for replication 74 

such gene-trait pairs that exhibited Bonferroni-significant associations (P < 0.05/89).

For each gene-trait pair, we compared the effect size of pLoF CNVs to the effect size 

previously estimated for ultra-rare (MAF<0.001%) pLoF SNP and indel variants (Backman 

et al., 2021), excluding two genetrait pairs for which association statistics were unavailable 

for the trait (basophil count and age at menarche). In a few instances, we had to make a 

choice of which gene within a gene family should be used for replication: for the HBA 
locus we used HBA1, for the GYPB/GYPA locus we used GYPB, and for the FCGR2A–
FCGR3A–FCGR3B–FCGR2B locus we did not attempt replication because it was unclear 

whether LoF of one of these genes would be expected to have the same effect as a CNV. 

Additionally, for LST3, we compared to results reported for SLCO1B3 (an alternative gene 

symbol).

Replicating CNV-phenotype associations in BioBank Japan: For fine-mapped 

associations that uncovered gene-trait relationships (rightmost column of Figure 3E), we 

performed additional replication analyses in BioBank Japan (N=180K; data set details 

above, see HI-CNV analysis of BioBank Japan). We first assessed which associations were 

suitable for replication based on available phenotyping and reasonable power in BBJ:

• CXCR4 DUP: only 1 carrier with monocyte count available; excluded due to low 

power
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• DOK3 pLoF: phenotype not available; excluded

• PARVB pLoF: phenotype not available; excluded

• R3HDM4 pLoF: phenotype not available; excluded

• SLC2A3 DUP/pLoF: included

• SLC35E2B pLoF: included

• FCGR3B DUP/pLoF: maximum of 14 carriers available with relevant phenotype 

(probably due to undercalling of CNVs at this locus); excluded due to low power

• SULT1A1 pLoF: phenotype not available; excluded

• DIS3L2 pLoF: included

• UHRF2 pLoF: included

This investigation left us with four CNV loci (SLC2A3, SLC35E2B, DIS3L2, and UHRF2) 

to take forward for replication. Examination of CNVs and associated phenotypes at these 

loci led us to the following list of 14 associations to attempt to replicate:

• SLC2A3: associations of both DUP and pLoF CNVs with basophil count, 

lymphocyte count, height, and menarche age.

• SLC35E2B: associations of pLoF CNVs with mean corpuscular hemoglobin 

(MCH), mean corpuscular volume (MCV), and height. Upon closer inspection 

of this locus, we also noticed a strong association in UK Biobank between 

SLC35E2B DUPs and height (β =0.04 (0.01), P = 3.2 × 10−5), so we attempted 

to replicate this association in BioBank Japan as well.

• DIS3L2: association of DEL spanning exon 9 (see Deletion spanning DIS3L2 

exon 9) with height.

• UHRF2: association of pLoF CNVs with height.

For the above events and phenotypes, we performed association analyses run on a 179,420-

sample uniform-ancestry subset of BioBank Japan. For all phenotypes, residuals from a 

model regressing phenotype on age, sex, genotyping arrays (as factors) and 10 PCs as 

covariates were computed. These residuals were then inverse-normal transformed and used 

as outcome variables with the dependent variable being carrier status of events of interest.

Follow-up analyses at loci of interest—Here we provide details of additional analyses 

we performed at loci of interest, including refined analyses of specific phenotypes, 

corroborating analyses of SNP and indel PTVs, and further characterization of specific CNV 

events.

Extreme blood phenotypes: The CNV-phenotype association tests we ran using BOLT-

LMM analyzed blood cell traits that we had previously normalized using an approach that 

included removal of outliers, defined as deviating from the median by >7x the interquartile 

range (IQR). However, we subsequently found that certain CNVs had large enough effect 

sizes that a substantial fraction of carriers had been removed as outliers. As such, when 
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further investigating loci related to blood traits, we renormalized blood phenotypes without 

outlier removal (using covariate adjustment and inverse normal transforms as previously 

described) (Barton et al., 2021).

Residualization of phenotypes to emulate mixed model analysis: In follow-up analyses 

(e.g., of SNP and indel PTVs genotyped in a subset of individuals, or for categories of 

CNVs we did not initially genotype), we performed linear regression on phenotypes that we 

residualized for polygenic predictions using array-typed SNPs (omitting those within 2Mb 

of the gene of interest) that we generated using BOLT-LMM (--predBetasFile) in 10-fold 

cross-validation (to emulate the power of linear mixed model association analysis) (Mefford 

et al., 2020). We normalized residualized phenotypes to have a mean of zero across all 

non-removed individuals with non-missing phenotype.

PTVs in UK Biobank exome sequencing data: We identified carriers of high-confidence 

loss-of-function SNP and indel variants (on canonical transcripts annotated using LOFTEE 

(Karczewski et al., 2020)) from the 185,365 UK Biobank participants in our analysis set 

with whole-exome sequencing data available (Szustakowski et al., 2021). However, for 

R3HDM4 we analyzed carriers of high-confidence loss-of-function SNP and indels in any 

transcript as there were no high-confidence loss-of-function SNP and indels on the canonical 

transcript.

α-globin locus: Exons of HBA2 are located at 16:222911–223006; 16:223123–223328; and 

16:223470–223599 whereas for HBA1 they are at 16:226715–226810, 16:226927–227132, 

and 16:227281–227410 (hg19 coordinates). The UK Biobank SNP-array contained 3 probes 

within either HBA2 or HBA1, with genomic coordinates listed as 227306, 227333, and 

227365 (all within the last exon of HBA1, and all with extremely rare minor alleles). Due 

to the sequence similarity of HBA2 and HBA1 these 3 probes effectively measured copy 

number of both HBA2 and HBA1. The probe before these probes was at 221057 and the one 

after them was at 228306. HS-40 is located 40 kb upstream of the zeta-globin gene, around 

162686.

Given the above information, we categorized CNV calls at the α-globin locus as follows:

• Alpha-globin locus DEL: a deletion call with a start ≤ 140000 and end ≥230000.

• HS-40 DEL: a deletion call with a start ≤ 162240 and end ≥162240 and < 

226715.

• HBA2+HBA1 DEL: a deletion call with a start of 205897 and end of 231021, or 

a deletion with a start of 216041 and end of 228306 or 231021.

• HBA2 DEL: a deletion call with a start of 221057 and end of 227306 (indicating 

an −α4.2 deletion; Figure S5B).

• HBA2 DUP: a duplication call with a start of 221057 and end of 227306 or 

227333 (indicating an αααanti 4.2 duplication; Figure S5B).

• HBA2 triplication: a duplication call with a start of 221057 and end of 227365 

(suggesting an αααanti 4.2 triplication; Figure S5B). Whole-exome sequencing 
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read-depth for carriers of such events confirmed triplication of HBA2 (Figure 

S5C).

• HBA2+HBA1 DUP: a duplication call with a start ≥176743 and ≤ 221057 and 

end ≥ 230000.

• Alpha-globin locus DUP: a duplication call with a start ≤140000 and end ≥ 

230000.

Retroposition of spliced MTMR2 transcript into an intron of LRCH1: Our callset 

included a duplication call in MTMR2 on chromosome 11 with length ~10–20kb that was 

called in 2,522 UK Biobank participants (MAF=0.003). This variant associated with an 

increase in platelet distribution width of +0.12 (0.02) s.d. (P = 1.7 × 10−10) and passed our 

LD-based fine-mapping filter, with no nearby SNP on chromosome 11 reaching genome-

wide significance. Surprisingly, this event was not called in gnomAD-SV (Collins et al., 

2020) or the 1000 Genomes 30x SV callset (Byrska-Bishop et al., 2021), prompting further 

investigation.

Examination of sequencing reads from exome-sequenced carriers showed that the event 

was actually a retroposed pseudogene insertion of the MTMR2 processed transcript into an 

intron of LRCH1 on chromosome 13. We observed increases in read coverage only in exons 

of MTMR2 and split reads corresponding to splice junctions (usually seen in RNA-seq data 

rather than DNA sequencing). Split reads that partially aligned to the 5’ UTR of MTMR2 
and partially aligned to chromosome 13 showed that that the MTMR2 transcript had been 

inserted into an intron of LRCH1.

Closer examination of UK Biobank SNP-array probes at MTMR2 contributing to the 

initial signal showed that an “indel” probe (Affx-52351109) actually directly genotyped 

the retroposed pseudogene insertion. Carriers of the duplication calls exhibited increased 

LRR at seven probes (not usually enough to sensitively call a duplication event—suggesting 

that MAF=0.003 was an underestimate, representing calls in only a subset of carriers). 

Six of the probes with increased LRR fell within coding exons or UTRs, as expected; the 

remaining probe (Affx-52351109, intended to genotype an indel 11:95595151:TTTA>T) 

fell just within intron 7–8 of MTMR2, 2bp beyond the end of exon 7. Inspection of the 

MTMR2 transcript showed that the minus-strand sequence ending in this “indel” actually 

corresponds to the splice junction created by joining exon 7 to exon 8. Further analysis of 

LRR at the seven probes confirmed that Affx-52351109 directly genotyped the retroposed 

insertion (identifying an expanded set of carriers; MAF=0.007). The 3bp indel that the probe 

was designed to genotype does not actually exist according to gnomAD (Karczewski et al., 

2020).

Analyses of population allele frequencies and linkage disequilibrium of the MTMR2 
retroposed insertion showed that the variant sits on a European haplotype (MAF=0.7%) 

containing rs145057384, a good tag SNP (R=0.87, MAF=1%). Allele frequencies in UK 

Biobank (based on Affx-52351109) were 0.69% in Europeans and 0.02–0.05% in non-

Europeans (SAS, AFR, EAS). The insertion was also called in the 1000 Genomes 30x 

SV callset (Byrska-Bishop et al., 2021), which contains a 2,529 bp insertion consisting of 
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most of the processed transcript of MTMR2 (excluding some 3’ UTR sequence typically 

present in transcripts according to GTEx v8 data (Aguet et al., 2020)), plus a poly-A tail, 

followed by another 15bp; the 1000 Genomes data set contained 11 carriers among N=3,202 

individuals (10 EUR + 1 Colombian).

Our next question was whether the retroposed insertion affected platelet traits by disrupting 

LRCH1 in some way. LRCH1 LoFs were too rare to evaluate the effect of LoF on platelet 

distribution width (PDW), so we focused on investigating potential effects of LRCH1 

variants on gene expression or splicing.

LRCH1 is broadly expressed in many tissues, and 11 carriers of the insertion in GTEx 

v8 (Aguet et al., 2020) appeared to have reduced LRCH1 expression. Carriers were 

identified based on chimeric sequence that we detected in 11 of 13 carriers of the tag 

SNP rs145057384. RNA-seq data was available for 0–8 carriers per GTEx tissue. Among 

the 25 tissues with RNA-seq data available for 4+ carriers (providing reasonable power), 

22 of 25 tissues exhibited negative mean normalized expression of LRCH1 in carriers (P = 

1.6 × 10−4; two-sided sign test). We were unable to determine a mechanism by which this 

~2.5kb insertion might reduce expression: the inserted MTMR2 processed transcript does 

not appear to be transcribed (based on no evidence of expression of the truncated 3’ UTR), 

consistent with it lacking a promoter, and the insertion does not appear to affect splicing.

A common-SNP association with PDW (in a different intron of LRCH1) also appeared 

to be mediated by LRCH1 expression (Figure S4D). Interestingly, the association of the 

retroposed pseudogene insertion with PDW—which our GTEx analyses suggested was 

likewise LRCH1 expression-mediated—exhibited ~4-fold larger effect sizes on LRCH1 
expression and PDW than the common SNPs (Table S5).

Deletion spanning DIS3L2 exon 9: Our fine-mapped CNV-phenotype associations 

included an association of deletions spanning a probe at chr2:233,022,511 (hg19) with a 

decrease in height of 0.44 (0.04) s.d. (P = 3.9 × 10−22). Our HI-CNV callset contained 271 

such deletion calls among UK Biobank participants of European ancestry (MAF=0.0003). 

Further investigation revealed that these calls predominantly reflected a deletion spanning 

exon 9 in DIS3L2. This ~22kb deletion has previously been implicated in Perlman syndrome 

(an autosomal recessive disease characterized by congenital overgrowth), with previous 

work suggesting that exon 9 deletion abolishes the RNA-binding domain of DIS3L2, 

reducing ribonuclease activity (Astuti et al., 2012).

The presence of several different types of SNP and CNV polymorphisms at this locus 

offered the opportunity to search for further lines of evidence that might point to a potential 

mechanism underlying the association we observed with adult height in heterozygous 

carriers. In particular, beyond the rare deletion spanning exon 9 of DIS3L2, we also 

observed rare reciprocal duplications of the same region spanning DIS3L2 exon 9, consistent 

with this region being flanked by LINE1 elements and therefore being a hotspot of L1-

mediated non-allelic homologous recombination [40]. We therefore examined these CNVs 

as well as common and rare SNPs for association with height:
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• Deletion spanning DIS3L2 exon 9. As noted above, in UK Biobank this deletion 

associated with a decrease in height of nearly half a standard deviation. We 

replicated the association in BioBank Japan: HI-CNV identified 49 deletion 

carriers with available height phenotypes, and the deletion associated with a 

decrease in height of 0.39 (0.14) s.d. (P = 0.006; Figure 4B).

• Duplication spanning DIS3L2 exon 9. In UK Biobank, this reciprocal duplication 

associated with an increase in height of 0.85 (0.09) s.d. (P = 3.2 × 10−22; 

Figure S4B). Because the duplication was difficult to call even for HI-CNV 

(which undercalled the event due to its spanning only three genotyping probes 

and its even rarer frequency), we re-genotyped the duplication by performing 

a combined analysis of SNP-array probe intensity data at the three affected 

probes together with DIS3L2 exon 9 read-depth measured from whole-exome 

sequencing of N=454K UK Biobank participants (Backman et al., 2021) (Figure 

S4C).

• Rare SNP/indel pLoF variants in DIS3L2. Despite ample power in UK Biobank, 

pLoF SNP and indel variants within DIS3L2 did not associate with height in 

published burden analyses of exome sequencing data (Backman et al., 2021) 

(Figure 4A).

• Common SNPs. Common SNPs at the locus associate strongly with height, such 

that this locus was among the earliest height loci to be discovered (Estrada et al., 

2009). However, these common SNPs associated with much smaller effects on 

height than the exon 9 deletion and duplication CNVs (Figure S4B).

Collectively, the associations of the reciprocal deletion and duplication with strong, opposite 

deviations in height suggest that these CNVs do causally influence height—but the apparent 

lack of an effect of DIS3L2 pLoF SNPs and indels leaves the mechanism unclear. Whereas 

the direct protein-coding consequence of exon 9 deletion and duplication would at first 

glance suggest a mechanism involving DIS3L2 function, this hypothesis is not supported 

by the pLoF SNP/indel burden analysis. Additionally, while exon 9 deletion could plausibly 

decrease DIS3L2 function (as previously suggested (Astuti et al., 2012)), it is unclear why 

exon 9 duplication would increase function.

An alternative possibility is that the deletion and duplication could have regulatory effects 

on a nearby gene. A plausible candidate is the gene NPPC (natriuretic peptide precursor 

C) ~35kb upstream of DIS3L2, which has previously been suggested as the potential target 

of height-associated variation at the locus (Estrada et al., 2009; Tassano et al., 2013). 

Examination of Hi-C data (Kerpedjiev, Abdennur, et al., 2018; Rao et al., 2014) does suggest 

that NPPC has long-range interactions with ~500kb worth of sequence extending through 

DIS3L2. We attempted to explore the possibility of a regulatory effect on NPPC using 

RNA-seq data but ultimately concluded that available data was insufficient: no carriers of 

DIS3L2 exon 9 deletions or duplications could be found within GTEx v8 (Aguet et al., 

2020) and only one deletion carrier could be found within 1000 Genomes (using WGS read-

depth) (Byrska-Bishop et al., 2021). Lymphoblastoid cell lines from this individual had been 

RNA-sequenced in the GEUVADIS project (Lappalainen et al., 2013), and the RNA-seq data 

exhibited the lowest DIS3L2 exon 9 expression among all GEUVADIS samples (consistent 
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with exon 9 deletion); however, we were unable to assess any potential regulatory effect on 

NPPC due to insufficient expression in LCLs (i.e., most samples had no detectable NPPC 
expression).

Contrasting effect sizes of deletions and duplications

Selection of gene-trait pairs with likely-causal rare coding variants: To explore the 

relative effects of focal deletions and duplications, we examined 199 gene-trait pairs for 

which we had previously identified PTVs likely to alter quantitative traits (Supplementary 

Table 3 of (Barton et al., 2021)). For each gene on this list, we then compared the effects of 

likely-causal PTVs to those of whole-gene deletions and duplications.

At the level of individual loci, gene deletions acted similarly to PTVs; of the 41 genes 

for which there were at least 2 carriers of gene-deletions, 16 deletions were nominally 

significant for the given trait and 6 were Bonferroni significant (Figure 7). At the level of 

individual loci, gene duplications tended to act in the opposite direction as PTVs and with 

a smaller magnitude of effect; of the 139 genes for which there were at least 2 carriers of 

gene-duplications, 27 duplications were nominally significant for the given trait and 3 were 

Bonferroni significant (Figure 7).

Comparison of deletion and duplication effect sizes: power analysis: Consistent with 

the idea that duplications tend to have a weaker effect, there were far more examples of 

gene duplications than gene deletions with at least 2 carriers (139 vs. 41; Figure 7). We 

next wished to quantify the difference in effect sizes. For each of the 199 gene-trait pairs 

we could assess whether at least two individuals in UK Biobank carried a gene deletion or 

duplication, and for these events compare the effect sizes of likely-causal PTVs to the gene 

deletions and duplications.

More concretely, for a given trait t, and gene g, we are given:

• βCNV , g − t, se βCNV , g − t  for CNV = {DEL,DUP}

• Number of carriers of CNV = {DEL,DUP} (≥2)

• Sample size (N)

• Increase in effective sample size from using BOLT-LMM (equivalently, 

residualizing on genome-wide SNPs reduces σtrait to < 1); in BOLT-LMM 

output files the line ”Absolute prediction MSE, fold-best” contains an estimate 

of BOLT-LMM’s σtrait2  (after conditioning on genome-wide SNPs); denoted 

boltlmmboost

• Given multiple PTVs indexed by i, we compute the inverse variance weighted 

mean effect:

βPTV , g − t = 1
∑i1/se βPV Ti, g − t

2 ∑
i

βPTV i, g − t/se βPTV i, g − t
2;
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se βPTV , g − t = 1
∑i1/se βPV Ti, g − t

2 .

For each trait-gene pair, we can compute the power (powerg−t,CNV) for 

two sample (different sizes) t-test of means assuming the effect size 

d = μCNV − μnonCNV /σtrait = f ⋅ βPTV , g − t /  boltlmm boost With f={0,0.5,1} , significance 

level 0.05, and the number of carriers and non-carriers for a given CNV = {DEL,DUP}.

For a given trait-gene pair, assuming independence across gene-trait pairs, we can 

consider the random indicator variable of whether a significant effect was seen for the 

CNV = DEL, DUP ; 1 pβg − t, CNV < 0.05) Ber powerg − t, CNV . Across all trait-gene pairs 

we can then consider the observed number of significant CNV effects:

ΓCNV = ∑
g, t

1 pβg − t, CNV < 0.05  Poisson binomial

We can then compare the expected number of significant CNV effects for f = {0,0.5,1} to 

the number of observed significant CNV effects. We note that this approach ignores the 

sign of effect size (e.g., whether duplications have opposite vs. same effect directions as 

PTVs). Results were consistent with deletions having similar effect sizes as PTVs; assuming 

deletions had the same effect size as PTVs resulted in 18.5 expected nominally associated 

associations whereas assuming half the magnitude of PTVs resulted in 8.3 expected 

associations (Figure 7). Similar power analysis results for gene duplications show results 

are consistent with duplications having the opposite direction, and a smaller magnitude 

compared to the PTV-effect (Figure 7).

An extension of this approach is to search across the space 0 ≤ f ≤ 1, and for each value 

compute the expected value of number of significant associations and find the value for 

which f results in the observed number of significant associations (Table S7).

As a sensitivity analysis we further performed likelihood-based analyses. We 

can compute the likelihood of observing c ⋅ βPTV , g − t assuming it came from 

N βCNV , g − t, se βCNV , g − t ; assuming independence across gene-trait pairs, we can then 

compute the maximum likelihood estimate for c. We note that this approach incorporates 

the sign of effect size; however, one can also ignore the sign and quantify the absolute 

effect (agnostic to effect direction) by computing the likelihood of observing c ⋅ βPTV , g − t

assuming it came from N βCNV , g − t , se βCNV , g − t . We note that this approach ignores 

the standard error of βPTV , g − t however these PTVs come from a published set of 

significant (p < 5 × 10−8) variants and therefore the standard error can be considered to 

be much smaller than that of βCNV , g − t. Results can be found in Table S7.

HI-CNV at multi-copy regions: an investigation of SULT1A1—We examined the 

behavior of the HI-CNV method and underlying probe intensities at multi-copy regions 
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by an analysis of the SULT1A1 locus, a known multiallelic, highly polymorphic CNV 

region. We estimated SULT1A1 copy number based on exome-sequencing read depth (in the 

N=200K UK Biobank WES release (Szustakowski et al., 2021)) followed by phasing and 

imputation using a computational pipeline we recently described (Mukamel et al., 2021), 

which provided precise copy number estimates for most individuals (Figure S6A). Copy 

number was estimated based on read depth within chr16:28,616,321–28,622,321 (hg19).

We compared these sequencing-derived estimates to copy numbers estimated by HI-CNV 

(which ranged from 0 to 4; HI-CNV can only call up to a single-copy increase per 

haplotype) for CNV calls starting within one probe of chr16:28,606,960 and ending within 

one probe of chr16:28,619,696 (the two probes closest to the ends of the CNV region). 

We observed that while HI-CNV did correctly call some carriers of SULT1A1 CNVs, 

many CNVs were missed, and higher-copy states were usually misclassified (Figure S6B). 

Consistent with this behavior, examination of probe intensity cluster plots showed that 

higher-copy states (CN≥4) provided very little differentiating probe intensity signal (Figure 

S6C).

Given these challenges observed at SULT1A1, we concluded that there is no straightforward 

way to considerably improve HI-CNV’s performance on SNP-array-based CNV calling 

at complex regions. However, we note that this reflects a limitation of SNP-array data 

rather than our haplotype-informed CNV detection framework, which we anticipate will be 

applicable for genotyping complex multi-copy regions from sequencing read-depth data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of exact analyses, statistical tests, and tools can be found in the main text and STAR 

Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Leveraging haplotype-sharing in biobank cohorts increases CNV detection 

sensitivity

• HI-CNV software implementation enables haplotype-informed analysis of 

SNP-array data

• Fine-mapped CNV-trait associations implicate regulatory and gene-altering 

CNVs

• CNV loci corroborate SNP associations and uncover gene-trait relationships
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Figure 1: Haplotype-informed CNV detection from SNP-array data in UK Biobank.
A The HI-CNV framework improves power to detect CNVs by analyzing SNP-array data 

from an individual together with corresponding data from individuals with long shared 

haplotypes (“haplotype neighbors”). In contrast, standard approaches analyze data from the 

individual alone. B SNP-specific genotype cluster priors map allele-specific (A and B allele) 

probe intensity measurements to probabilistic information about copy-number likelihoods. C 
Average number of CNVs called by PennCNV and HI-CNV per UK Biobank participant. D 
Distribution of total CNV length per individual in the HI-CNV call set. E Validation rate of 

CNV calls from PennCNV and HI-CNV on 43 UK Biobank participants with independent 

whole-genome sequencing data. Error bars, 95% CIs. F Distribution of CNV lengths in the 

HI-CNV call set. G Distributions (across increasingly constrained gene sets) of observed 

counts of whole-gene deletions and duplications and pLoF CNVs in n=452,500 UK Biobank 

participants. Centers, medians; box edges, 25th and 75th percentiles; whiskers, 5th and 95th 

percentiles.
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Figure 2: HI-CNV performance benchmarks on subsamples of the UK Biobank data set.
To evaluate the extent to which HI-CNV improves detection sensitivity in smaller sample 

sizes, we benchmarked the performance of HI-CNV across a range of subsamples of UK 

Biobank (N = 5K, 15K, 50K, and 150K). A For a subset of 500 individuals included in 

all subsamples, for each CNV call made in these individuals in the full N~500K analysis, 

we determined the minimal sample (N = 5K, 15K, 50K, 150K, or full cohort) in which 

the call was detected. Full bar heights indicate average numbers of calls across the 500 

individuals (from the full N~500K analysis) stratified by event size and CNV type (deletion 

vs duplication). Shading reflects the subsample in which each call was first detected (defined 

as a call in the subsample overlapping or perfectly replicating the given call). These analyses 

showed that while detection sensitivity increased with sample size as expected (especially 
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for small CNVs <10kb), most CNV calls made using the full UK Biobank cohort were 

already detectable by HI-CNV at a sample size of N=5K. B We compared the average 

number of calls per individual made by HI-CNV (on N = 5K, 15K, 50K, 150K, or all 

samples) to PennCNV. The average number of called CNVs per individual is plotted across 

the various subsamples, colored by CNV type. The horizontal lines reflect the average 

number of events detected by PennCNV across the entire UK Biobank cohort. (In each 

subsample, ~90% of calls (range: 89%–93%) replicated or overlapped calls made using the 

full cohort, indicating effective false-positive control in these downsampled analyses.)
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Figure 3: Fine-mapping analyses reveal likely-causal CNV-trait associations.
A Association and fine-mapping pipeline; inset depicts the three categories of CNVs 

tested. B Effect size versus minor allele frequency for 269 likely-causal CNV-phenotype 

associations, colored by phenotype category. C Distributions of CNV length (left) and genic 

context (right) across all CNVs and across likely-causal CNVs. D Breakdown of 97 CNV 

loci according to prior literature status and whether a putative target gene was identified. E 
Candidate target genes, categorized according to whether (i) the CNV-phenotype association 

was previously reported, (ii) the target gene was previously implicated (either by a 

previously-reported coding variant association or by previous experimental work), or (iii) 

neither of the above. The rightmost column lists syndromic CNVs re-identified here. 

Colors indicate CNV type; bold font indicates noncoding CNVs potentially regulating the 
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target gene. F Genic context of syndromic CNVs (bottom) and non-syndromic CNVs (top) 

stratified by the number of phenotype categories associated with the CNV.
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Figure 4: Corroboration and replication of CNV-phenotype associations.
A Loss-of-function burden analyses in UK Biobank. For associations involving CNVs that 

we believed acted on a candidate target (focal) gene (Figure 3E), we compared the estimated 

effect of CNVs predicted to cause loss-of-function (pLoF) of the putative target gene to 

the estimated effect of ultra-rare pLoF SNP and indel variants in the same gene (recently 

reported in a whole-exome analysis of UK Biobank that performed SNP/indel pLoF burden 

tests (Backman et al., 2021)). Effect sizes and 95% confidence intervals are shown in red 

for the pLoF CNVs and in black for the pLoF SNP/indel burden; markers and error bars for 

the pLoF SNP/indel burden are shaded based on power to detect an association (assuming an 

effect size equal to the pLoF CNV and accounting for the combined allele frequency of the 

pLoF SNPs and indels). Previously reported associations are shown with a triangle, genes 
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previously implicated are shown with a circle, and the remaining genes are shown with a 

square. B Replication of CNV-phenotype associations in BioBank Japan. We attempted to 

replicate 14 associations (selected based on available phenotyping and power in BioBank 

Japan) involved in gene-trait relationships putatively uncovered by our analysis of UK 

Biobank. Effect sizes and 95% confidence intervals are shown in red for pLoF CNVs and in 

blue for whole-gene duplications.
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Figure 5: CNV-phenotype associations stronger than nearby SNPs. A UHRF2 locus.
Top: height associations for UHRF2 pLoF CNVs and nearby SNPs. Bottom: locations of 

UHRF2 pLoF CNVs and SNP and indel PTVs; left: effect sizes for height. B SLC2A3 locus. 
Top: menarche age associations for SLC2A3 duplications and deletions and nearby SNPs. 

Bottom: locations of SLC2A3 deletions and duplications; left: effect sizes for menarche age, 

height, and basophil and lymphocyte counts. C BMP5 locus. Top: bone mineral density 

associations for a deletion upstream of BMP5 and nearby SNPs (colored according to 

linkage disequilibrium with the deletion, for SNPs with R2>0.1 to the deletion). Bottom: 

locations of the upstream deletion, BMP5 pLoF CNVs, and SNP and indel PTVs; left: effect 

sizes for bone mineral density. In all panels, deletions are colored red and duplications are 

Hujoel et al. Page 61

Cell. Author manuscript; available in PMC 2023 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



colored blue. Error bars on effect sizes, 95% CIs. Numerical results are available in Table 

S5; example signal intensity plots are in Figure S3.
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Figure 6: Allelic series involving both regulatory and gene-altering CNVs. A HBA locus.
Eight classes of CNVs at the α-globin locus and their effect sizes for mean corpuscular 

hemoglobin and red blood cell counts. Genomic annotations indicate accessible chromatin 

regions in erythroblasts (Ulirsch et al., 2019) and distal DNase I hypersensitive sites (DHS) 

for HBA2/HBA1 (Thurman et al., 2012), highlighting the HS-40 super-enhancer. B JAK2 
locus. Four classes of variants – JAK2 pLoF CNVs, JAK2 SNP and indel PTVs, a deletion 

of a distal enhancer, and the common SNP rs12005199 within the enhancer – and their 

effect sizes for platelet counts. Genomic annotations indicate accessible chromatin regions 

in megakaryocytes (Ulirsch et al., 2019) and JAK2 distal DHS pairs (Thurman et al., 2012), 

which colocalize with common-SNP platelet count associations (top) at the enhancer region 

~220kb upstream of JAK2. C IRF8 locus. Fine-mapped common variants and rare pLoF 

variants at the IRF8 locus – including a putatively regulatory distal deletion, IRF8 pLoF 

CNVs, and IRF8 SNP and indel PTVs – and their effect sizes for monocyte counts. Genomic 

annotations indicate accessible chromatin regions in monocytes (Ulirsch et al., 2019) and 

GeneHancer connections (Fishilevich et al., 2017) between downstream regulatory regions 

and IRF8. D R3HDM4 locus. Rare CNVs, SNP and indel PTVs, and a common intronic 

SNP at R3HDM4 and their effect sizes for reticulocyte counts. Genomic annotations 

indicate ChromHMM (Ernst and Kellis, 2017) annotations, accessible chromatin regions in 

erythroblasts (Ulirsch et al., 2019), and GeneHancer connections (Fishilevich et al., 2017), 

all indicating regulatory function in the first intron of R3HDM4. The lead-associated SNP 

rs1683587 (top) also lies within this intron, suggesting regulatory function. In a and b, DHS 

pairs are colored by their correlation value, from light red (correlation < 0.8) to dark red 

(correlation >0.95). Error bars on effect sizes, 95% CIs. Numerical results are available in 

Table S5; example signal intensity plots are in Figure S3.
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Figure 7: Contrasting phenotypic effects of deletions and duplications.
A,B Mean height (a) and years of education (b) as a function of total genomic length 

affected by deletions and duplications. Individuals carrying a known syndromic CNV 

were excluded from analysis. Numerical results are presented in Table S7. C Associations 

between whole-gene deletions and quantitative traits in targeted analyses of 41 gene-trait 

pairs for which we previously identified likely trait-altering PTVs(Barton et al., 2021) and 

for which the HI-CNV call set contained at least two whole-gene deletions. Effect sizes and 

95% confidence intervals are shown in red for 16 genes for which whole-gene deletions 

exhibited nominally significant associations (P < 0.05); effect sizes for SNP or indel PTVs 

(Barton et al., 2021) are shown in black. D Observing 16 nominally significant associations 

was consistent with whole-gene deletions having the same effects as PTVs. Probability 

distributions indicate numbers of significant associations in simulations in which whole-

gene deletions have no effect (grey), half the effect magnitude as PTVs (light pink), or the 

same effect magnitude as PTVs (red). E,F Analogous results for whole-gene duplications 

in targeted analyses of 139 gene-trait pairs, which produced 27 significant associations (P < 

0.05), consistent with whole-gene duplications having less than half the effect magnitude of 

PTVs. (The aberrant effect directions of DOCK8 deletions and duplications relative to the 

DOCK8 PTV rs192864327 may be explained by this variant only causing loss of function in 

one of several transcripts.)
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Summary CNV-phenotype 
association statistics

This paper 10.5281/zenodo.7034987 https://data.broadinstitute.org/
lohlab/HI-CNV/sumstats

UK Biobank Bycroft et al. 2018Nature http://www.ukbiobank.ac.uk/

PennCNV calls within UK 
Biobank participants

Crawford et al. 2019J. Med. Genet. UK Biobank Return 1701

BioBank Japan Nagai et al. 2017J. Epidemiol. https://humandbs.biosciencedbc.jp/en/hum0014-v26

SNP/indel pLoF gene burden 
summary statistics

Backman et al. 2021Nature https://www.ebi.ac.uk/gwas/publications/34662886

Software and algorithms

HI-CNV This paper 10.5281/zenodo.7034987 https://data.broadinstitute.org/
lohlab/HI-CNV/

BOLT-LMM Loh et al. 2015Nature Genetics; Loh et al. 2018 
Nature Genetics

https://data.broadinstitute.org/alkesgroup/BOLT-LMM/

plink Chang et al. 2015GigaScience https://www.cog-genomics.org/plink/

CNVnator Abyzov et al. 2011Genome Research https://github.com/abyzovlab/CNVnator

DELLY Rausch et al. 2012Bioinformatics https://github.com/dellytools/delly

R The R Foundation https://www.r-project.org

BEDTools Quinlan and Hall 2010Bioinformatics https://github.com/arq5x/bedtools2/

Python Python Software Foundation https://www.python.org/
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