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Baseline cerebral structural morphology predict freezing of gait
in early drug-naïve Parkinson’s disease
Yuting Li1,2, Xiaofei Huang1, Xiuhang Ruan1, Dingna Duan3, Yihe Zhang3, Shaode Yu4, Amei Chen1, Zhaoxiu Wang1, Yujian Zou2,
Mingrui Xia 3 and Xinhua Wei 1✉

Freezing of gait (FOG) greatly impacts the daily life of patients with Parkinson’s disease (PD). However, predictors of FOG in early PD
are limited. Moreover, recent neuroimaging evidence of cerebral morphological alterations in PD is heterogeneous. We aimed to
develop a model that could predict the occurrence of FOG using machine learning, collaborating with clinical, laboratory, and
cerebral structural imaging information of early drug-naïve PD and investigate alterations in cerebral morphology in early PD. Data
from 73 healthy controls (HCs) and 158 early drug-naïve PD patients at baseline were obtained from the Parkinson’s Progression
Markers Initiative cohort. The CIVET pipeline was used to generate structural morphological features with T1-weighted imaging
(T1WI). Five machine learning algorithms were calculated to assess the predictive performance of future FOG in early PD during a
5-year follow-up period. We found that models trained with structural morphological features showed fair to good performance
(accuracy range, 0.67–0.73). Performance improved when clinical and laboratory data was added (accuracy range, 0.71–0.78). For
machine learning algorithms, elastic net-support vector machine models (accuracy range, 0.69–0.78) performed the best. The main
features used to predict FOG based on elastic net-support vector machine models were the structural morphological features that
were mainly distributed in the left cerebrum. Moreover, the bilateral olfactory cortex (OLF) showed a significantly higher surface
area in PD patients than in HCs. Overall, we found that T1WI morphometric markers helped predict future FOG occurrence in
patients with early drug-naïve PD at the individual level. The OLF exhibits predominantly cortical expansion in early PD.
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INTRODUCTION
It has attracted increasing attention that in advanced disease
stages, most patients with Parkinson’s disease (PD) suffer from a
crippling gait disorder: freezing of gait (FOG)1. This gait
disturbance greatly interferes with the daily life of patients with
PD. More importantly, FOG is now considered to be one of the
main risk factors for falls and contributes to increased emotional
disorders in PD patients1–3. Therefore, it could significantly
weaken the movement ability and diminish the quality of life in
PD patients. Some researchers have found that compared with PD
patients without FOG and healthy people, the gray matter (GM) of
several brain regions related to motor, executive attention, and
cognition have different degrees of atrophy in PD patients with
FOG4–6. At present, the treatment of FOG is still extremely
challenging, and there is no unified and effective treatment in the
clinic, let alone a cure7. Therefore, it is of great importance to
predict FOG in the early stage of the disease for prevention and
intervention in PD patients.
Recent studies have suggested that clinical assessments,

laboratory tests, and brain imaging of early PD patients could
predict the progression of dyskinesias8, as well as the occurrence
of postural instability and gait difficulties (PIGD)9 and even
FOG10–12 with generalized linear models or logistic regression
models. However, these studies have only focused on a certain
brain area or have a small sample. What’s more, combining
clinical, laboratory, and imaging data to predict the occurrence of
FOG using machine learning has not previously been undertaken
in early drug-naïve PD patients.

Additionally, previous imaging studies have shown that cerebral
structural morphology changes in PD are mainly located in brain
regions related to dopamine transport pathways, such as the
temporo-occipital lobe, and part of the frontoparietal lobe13–15.
However, there is considerable heterogeneity in the current
findings, while the localization and extent of PD-related cortical
damage and/or white matter (WM) abnormalities still need to be
further explored.
Here, we developed a model that could predict the occurrence

of FOG at the individual level using machine learning with clinical
assessments, laboratory tests and cerebral structural imaging
information of early drug-naïve PD patients. As a secondary
objective, we explored the morphological alterations of the
cerebrum in early drug-naïve PD patients and their relationship
with clinical and laboratory assessments.

RESULTS
Demographic, clinical, and CSF characteristics of the
participants
A total of 73 HCs (65.8% males) and 158 participants with drug-
naïve PD (63.3% males) were included in the analyses, and 66
(74.2% males) patients in the PD cohort developed FOG during
the follow-up period (Fig. 1). The median time to the first
occurrence of FOG was 29 (2–96) months from baseline. Table 1
summarizes the baseline demographics and clinical and labora-
tory characteristics of the study population. Briefly, the PD patients
suffered from sleep disorder, olfactory dysfunction, anxiety,
depression, and increasing p-tau/t-tau of CSF at baseline.
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Moreover, compared to the participants with PD who did not
develop FOG, the PD patients who developed FOG had decreased
olfactory function, symptoms of depression, a more severe disease
degree, dysfunction of daily living and movement, postural
instability, and gait difficulty at baseline. It seems that men are
more prone to FOG than women. However, no statistically
significant difference was noted between the two groups in
laboratory assessments, including CSF, urate, and APOE4.

Different models predict incident FOG
Model performance is summarized in Fig. 2. The proposed
predictors discriminated PD patients with FOG with fair prediction
accuracy. The prediction models showed that combining clinical
and laboratory evaluations with structural morphology features
yielded better performance (AUC range, 0.67–0.77; ACC range,
0.71–0.78) than adding clinical and laboratory evaluations only
(AUC range, 0.65–0.70; ACC range, 0.69–0.73) or structural
morphology features only (AUC range, 0.65–0.73; ACC range,
0.67–0.73) in the prediction of the development of FOG. For
machine learning algorithms, EN-SVM models (AUC range,
0.70–0.77; ACC range, 0.69–0.78) were generally better than the
other four machine learning models (AUC range, 0.65–0.72; ACC
range, 0.67–0.75). Additionally, the model performance of trials
with the proportion of future FOG to non-FOG of 5:5 and 3:7 was
better (Supplementary Table 2), but it should be noted that 4:6 is
the original proportion of the samples in this study, and the model
performance of it was only slightly lower than the former two.

Weighting factors/feature selection
Weighting factors and selected features are summarized in Tables
2 and 3. Both prediction models based on EN-SVM using structural
features with and without clinical and CSF features showed
that the main features predicting FOG at baseline PD were the
right supplementary motor area (SMA.R) and the left hemispheres
(Fig. 3), mainly distributed in the lingual gyrus (LING.L), anterior
cingulate and paracingulate gyri (ACG.L), angular gyrus (ANG.L),
insula (INS), superior longitudinal fasciculus and corticospinal tract.

Of note, the top 10 features of the EN-SVM model using structural
features also included the right middle occipital gyrus (MOG.R),
superior frontal gyrus, dorsolateral (SFGdor.R) and calcarine
fissure, and the left surrounding cortex (CAL.L) (Fig. 3). Meanwhile,
the top 10 features of the EN-SVM model combining clinical,
laboratory and structural features also included the GM volumes
of the right inferior occipital gyrus (IOG.R), the left olfactory cortex
(OLF.L) and the left inferior frontal gyrus, orbital part (ORBinf.L)
(Fig. 3). The UPDRS II and III as well as the PIGD were selected in
the EN-SVM model using clinical and laboratory features.
In the other four machine-learning models, the total scores of

UPDRS, UPDRS-I, and the PIGD were selected among the clinical
and laboratory features, where the surface mean curvature of the
INS.L and the MOG.R-consistent with the features selected from
the EN-SVN model, were selected among the structural features.
Thus, the aberrance of structural morphology of multiple brain

regions could jointly predict the occurrence of FOG in patients
with PD, according to the indices of contribution to the model.
Moreover, incorporating the UPDRS, UPDRS-I, and PIGD assess-
ments allowed the prediction model to achieve a better
discriminative ability.

Structural morphology measurements and their relationship
with clinical and laboratory assessments
Only the bilateral OLF (OLF.L: p= 0.039; OLF.R: p= 0.042) showed
a significantly higher surface area in PD patients than in HCs
(Supplementary Fig. 1a, Supplementary Table 3). Notably, the
MOCA was associated with the surface area of the left OLF
(p= 0.021, r= 0.186, Bonferroni-corrected) but not with the right
OLF (Supplementary Fig. 1b) in PD patients. We found no
significant difference in cortical thickness, surface means curva-
ture, GM, or WM volumes in patients with PD compared to HCs. In
addition, we found that compared with future non-FOG, there are
alterations in structural measurements at baseline in future FOG.
(Supplementary Table 4). It should be noted that none of the
structural morphology measurements could be corrected by FDR.

DISCUSSION
We found that the decreasing GM volumes and the increasing
surface mean curve of some brain regions could help predict
future conversion to FOG in early drug-naïve PD patients at an
individual level using machine learning. Of note, combining the
structural features and the assessments of the UPDRS, UPDRS-I
and the PIGD could result in better performance. Additionally, the
bilateral OLF showed a significantly higher surface area in PD
patients than in HCs, but only the surface area of the left OLF was
associated with cognitive function: the MOCA.
The proposed model that uses structural morphology measure-

ments (T1WI) achieved good predictive accuracy of FOG at
baseline (AUC range, 0.65–0.73; ACC range, 0.67–0.73). It
performed better when adding clinical and laboratory evaluations
(AUC range, 0.68–0.77; ACC range, 0.71–0.78). The models
developed in this study using structural features with and without
clinical and laboratory features performed better than the
previous study using clinical characteristics only16. Another study
combining the PIGD score, caudal DAT uptake, and Aβ 1-42 of CSF
to predict FOG reported an AUC of 0.75517, which was similar to
the AUC of our study. However, neither the weighting factors nor
the feature selection of our models selected CSF markers. The
reason may be that the models we developed were different. Kim
et al. used Cox proportional-hazards regression analyses, while we
used the elastic net and the generalized Fisher score (GFS) for
feature selection without fixed risk factors. In addition, it also
found that the presynaptic striatum dopaminergic innervation
(where the HR of DAT uptake in the caudate nucleus is 0.551, and
the HR of DAT uptake in the putamen is 0.441) could predict the

Fig. 1 Flow chart illustrating patient selection.
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development of FOG in patients with new PD11. The above studies
have a certain potential for the prediction of FOG. However, it is
worth mentioning that DAT imaging is a radiographic imaging
technology, and the collection of CSF is an invasive operation. We
also found that there is a regularity in the different models that
the behavioral features seem to be more specific than sensitive,

while the structural features seem to be more sensitive than
specific and the combination of the two is certainly additive,
which suggested that the combination of behavioral and
structural features had the potential guiding ability for predicting
the occurrence of FOG in patients with early drug-naïve PD.
Regardless of the features selected, the current models were not
pretty good (AUC < 0.8). It is worth noting that, predicting the
occurrence of FOG in the early stages of PD is inherently a
challenging clinical issue. Here, we used machine learning
algorithms that are simple, easy to implement, and highly
interpretable. Further studies could explore whether the conver-
sion to FOG could be predicted at the genetic and molecular level
in patients with early PD.
Past studies with different cohorts found certain clinical risk

factors for FOG, such as old age at PD onset, male sex, longer
disease duration, lower baseline cognitive function, severe base-
line motor symptoms, and depression11,16–18. Here, we found that
the assessments of UPDRS, UPDRS-I, and the PIGD could
potentially help predict FOG in patients with early drug-naïve
PD, which was partially consistent with the findings of a previous
study19. The items of the UPDRS were strongly correlated with
specific FOG questionnaires developed more recently, such as the
Gait and Falls Questionnaire and Freezing of Gait Question-
naire20,21. Actually, consistent with previous studies10,11,17,18, PD
patients with future FOG reported more gait-related discomfort at

Table 1. Baseline demographics, clinical and laboratory characteristics of all participants.

PD do not develop FOG (92) PD develop FOG (66) P value PD (158) HCs (73) P value

Age 60.47 (9.969) 63.18 (8.709) 0.104 61.06 (9.746) 60.19 (10.629) 0.278

Sex (male/female) 51/41 49/17 0.016* 100/58 48/25 0.717

Education (yr) 15.34 (3.010) 15.41 (2.972) 0.999 15.37 (2.985) 15.60 (3.036) 0.691

Handed (R/L/Both) 81/6/5 60/3/3 0.836 141/9/8 59/7/7 0.215

MOCA 28.25 (1.860) 27.51 (1.816) 0.057 27.93 (1.863) 28.39 (1.204) 0.238

RBDSQ 3.56 (2.315) 4.57 (2.917) 0.173 4.04 (2.654) 2.83 (2.135) <0.001*

UPSIT 22.95 (7.716) 20.06 (10.005) 0.018* 21.77 (8.802) 34.15 (4.240) <0.001*

STAI 62.31 (17.540) 67.91 (19.313) 0.113 65.10 (18.868) 56.67 (13.030) 0.003*

GDS 1.81 (1.790) 2.51 (2.439) 0.035* 2.17 (2.197) 1.13 (2.155) <0.001*

QUIP 0.19 (0.588) 0.11 (0.375) 0.846 0.15 (0.506) 0.17 (0.637) 0.767

H&Y 1.469 (0.534) 1.72 (0.452) 0.019* 1.56 (0.510) – −

UPDRS-I 4.31 (3.075) 5.11(3.038) 0.095 5.07 (3.594) − −

UPDRS-II 3.92 (3.098) 6.91 (4.267) <0.001* 5.35 (3.790) − −

UPDRS-III 18.47 (7.634) 25.36 (10.311) 0.001* 20.77 (8.926) − −

Tremor 0.46 (0.277) 0.44 (0.335) 0.078 0.44 (0.300) − −

PIGD 0.16 (0.193) 0.31 (0.235) <0.001* 0.21 (0.234) − −

SCOPA-AUT 7.34 (4.191) 9.96 (6.960) 0.065 8.79 (5.756) − −

Aβ1-42 (e2) 9.13 (3.061) 9.06 (3.153) 0.523 9.08 (3.084) 9.90 (4.426) 0.395

α-syn (e3) 1.59 (0.721) 1.49 (0.555) 0.259 15.40 (6.552) 15.28 (5.571) 0.817

t-tau (e2) 1.71 (0.531) 1.71 (0.443) 0.558 1.71 (0.496) 1.821(0.694) 0.736

p-tau 14.66 (5.045) 14.36 (4.453) 0.625 1.44 (0.480) 1.57 (0.670) 0.265

t-tau/ Aβ1-42 (e−2) 19.95 (7.320) 20.79 (9.411) 0.633 20.27 (8.213) 19.74 (8.898) 0.235

p-tau/ Aβ 1-42 (e−3) 17.00 (6.880) 17.50 (8.760) 0.970 17.18 (7.676) 17.18 (8.990) 0.355

p-tau/t-tau (e−3) 84.70 (5.570) 83.40 (6.500) 0.081 84.14 (5.969) 86.07 (8.757) 0.013*

urate (e2) 3.06 (0.764) 3.29 (0.792) 0.074 3.16 (0.779) 3.21 (0.757) 0.843

APOE4 0.38 (0.577) 0.36 (0.568) 0.801 0.37 (0.569) 0.31 (0.507) 0.469

PD Parkinson’s disease, FOG freezing of gait, HCs healthy controls, yrs years, R right, L left, MOCA Montreal Cognitive Assessment, RBDSQ Rapid Eye Movement
Sleep Behavior Disorder Screening Questionnaire, UPSIT University of Pennsylvania Smell Identification Test, STAI State-trait Anxiety Inventory, GDS Geriatric
Depression Scale, QUIP Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease, H&Y Hoehn and Yahr Scale, UPDRS I–III Unified Parkinson’s
disease Rating Scale Part I–III, PIGD postural instability and gait difficulties, SCOPA-AUT Scales for Outcomes in Parkinson’s Disease—Autonomic, α-syn
α-synuclein.
*P < 0.05.

Fig. 2 Freezing of gait prediction performances with various
machine learning models and features.
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baseline patient interview, suggesting possibly increased vulner-
ability and a greater underlying disease-related burden may exist
in early PD. Moreover, the UPDRS-I scale assesses non-motor
symptoms in daily life in PD patients, including cognition,
hallucinations, depression, anxiety, apathy, sleeping, and auto-
nomic symptoms. The presence of non-motor symptoms may
suggest a potential occurrence of FOG in PD. Hence, the increase
in the UPDRS, the UPDRS-I, and motion-related scores in early PD
might help predict the future occurrence of FOG.
We found that several disrupted brain regions that might help

predict future FOG were mainly distributed in the occipital lobe,
limbic systems, and part of the frontoparietal lobes. Anatomically,
the visual center is primarily located in the occipital lobe, whereas
the lingual gyrus belongs to the first-order visual center. In
addition, the visual cortex in the occipital lobe has fiber
connections to the parietal, temporal, and angular gyri. A previous
study found that PD patients with visual hallucinations suffered
from more severe disruption of the frontal cortex than PD without
visual hallucinations22. A meta-analysis showed that the severity of
hallucinations in schizophrenia was associated with reduced GM
in parts of the temporal lobe and bilateral supramarginal and
angular gyri23. Therefore, decreasing GM volume in the left lingual
and angular gyrus might lead to visual disturbances and even
visual hallucinations, which may be related to the dysfunction in
posterior visual processing networks in such patients24. When
patients with PD suffer from visual disturbances and/or hallucina-
tions, or a specific deficit of the visuospatial function, they are
more likely to fall, and be with worse cognitive and executive
function, thus causing greater fear of falling, leading to the
possible development of FOG24–26. Moreover, the development of
FOG is impacted by dysthymic disorders dominated by the limbic
system, including the cingulate gyrus and insula. The disruption of
the fronto-striato-limbic network might underpin the link between
dysthymic disorders and FOG in PD. It is proposed that movement
disorders have aggravated the striato-limbic load and reduced
top-down attentional control at rest, which might lead to FOG
when further challenged by the parallel processing demands of
walking27. In addition, previous studies have illustrated that
pathological damage to the caudate nucleus and frontal lobe
might also be involved in the impact of psychological alterations
on FOG and explain why FOG can be observed in patients with
frontal impairments28. Notably, our study also found that the WM

volume of the left superior longitudinal fasciculus and corticosp-
inal tract makes some contribution to the predictive models of the
occurrence of FOG. Several studies have found WM damage in
both the superior longitudinal fasciculus and the corticospinal
tract in PD patients with FOG. It is believed that the abnormality of
the above fibers leads to abnormal connections between brain
regions, indicating that PD patients with FOG might be the result
of poor structural and functional integration of motor and
extramotor neural systems6,29.
The results presented here suggest that in the bilateral OLF,

early drug-naïve PD patients exhibit a larger cortical surface area.
Zeighami et al. also used the PPMI database to map the
distribution of atrophy in PD and found that besides subcortical
areas, the medial temporal lobe, and discrete cortical regions were
impaired in PD15, which was partially consistent with our findings.
One possible reason is the inconsistency in inclusion criteria: they
included data from all types of machines, while we only included
data acquired from Siemens’ machines; Another possible reason is
the inconsistency in analysis methods: they combined
deformation-based morphometry and independent component
analysis, focusing more on network structure, while we used
surface-based morphometry and voxel-based morphometry
methods, focusing more on brain region structures. Some
researchers believe that “compensated hyperplasia” appears in
specific brain regions in early PD, which might be related to the
compensatory neuroinflammatory response30,31. Astrocytes are
activated by proinflammatory cytokines, resulting in cell hyper-
trophy, astrocyte proliferation, protrusion extension, and interla-
cing, which leads to increasing surface area and/or thickness of
the cortex32. What’s more, the highest density of cholinergic
markers is existed in the striatum of the brain, and there is a
cholinergic pathway between the striatum and the posterior
cortex, including the OLF33. Some molecular imaging studies
found that compensatory cholinergic upregulation is already
present in early PD with and without cognitive impairment, mainly
distributed in the posterior cortical regions33,34. However,
cholinergic activity is decreasing in PD patients with cognitive
impairment as the disease progresses35,36. These findings are in
line with our result that the aberration of the surface area of the
OLF in PD patients is not related to motor dysfunction but is
related to cognitive dysfunction. The above research indicated
that the cerebrum of early PD patients maintains cognitive
functioning through the mechanism of “compensation”, including
the “compensated hyperplasia” and the upregulation of choliner-
gic activity.
This study had some limitations. Firstly, only single-modal MRI

analysis using T1 structural images was performed. However, by
T1WI, neuroimaging studies provide important insights into the
anatomy and pathology of cerebral disease, which is also common
in the diagnostic, differential, and predictive research of PD37,38. It
should further contain functional MRI, such as resting state or
dynamic functional MRI and diffuse tensor imaging, to explore the
alteration of function and microstructure of WM and the
possibility to predict FOG. Secondly, one of the most significant
limitations, aside from sample size, is the limited amount of clinical
data. A more comprehensive clinical assessment and maybe a
more sensitive cognitive scale would better support the correla-
tion analysis between structural features and clinical scales.
However, the clinical data provided by PPMI is limited. In the
future, we could try to build our own database to enlarge the
clinical scales. Thirdly, universality is an issue. Although we applied
diverse machine-learning algorithms, the results might differ if
different machine-learning methods are applied with different
cohorts, which needs to be considered when interpreting this
study. Fourth, one of the inclusion criteria was that PD patients
include both T1WI and diffusion-weighted images (DTI) data at
baseline. However, only T1WI was used to calculate the brain
structure indicators in this study. We will include the DTI data of

Table 3. The results of feature selection based on generalized Fisher
score using different features.

Features Mean SD

BF

MDS-UPDRS 1.70 0.84

MDS-UPDRS-I 2.63 1.35

PIGD 3.03 1.35

SF

INS.L (cortical mean curvature) 2.73 2.38

MOG.R (cortical mean curvature) 12.17 17.68

All

MDS-UPDRS 3.37 3.19

INS.L (cortical mean curvature) 3.87 3.12

MOG.R (cortical mean curvature) 10.50 13.36

PIGD 11.00 12.84

MDS-UPDRS-I 11.33 10.84

BF both clinical and laboratory features, SF structural features, R right, L left,
PIGD postural instability and gait difficulties, UPDRS I unified Parkinson’s
disease Rating Scale Part I, INS insula, MOG middle occipital gyrus.
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Fig. 3 Structural weighting factors of the EN-SVM predictive model of FOG. a The main weighted features of the EN-SVM model using
structural features. b The main weighted features of the EN-SVM model combing clinical, biological, and structural features. c The selected
white matter of the EN-SVM model.
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the same group of subjects in further research to perform white
matter microstructure attributes, including fractional anisotropy,
mean diffusion, and even brain network attributes. What’s more,
the participants in the PPMI database were mainly from European
and American populations. Therefore, our results need to be
verified in larger Asian populations.
In conclusion, we found increasing the cortical surface area in

the olfactory cortex in early drug-naïve PD patients, suggesting
that the OLF exhibits predominantly cortical expansion in early PD
and is associated with abnormal cognitive function. T1WI
morphometric markers, including parts of the occipital and frontal
lobes and the limbic system, have the potential to help predict
future FOG in patients with early PD at an individual level, which
has higher predictive performance combined with clinical
investigations.

METHODS
Study design and participants
All data used in the current study were downloaded in May 2020
from the Parkinson’s Progressive Marker’s Initiative (PPMI)
database (www.ppmi-info.org/), a longitudinal, observational,
multicenter study combining advanced imaging, clinical and
biologic data to identify biomarkers of PD progression39. Only
subjects with clinical and laboratory measures, T1WI and DTI
obtained on 3.0 T MRI scanners at baseline, were enrolled in our
study. All participants were recruited between 2011 and 2015
from 12 sites (Supplementary Table 1).
According to the PPMI inclusion criteria (www.ppmi-info.org/

study-design/research-documents-and-sops/), all participants with
PD should meet the following criteria: (1) at least 30 years old
when first diagnosed with PD, (2) a diagnosis of PD for at least two
years on the screening date, (3) a significant dopamine transporter
deficit confirmed by dopamine uptake transporter (DAT) scan, (4)
Hoehn and Yahr Scale (H&Y) stage I or II at baseline, and (5) be
untreated for PD at baseline. HCs enrolled in the study met the
criteria, as they were at least 30 years old at the enrollment date,
had no history of any observable neurologic deficits, had first-
degree family members with PD, and had a score on the Montreal
Cognitive Assessment (MOCA) of ≥26. The criteria above yielded
171 participants with drug-naïve PD and 77 HCs who were used
for further analysis and quality control.

Ethical approval
The PPMI study is registered at ClinicalTrials.gov (NCT01141023).
This study was approved by the ethics committees: the Institu-
tional Review Board of all participating sites for PPMI. Written
informed consent was obtained from all individuals participating
in the study.

Clinical and laboratory assessments
To fully comprehend the possible mechanism for the develop-
ment of PD into FOG, we included clinical and laboratory
indicators as follows (Table 1):
(1) thirteen clinical assessments (all PD patients were drug-

naïve): Rapid eye movement sleep behavior disorder screening
questionnaire (RBDSQ), University of Pennsylvania Smell Identifi-
cation Test (UPSIT), State-trait Anxiety Inventory (STAI), Geriatric
Depression Scale (GDS), Questionnaire for Impulsive-Compulsive
Disorders in Parkinson’s Disease (QUIP), Unified Parkinson’s
Disease Rating Scale Part 1–3 (UPDRS I–III), Tremor score, PIGD
score and Scales for Outcomes in Parkinson’s Disease—Autonomic
(SCOPA-AUT). All clinical evaluations above were performed for
every participant by the site investigators.
(2) nine laboratory assessments: Both urates of the blood

sample and α-synuclein (α-syn), Aβ 1–42, total tau (t-tau), and

p-tau concentrations of the CSF sample were analyzed in this
study. Sample acquisition and measurement methods are avail-
able on the PPMI website (www.ppmi-info.org/study-design/
research-documents-and-sops/).

Assessment of FOG
The presence of FOG was defined if the score was ≥1 on UPDRS
item 2.13 or item 3.11 anytime during the follow-up period in the
participants with PD in a random motor state11,17. The time to
occurrence of FOG was calculated as the number of months since
study enrollment. Eight participants with PD already having a
score ≥1 at baseline were excluded from this research.

Imaging acquisition
Based on the PPMI database imaging protocols, whole-brain
structural T1WI of these participants performed at various sites on
a 3.0 T Siemens (TIM Trio and Verio) scanner (Erkangen, Germany)
was used for further analysis in this study. For each participant,
MPRAGE T1W images were acquired with the following para-
meters: repetition time (TR)= 2300ms, echo time (TE)= 2.98 ms,
field of view (FOV)= 240 mm× 256mm, flip angle (FA)= 9°, and
voxel size= 1 × 1 × 1mm3. The details of the data acquisition
parameters are available on the PPMI website (http://www.ppmi-
info.org/study-design/ research-documents-and-sops/).

Construction of structural morphological features
Following a visual inspection, nine scans (four HCs and five PD
patients) were removed due to cerebral insufficiency and/or
blurring and/or motion artifacts. All structural morphological
features were generated through the CIVET pipeline (version
2.1), which was developed at the Montreal Neurological Institute
(MNI). MRI images were automatically segmented into bilateral
regions of interest, with cortical thickness, surface area, surface
mean curvature, and GM volumes calculated at each region
according to the Anatomical Automatic Labeling (AAL)_90_1-mm
atlas40, with WM volumes calculated at each region according to
the WM John Hopkins University Atlas JHU-ICBM-tracts-maxprob-
thr25-1 mm41. The details of the pipeline processing steps are
described in the supplementary methods.

Predictive models of freezing of gait
Elastic net-support vector machine model and weighting factors.
According to the AAL atlas and the WM JHU atlas, regional
averaged cortical thickness, surface area, surface mean curvature,
GM volumes, and WM volumes were formatted as structural
morphological features of a length of 332 for each subject. The
ROI-wise features were used instead of voxel-wise features
because the former strategy was more adaptable to different
imaging parameters and could significantly reduce the feature
dimension. Selecting the most predictive features was essential to
obtain a concise classification model and avoid overfitting. It is
known that the elastic net often outperforms the lasso while
enjoying a similar sparsity of representation. In addition, the
elastic net not only encourages a grouping effect, where highly
correlated predictors tend to be in or out of the model together
but are also especially applicable when the number of predictors
is much larger than the number of observations42. A sparse
feature learning method based on an elastic net with different
parameters was used for feature selection in this study. The elastic
net estimator model is defined as follows:

β̂ ¼ argmin
β

Y � ωTX
�
�

�
�þ λ1 ωk k1þλ2 ωk k2

where Y is the group label, Y= 1 or 2, X is the feature, λⅈ is the
regularization parameter and ω is the coefficient of each
parameter.
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We predicted FOG with features selected from the elastic net
estimator model using linear support vector machine (EN-SVM)
classifiers with a nested 10-fold cross-validation strategy. To
explore whether different proportions of future FOG to non-FOG
occurrence affect model performance, we put different propor-
tions of future FOG and non-FOG patients into training and test
sets, including 4:6 (original proportion), 5:5, and 3:7. Then,
structural morphological feature-based FOG classification was
carried out by a new SVM classifier trained with the optimal
feature set and evaluated by outer 10-fold cross-validation. The
accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under
the receiver operating characteristic (ROC) curve (AUC) were
obtained to evaluate the classification performance. In addition,
clinical and laboratory assessments were then added to evaluate
their contribution to the prediction model of FOG.
To determine the features that make the greatest contribution

to the FOG prediction model, a transformation of the testing
sample to the features when generating the prediction sample
was defined as the weighting factor. That is, the complex feature
points in the high-dimensional space were projected onto the
low-dimensional plane through the weight transformation. As a
result, the smaller the absolute value of the weight corresponding
to these features was, the less important the feature was. That is,
the higher the absolute value of the feature corresponding weight
was, the more obvious the enhancement effect was, and the more
important the contribution to the classification was.

Feature selection and training of machine learning models. More-
over, we compared the prediction performance of different
machine-learning methods using the GFS with matFR toolbox43,
and four machine-learning models: LSVM, K near neighbor (MNN),
naïve Bayes (NB), and linear discriminant analysis (LDA). The same
as above, the potential features, including 13 clinical variables,
nine CSF indicators, and 332 regional morphological images, were
normalized by z-score. We randomly divided the dataset into a
training set and a test set with a ratio of 5:5. In the training set, 53
cases included both the PD patients used to develop the FOG
sample and the PD patients who were not used to develop the
FOG sample. Features selection based on GFS was used to train
the machine learning models. All procedures were repeated 50
times at random.

Statistical analysis
All categorical variables and continuous variables included in this
study were compared using Pearson chi-square tests and
Mann–Whitney U tests, respectively. Statistical analysis was
performed using SPSS 25.0 (IBM Corp., Armonk, NY), and a value
of P < 0.05 was regarded as statistically significant.
Two-sample t-tests were used to compare the structural

morphology measurements between the PD patients and HCs,
as well as future FOG and non-FOG. To correct for multiple
comparisons when using neuroimaging data, the false discovery
rate (FDR) was used, with a threshold of P < 0.05. Age, sex, and site
were used as covariates. Spearman correlation analyses were
adopted to detect relationships between structural morphological
features with statistically significant differences and clinical and
laboratory assessments, with a P-value Bonferroni correction for
multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data reported in this article are available in the PPMI database (http://ppmi-
info.org). All codes used in this article are available upon reasonable request from the
corresponding author.
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