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Optimized detection of homologous recombination deficiency
improves the prediction of clinical outcomes in cancer
Fernando Perez-Villatoro 1,2, Jaana Oikkonen1, Julia Casado1,2, Anastasiya Chernenko1,2, Doga C. Gulhan3, Manuela Tumiati1, Yilin Li1,
Kari Lavikka 1, Sakari Hietanen 4, Johanna Hynninen 4, Ulla-Maija Haltia5, Jaakko S. Tyrmi6,7, Hannele Laivuori 6,8,9,10,
Panagiotis A. Konstantinopoulos 11, Sampsa Hautaniemi 1, Liisa Kauppi 1,12 and Anniina Färkkilä 1,2,5✉

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic
vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2
mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous
ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC
(ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than
previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and
indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of
clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our
tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.
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INTRODUCTION
As a part of the Fanconi Anemia (FA) pathway, homologous
recombination (HR) is an evolutionarily conserved, tightly
regulated mechanism for high-fidelity repair of DNA double-
strand breaks (DSBs)1. Deficiency in homologous recombination
(HRD) has profound consequences for replicating cells driving
genomic instability and oncogenic transformation. In cancer, HRD
results in a fundamental vulnerability, and tumors with HRD are
markedly sensitive to DSB-inducing agents such as platinum-
based chemotherapy and Poly-ADP Ribose Polymerase (PARP)
inhibitors2.
High-grade serous ovarian cancer (HGSC), the most common

and most lethal subtype of ovarian cancers3, is characterized by
profound genomic instability. Around half of the HGSC cases
harbor genomic alterations leading to HRD4, and these patients
have been shown to benefit from treatment with PARP
inhibitors5,6. The HRD test previously used in PARP inhibitor
clinical trials (MyriadMyChoise®CDx)5,6 works by quantifying
specific allelic imbalances (AIs): (1) Large scale transitions (LSTs)7,
(2) Loss of heterozygosity (LOH)8 and (3) Telomeric allelic
imbalances (TAIs)9. However, the decision criteria for these HRD-
specific AIs (HRD-AIs) and the HRD status classification were
originally designed using a mixture of breast and ovarian cancer
samples7–10. Further, other algorithms for HRD detection have
primarily focused on BRCA1/2 mutation prediction11,12. As the
genomic drivers and mutational processes differ across the cancer
types, the details of the genomic instability occurring due to HRD
in HGSC remain unclear.

Herein, via pan-cancer analysis, we show that HGSC harbors
unique patterns of AIs, which are also distinct from triple-negative
breast cancers (TNBC). Using a systematic approach based on
machine learning and statistics on The Cancer Genome Atlas
ovarian cancer (OVA-TCGA) multi-omics dataset, we optimized the
criteria for HRD-AIs on HGSC. We implemented these criteria as an
open-source algorithm (ovaHRDscar) to reliably define HRD status
beyond the prediction of BRCA1/2 mutations. We show that
ovaHRDscar improves the prediction of clinical outcomes in three
independent clinical datasets compared to previous algorithms.
Further, we show that our approach improves the prediction of
clinical outcomes also in TNBC (tnbcHRDscar). Thus, our machine
learning-aided disease-specific approach (HRDscar) shows pro-
mise as a biomarker that can improve outcome prediction and
patient selection for HR-targeted therapies in cancer.

RESULTS
Systematic pan-cancer characterization reveals unique
features of allelic imbalances in HGSC
To elucidate the potential differences in the patterns of AIs across
human cancers, we first characterized the quantity and the length
distributions of AIs in the 18 most common cancer types from the
TCGA (Fig. 1a). Interestingly, HGSC had the highest number of AIs
(Fig. 1b) and the lowest median length (Fig. 1c). Concordantly,
HGSC showed the highest levels of LOH events (Supplementary
Fig. 1a) with one of the lowest median length (Supplementary
Fig. 1b).
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We next performed hierarchical clustering using the median
length and number of AIs per sample and the skewness of the
length distribution of the AIs for each cancer type. This analysis
shows two main clusters: the first cluster consisting of six cancer
types (bladder urothelial carcinoma (BLCA), stomach

adenocarcinoma (STAD), lung squamous cell carcinoma (LUSC),
lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA),
and HGSC) with a higher amount but a lower median length of AIs
(upper cluster: Fig. 1d). The second cluster consisting of the
remaining 12 cancer types (lower cluster: Fig. 1d). The same main
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clusters were observed when using only LOH events (Supplemen-
tary Figure 1c).
As TNBC and HGSC are enriched in BRCA1/2 genetic mutations

(BRCAmut)13, both cancers were used to define the HRD-algorithm
in the MyriadMyChoise®CDx assay by Telli et al.10. We next
compared the differences in AIs between these two cancer types.
We observed a significant difference in the abundance of AIs
between HGSC and TNBC, specifically among the BRCA1/2-wild-
type (BRCAwt) tumors (U test, p= 0.002, Fig. 1e–g). Interestingly,
HGSC had lower levels of LOH events than TNBC (U test, p= 0.002,
Supplementary Fig. 1d), also among the BRCAmut samples (U test,
p= 0.049, Supplementary Fig. 1e) but not in the BRCAwt samples
(Supplementary Fig. 1f). Overall, HGSC showed a higher number of
AIs of different lengths, while TNBC had a higher number of LOH
events (Fig. 1h). These results highlight the distinct characteristics
of AI events in HGSC, especially among the BRCAwt tumors,
compared to other cancer types.

Machine learning-aided detection of HRD-specific AIs
improves the detection of HRD in HGSC
Although a wide range of molecular alterations is known to cause
HRD, previous studies have focused on BRCA1/2 mutations to
detect HRD-specific AIs (HRD-AIs), potentially failing to detect non-
BRCA associated HRD alterations while losing specificity to classify
the HR-proficient (HRP) samples accurately. To this end, we aimed
to identify AIs overrepresented in samples carrying a wider range
of genetic alterations (mutations, gene deletions, promoter
hypermethylation) associated with HRD in HGSC (Fig. 2a). To
generate accurate selection criteria for HRD-AIs, we utilized SNP-
arrays data from HGSC samples from TCGA (OVA-TCGA) and its
associated genomic and DNA methylation data. Using prior
knowledge and multi-omics data, we annotated 115 HRD samples
harboring a somatic or germline mutation, gene deletion, or
promoter hypermethylation in the BRCA1/2 or RAD51 paralog
genes, and 29 HRP samples that did not harbor any of the
alterations used to select the HRD samples, nor deletions in any
other HR-related gene (Fig. 2a). A detailed description of the
genomic alterations in the samples is reported in Supplementary
Table 1. Overall, the HRD samples had a higher number of all AIs
than the HRP samples (U test, p= 0.0028, Supplementary Fig. 2a).
Importantly, HRD samples had a notably higher proportion of AIs
of a specific length that spanned from 1Mb to 30 Mbs. In contrast,
the HRP samples contained a higher proportion of AIs and LOH
events smaller than 1 Mb (Supplementary Fig. 2b, c).
We next applied statistics and machine learning14 to identify

the specific length and selection criteria of LOH, LST, and TAI
events overrepresented in the HRD samples (Fig. 2b). We then
compared the accuracies of the herein optimized criteria for HRD
to those used in Telli et al.10 (hereafter called Telli2016). Notably,

for LSTs, our approach increased the accuracy of classification of
the HRD/HRP samples from 86 to 90% when using the new criteria
(Fig. 2c). For LOH events, the accuracy increased from 85 to 88%
when using the new criteria (Supplementary Fig. 2d). We also
assessed the HRD-classification accuracy of LSTs consisting of
three consecutive AIs. However, this produced a lower accuracy
(Supplementary Fig. 2e). The largest improvement in accuracy
occurred after including all TAIs larger than 1 Mb, and the
accuracy for HRD-specific TAI events increased from 67 to 78%
when compared to the Telli2016 criteria (Supplementary Fig. 2f).
Via our systematic approach, we observed the following AIs to

be most characteristic of HRD in HGSC: (1) LOH > 15 Mb and
<50Mb, (2) for LSTs AI > 12Mb, with a distance between them
<1Mb, and (3) TAI > 1 Mb. The sum of these events is hereafter
called the ovaHRDscar levels. Then, using bootstrapping subsam-
pling of the pre-annotated HRD and HRP samples, we evaluated
the optimal cut-off value for ovaHRDscar to define the final HR-
status as HRD or HRP. The value with the highest balanced
accuracy (BA) was 54 (Fig. 2d), meaning that values higher or
equal than 54 correspond to HRD, with higher accuracy for HR-
status classification (BA= 0.89, right panel Fig. 2e) as compared to
the Telli2016 algorithm (BA= 0.76, left panel Fig. 2e). In addition,
using a HRD/HRP cut-off value of 54 in the Telli2016 algorithm
(hereafter Telli2016-54), the BA remained below that of ovaHRDs-
car (0.86 vs 0.89, Supplementary Fig. 2g).

ovaHRDscar levels correlate with genomic features of HRD
and show concordance in WGS data
To investigate the relationships of ovaHRDscar with other known
genomic features associated with HRD, we annotated the OVA-
TCGA samples according to mutations, gene deletions, and
promoter hypermethylation patterns previously reported to be
associated with HRD4 (Fig. 2f). On average, samples with somatic
mutations in BRCA1, BRCA2, PTEN, or somatic mutations or gene
deletions in any gene belonging to the Fanconi Anemia (FA) or HR
pathways showed high ovaHRDscar levels. Likewise, samples that
contained hypermethylation in the promoter regions of BRCA1 or
RAD51C genes or germline mutations in BRCA1 or BRCA2 had, on
average, high ovaHRDscar levels. As expected, samples harboring
an amplification in CCNE1 (Supplementary Fig. 2h) had signifi-
cantly lower levels of ovaHRDscar. However, samples with EMSY
amplification and CDK12 somatic mutation did not result in higher
ovaHRDscar levels than CCNE1 amplified samples (Supplementary
Fig. 2h).
To assess the concordance of ovaHRDscar between SNP array

and whole genome sequencing (WGS) data, we next quantified
the ovaHRDscar levels in HGSC samples from the Pan-Cancer
Analysis of Whole Genomes project (PCAWG)15. The ovaHRDscar
levels were highly concordant between WGS and SNP-arrays (Lin’s

Fig. 1 Pan-cancer characterization of AIs reveals unique patterns in HGSC. a Types of cancer with more than 200 samples in TCGA and their
corresponding number of samples are shown in green bars; bladder urothelial carcinoma (BLCA), stomach adenocarcinoma (STAD), lung
squamous cell carcinoma (LUSC), breast invasive carcinoma (BRCA), thyroid carcinoma (THCA), kidney renal papillary cell carcinoma (KIRP),
kidney renal clear cell carcinoma (KIRC), brain Lower Grade Glioma (LGG), uterine Corpus endometrial carcinoma (UCEC), liver hepatocellular
carcinoma (LIHC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma (COAD), prostate
adenocarcinoma (PRAD), head and neck squamous cell carcinoma (HNSC), skin cutaneous melanoma (SKCM), glioblastoma multiforme (GBM).
b Box plots representing the number of AIs longer than 3Mb and smaller than 50Mb per sample. HGSC showed the highest average levels of
AIs. c Box plots showing the median length of AIs (longer than 3Mb and smaller than 50Mb) per sample. HGSC showed the lowest median
length of AIs per sample. The black vertical lines represent the sample medians, the boxes extend from first to third quartile and whiskers
indicate the values at 1.5 times the interquartile range, no outliers are shown. d Hierarchical clustering for the types of cancer using as
variables the median length, the median number of AIs per sample, and the skewness of the distribution of AIs length. e Violin- and box plots
(same notation as panels b,c) representing the number of AIs per sample. HGSC shows a similar number of AIs as compared to TNBC (two-
sided U test). f Comparison of BRCAmut samples showing similar abundances of AIs in HGSC as compared to TNBC (two-sided U test). g The
BRCAwt samples showing significantly higher number of AIs in HGSC than in TNBC (two-sided U test, p= 0.002). h Dot plot showing the
difference in abundance for AIs of specific length between HGSC and TNBC. The dot sizes represent the p-values (two-sided U test) and dot
colors represent the fold-change (ratio of HGSC/TNBC abundance of AIs minus one), only dots for corresponding significant differences are
shown (p < 0.05).
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concordance correlation coefficient, ccc= 0.90; Supplementary
Fig. 2i) in 41 OVA-TCGA samples that were also included in the
PCAWG project, consistent with a previous report in breast cancer
samples16. Next, we tested the correlation of ovaHRDscar with the
single base substitution signature 3 (SBS3), which has been
associated with HRD17. We found that the ovaHRDscar levels

detected in WGS positively correlated with the proportion of SBS3
in WGS (Pearson, r’= 0.38, p= 3.7e−05; Fig. 2g). The SBS3
proportions also correlated with the number of HRD-AIs using
the Telli2016 algorithm in the PCAWG cohort (Supplementary
Fig. 2j). We next compared the performance of ovaHRDscar to that
of SBS3 inferred from whole exome sequencing (WES) data with a

Fig. 2 Machine learning-aided detection of AIs associated with HRD shows improved accuracy and correlations with genomic features of
HRD in HGSC. a Selection criteria for annotating HRD, HRP and undefined HGSC samples in the OVA-TCGA. b A scheme of the approach used
to generate accurate criteria for selecting HRD-AIs in HGSC samples. c For LST events, the size of dots represents the decision tree balanced
accuracy (BA) of classifying HRD and HRP when selecting AIs of the corresponding criteria, the dot colors represent the statistical difference (U
test, p-value) in abundance of AIs between HRD and HRP samples. The black box corresponds to the selection criteria proposed by Telli2016,
the blue box correspond to the best BA and U test value. d Evaluation of ovaHRDscar cut-off to define HR-status. The black dots connected
with a line correspond to the balanced accuracy (BA) of the classification of the annotated HRD and HRP samples using the given cut-off value,
the 95% confidence intervals are shown in gray vertical lines, value of 54 (red dashed line) corresponds to the highest BA. e Density
distribution of HRD-AIs according to Telli2016 and ovaHRDscar algorithms. The red dashed line represents the cut-off established to define the
HR-status using Telli2016 (≥42) and using ovaHRDscar (≥54). The BA of classification of the annotated HRD and HRP is shown, density
distribution colors correspond to the samples annotated as in the panel a. f Levels of ovaHRDscar in OVA-TCGA samples harboring different
genetic or epigenetic alterations associated with HRD in HGSC4. The colors correspond to the ovaHRDscar; in the outer ring of the pie chart
every line represents a sample and in the center of the pie chart the colors correspond to the average number of HRD-AIs per genetic or
epigenetic alteration. For the somatic mutations (somaticmut) gene deletions were included. g Linear regression of the proportion of single
base substitution signature 3 (SBS3) and the ovaHRDscar levels in PCAWG samples (Pearson r’= 0.38). Blue line shows the regression line and
the 95% confidence intervals are shown in gray. h The SBS3 status inferred using SigMA16 showing a higher agreement with ovaHRDscar
(agreement= 78.3%, Cohen’s kappa= 0.56) than with the Telli2016 algorithm (agreement= 68.5%, Cohen’s kappa= 0.32). In the pie charts
and table+ and - correspond to the number of HRD positive and HRD negative samples identified under each criterion, respectively. On the
bottom is shown the number of samples and the level of agreement between the corresponding criteria.
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likelihood-based approach SigMA18, in 254 samples from the OVA-
TCGA. The ovaHRDscar algorithm detected 57% of samples as
HRD, and the SigMA tool classified 56% of samples as SBS3+; in
contrast, the Telli2016 algorithm identified 83% of the samples as
HRD (Fig. 2h). HRD detection with ovaHRDscar showed a higher
agreement with SigMA (agreement 78.3% and Cohen’s kappa=
0.56) as compared to the Telli2016 algorithm (agreement 68.5%
and Cohen’s kappa= 0.32; Fig. 2h) or to the Telli2016-54
(agreement 77.2% and Cohen’s kappa= 0.53; Supplementary
Fig. 2k).

ovaHRDscar improves the prediction of PFS and OS compared
to previous algorithms
Next, we measured the association of HR-status classification by
ovaHRDscar to progression-free survival (PFS, see methods) in
advanced HGSC patients treated with platinum-based chemother-
apy in the TCGA and an independent prospective validation
dataset (DECIDER). We compared the performance of the
ovaHRDscar to BRCA1/2 deficiency status to the Telli2016
algorithm. The Telli2016 algorithm uses a cut-off value of 63, as
proposed by Takaya et al.19. As BRCA1/2 mutations can affect
patient outcomes, we assessed the performances of ovaHRDscar
in the TCGA dataset after excluding the samples used when
defining ovaHRDscar, even though clinical outcomes were not
utilized for designing the criteria of ovaHRDscar. BRCA1/2
mutation or deletion status (BRCAmut/del) was not significantly
associated with PFS (Log-rank p= 0.72; Fig. 3a). For OVA-TCGA
(Fig. 3a–c), we found that ovaHRDscar positivity was associated
with prolonged PFS (Log-rank p= 4.4e−04; Fig. 3c). Consistently,
ovaHRDscar positive patients had a longer PFS in the independent
DECIDER validation cohort (Log-rank p= 0.001; Supplementary
Fig. 3a–c), while the Telli2016 algorithm did not reach statistical
significance in predicting PFS (Log-rank p= 0.11; Supplementary
Fig. 3b).
Residual tumor after primary debulking surgery has been shown

to be a strong independent prognostic factor in HGSC20. We next
used residual tumor status as a covariable in Cox proportional
hazard models to assess the performance of HRD algorithms in
predicting the PFS. We found that ovaHRDscar positivity was
significantly associated with prolonged PFS in OVA-TCGA also
when adjusting for residual tumor (Wald test p= 2.2e−07, Fig. 3d),
similar to the Telli2016 (Wald test p= 2.7e−06), Telli2016-54 (Wald
test p= 6.4e−07) and the Takaya algorithms (Wald test p= 1.2e
−06). The same was true also after excluding the annotated HRD/
HRP samples used in the optimization (middle panel, Fig. 3d) and
when not adjusting for the residual tumor (Supplementary Fig.
3d). Importantly, ovaHRDscar significantly predicted PFS in the
external DECIDER validation cohort (HR: 0.47 (CI:0.27-0.85), Wald
test p= 0.026). To compare how well the three algorithms
(ovaHRDscar, Telli2016, Telli2016-54) can predict the differential
outcomes of patients, we next calculated the differences in PFS
between the HRD and HRP using a bootstrapping approach.
Consistently, we found that the difference in PFS was significantly
greater using the ovaHRDscar than using the Telli2016 algorithm
in the independent DECIDER validation cohort (Fig. 3e). Moreover,
ovaHRDscar was superior to the Telli2016-54 algorithm in the
OVA-TCGA (Fig. 3e). In further validation, we inspected the
performance of the HRD-classification algorithms in an additional
independent prospective cohort (TERVA) with tumor-only SNP
array profiling (see methods). Importantly, ovaHRDscar positivity
significantly predicted longer PFS using Log-rank test and Cox
proportional hazard model in the TERVA external validation
dataset (Supplementary Fig. 3e–g).
We next explored the association of ovaHRDscar with overall

survival (OS) in HGSC patients in the OVA-TCGA cohort and in an
independent AU-OVA cohort in PCAWG (Fig. 3f–h, Supplementary
Fig. 3h–j). The clinical data in the prospective cohorts (DECIDER,

TERVA) were not mature enough for OS evaluation. OvaHRDscar
significantly predicted OS in the OVA-TCGA (Fig. 3h). In Cox
regression analysis adjusted for age at diagnosis, ovaHRDscar
significantly predicted OS, while the other algorithms did not
reach statistical significance in the independent PCAWG validation
dataset (Fig. 3i). These results were concordant also using a non-
adjusted Cox regression analysis (Supplementary Fig. 3k). Impor-
tantly, the median OS in patients with HRD tumors as compared to
HRP was significantly longer when using the ovaHRDscar than
using the Telli2016 or the Telli2016-54 algorithms in the
independent PCAWG cohort when using a bootstrapping
approach (Fig. 3j). Additionally, we compared the performance
of ovaHRDscar to the CHORD algorithm that uses structural
variation and a random forest implementation to classify HR-
status11. In the PCAWG cohort, ovaHRDscar significantly predicted
OS using the Log-rank test (Supplementary Fig. 3l, m) and Cox
proportional hazard models (Supplementary Fig. 3n), while the
CHORD algorithm did not show statistical significance.
Finally, to further investigate the impact of the ovaHRDscar cut-

off value in predicting PFS and OS, we plotted the differences of
median PFS and OS in HRD vs HRP when using different cut-off
values in two independent validation test sets (OVA-TCGA
excluding samples used in the optimization and DECIDER) using
bootstrapping (Fig. 3k, l). We observed that cut-off values lower
than 54 led to significantly smaller differences (lower fold-
changes) in PFS in the OVA-TCGA, and in the OVA-TCGA test
set, while higher values led to smaller differences in the DECIDER
cohort (Fig. 3k). Further, values lower than 54 lead to smaller
differences in OS in the OVA-TCGA and OVA-TCGA test set, while
higher values led to significantly smaller fold-change differences
in the DECIDER cohort (Fig. 3l). Thus, the exploration of clinical
outcomes in the multiple independent validation datasets
supports HRD/HRP cut-off value of 54 as optimal for ovaHRDscar.

Low intra-patient variation of ovaHRDscar in spatiotemporal
tumor profiling
HGSC is characterized by high inter-tumor heterogeneity, and we
next explored whether the anatomical site or timing of sample
retrieval affects HR-status classification in HGSC. For this, we
investigated the concordance of the ovaHRDscar levels in the
DECIDER prospective cohort, which included 89 tumor samples
from 33 HGSC collected from different anatomical sites and
different treatment phases (treatment-naive, after neoadjuvant
chemotherapy, or at relapse) (Fig. 4a). Consistent with the TCGA
dataset, ovaHRDscar levels corresponded with the known
genomic predictors of HRD (Fig. 4b). Importantly, we found that
the levels were similar in paired, anatomically matched samples
obtained before and after neoadjuvant chemotherapy, and also in
primary (treatment-naive) versus relapsed tumors (Fig. 4c).
Samples collected from different anatomical sites showed intra-
patient variation (Fig. 4a); however, it was lower than the observed
inter-patient variation (U test p= 1.95e−38; Supplementary
Fig. 4a). The intra-patient variability was not explained by
differences in tumor purity (minimum 30%, see "Methods”)
(Supplementary Fig". 4b, c). To determine the optimal anatomical
sampling site, we next assessed HR-status per patient in
treatment-naïve primary samples and compared ovaHRDscar
calculated from different anatomical locations. Overall, the level
of agreement for the HR-status classification ranged from 94 and
97% between the prioritization of different anatomical sites
(Supplementary Fig. 4d). However, ovaHRDscar status calculated
primarily from ovarian or adnexal tumors was the strongest
predictor for PFS (Fig. 4d, Supplementary Fig. 4e). Consistently,
prioritizing ovarian tumors accurately classified all tumors harbor-
ing CCNE1 amplification as HRP in the prospective DECIDER cohort
(Supplementary Fig. 4d).
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Machine learning-aided detection of HRD-AIs improves the
prediction of clinical outcomes in TNBC
Finally, we tested whether our systematic detection of HRD-AIs
could improve previous algorithms when predicting clinical

outcomes in TNBC. For this, using multi-omics data in TCGA and
the same classification approach (Fig. 2a), we annotated 47 TNBC
as HRD and 23 as HRP (Fig. 5a). Detection of HRD-LOH increased
the accuracy of classification of HR-status from 80% (Telli2016
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algorithm) to 93% (Fig. 5b). Likewise for LSTs, the accuracy
increased from 93 to 98% (Supplementary Fig. 5a) and for TAIs
from 86 to 92% (Supplementary Fig. 5b). Similarly as for the HGSC,
instead of selecting TAIs of a particular length, we selected TAIs
longer than 1 Mb as this resulted in the largest increase in
significance. The following HRD-AI criteria were observed as the
most characteristic for TNBC: (1) LOH > 10Mb and <30 Mb, (2) for
LSTs AI > 5 Mb with a distance between them <2Mb, and (3)
TAI > 1 Mb. Then, using a subsampling approach, we identified
that cut-off values for the sum of HRD-AIs (hereafter called
tnbcHRDscar) from 47 to 53 produced the highest classification
accuracy of the HRD and HRP samples (Fig. 5c), with the cut-off
value of 53 as the closest value at the intersection of the HRP and
HRP density distributions (Fig. 5d). Using the above criteria we
observed that tnbcHRDscar increased the accuracy of classifying
the HRD and HRP samples from 0.92 to 0.94 (Fig. 5d).
To test whether HR-status classification by tnbcHRDscar can

predict clinical outcomes in TNBC, we next associated
tnbcHRDscar with the PFS in the TCGA cohort and with the
distant relapse-free interval (DRFI) in an independent TNBC SNP-
array dataset21. Patients with the tnbcHRDscar-positive tumors
had a significantly longer PFS than those with the tnbcHRDscar-
negative tumors (Log-rank p= 0.014), while BRCAmut/del status or
the Telli2016 algorithm did not significantly associate with PFS
(Fig. 5e–g). Only tnbcHRDscar showed a statistically significant
association with the DRFI (Log-rank p= 0.0022) in the indepen-
dent validation dataset (Fig. 5h–j). Further, tnbcHRDscar classifica-
tion in TCGA samples was also associated with OS (Log-rank
p= 0.039), similarly to the Telli2016 algorithm (Log-rank p= 0.039;
Supplementary Fig. 5c–e). We next applied Cox regression analysis
to validate the association of tnbcHRDscar with PFS and OS. In the
TCGA cohort, tnbcHRDscar significantly predicted PFS (HR: 0.34,
p= 0.018, Supplementary Fig. 5f) but the Telli2016 algorithm did
not, while both similarly predicted OS (Supplementary Fig. 5g).
However, tnbcHRDscar but not the Telli2016 algorithm signifi-
cantly predicted DRFI in the validation dataset (HR: 0.29, p= 0.004,
Supplementary Fig. 5h). Additionally, we compared the perfor-
mance of tnbcHRDscar with HRDetect12, an algorithm trained
using WGS, to predict DRFI outcomes in the validation dataset.
Interestingly, tnbcHRDscar improved the prediction of DRFI
compared to the HRDetect (Supplementary Fig. 5h–j), regardless
of the cut-off values selected for the HRDetect (Supplementary
Fig. 5k).

DISCUSSION
HRD tumors exhibit a distinct clinical phenotype with superior
responses to platinum-based chemotherapy and sensitivity to
PARP inhibitors. However, the accurate detection of HRD via
somatic AIs has been confounded by the lack of systematic
approaches and analyses performed in admixtures of tumor types
with distinct genomic drivers. Herein, we established the HRDscar,
a systematic approach for HRD detection to improve patient
selection and clinical outcomes in cancer.
Several genomic approaches have been utilized to detect HRD,

including (1) identification of single genetic mutations leading to
predicted HRD22, (2) profiles of DNA-repair deficiency gene
expression23,24, (3) specific mutational patterns accumulated due
to HRD8,9,25 or (4) structural genomic imbalances7,26. These
genomic features have been implemented alone or in combina-
tions in the search for optimal HRD detection, which has profound
therapeutic implications27. It is now becoming accepted that
benefits from the HR-directed therapies such as PARP inhibitors
extend beyond the identification of HRD via individual genetic
mutations28. This is due to the fact that genes such as BRCA1/2
and RAD51 paralogs can be altered beyond mutations via, e.g.,
hypermethylation or gene deletions3,29, and not all genomic
events leading to HRD have yet been defined30. Allelic imbalances
are indicative of the genetic consequences of HRD and, although
not dynamically reflective of tumors’ functional HRD status, have
shown promise as a biomarker predictive of the magnitude of
benefit from PARP inhibitors, especially in the front-line set-
ting31,32. The HRD-algorithm used in ovarian cancer clinical trials
(Telli2016) was, however, generated using breast cancer samples
or a mixture of breast cancer and ovarian cancer samples using
BRCA1/2 mutation as the sole determinant of HRD, and BRCAwt
status as HRP8–10. Importantly, the European Society of Medical
Oncology also indicated an urgent need to develop a more
accurate HRD algorithm in HGSC to especially improve the
identification of the HRP tumors28. Via a pan-cancer characteriza-
tion of AIs, we discovered remarkable differences in the patterns
of AIs of HGSC as compared to other cancer types, including TNBC,
especially among the BRCAwt tumors. This prompted us to
systematically identify the genomic footprints of HRD-AIs specific
for HGSC using carefully annotated multi-omics data from TCGA
and an iterative machine learning and statistical approach.
ovaHRDscar levels were concordant with tumor genetic

alterations associated with HRD in the TCGA dataset and an
external validation cohort (DECIDER). We found significantly lower
levels of ovaHRDscar in tumors with CCNE1 amplification, which

Fig. 3 ovaHRDscar accurately predicts PFS and OS in HGSC patients. a–c Kaplan–Meier plots of PFS in OVA-TCGA patients stratified with
different criteria, in (a) patients were stratified according to the BRCAmut/del status with no significant difference in their PFS probability over
time (Log-rank, p= 0.78); (b) patients were stratified according to the Telli2016 algorithm (Log-rank, p= 0.017); and (c) patients were stratified
using the ovaHRDscar algorithm. HRD patients had a prolonged PFS as compared to the HRP (Log-rank, p= 4.4e−04). Blue and red shadow
areas correspond to the 95% confidence intervals of probability. d Cox regression models for PFS adjusted for residual tumor after surgery
according to the different HR classification criteria (BRCAmut/del, Telli2016, Telli2016-54, Takaya2020, ovaHRDscar). Three panels are shown:
OVA-TCGA cohort in the left panel, OVA-TCGA cohort excluding the annotated HRD and HRP samples used for the detection of HRD-AIs in the
middle panel, and the DECIDER prospective cohort (WGS) in the right panel. The number of patients (N) selected as HRD positive and their
corresponding proportion (Prop), the hazard ratio for the Cox regression and the 95% confidence intervals (CI) and the p-value (Pval) of the
regression are shown for each panel. The size of the dot represents the hazard ratio and color of the dot represents the p-value, gray dots
represent non-statistical significant associations (p ≥ 0.05). e Fold-change of the difference in median PFS between HRD and HRP patients
when stratified using ovaHRDscar, Telli2016 or Telli2016 using an HRD/HR cut-off value of 54 (Telli2016-54). Patients were bootstrapped 1000
times, and the median PFI fold-change was calculated for each iteration, the box plots represent the values obtained by each bootstrapping
iteration. The black horizontal lines represent the sample medians, the boxes extend from first to third quartile and whiskers indicate the
values at 1.5 times the interquartile range, no outliers are shown. The p-values were calculated using U test. f–h, Kaplan–Meier plots of OS for
OVA-TCGA patients stratified using different criteria. i Cox regression models for OS according to the HR-status classification criteria. The
PCAWG samples in the right panel, the left and center panels are the same as in (d). j Fold-change of the difference in median OS between
HRD and HRP patients stratified using ovaHRDscar, Telli2016 or Telli2016-54 using the same approach as in (e). k–l Fold-changes of the
difference in median PFS (k) & OS (l) between HRD and HRP patients stratified using different ovaHRDscar cut-off values. Patients were
bootstrapped 1000 times and the resultant median fold-changes for each iteration are shown in box plots using the same approach as in (e).
The statistical significance for the lower and higher fold-changes as compared to the cut-off of 54 were calculated independently using U test.
The statistically significant differences show a colored square.
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was also previously proposed to be mutually exclusive with HRD
and associated with poor clinical outcomes33. In line with a
previous report19, tumors with CDK12 mutation showed overall
low levels of ovaHRDscar and thus could be considered HRP. In
contrast, tumors with somatic mutations in PTEN, a gene
associated with DNA repair34,35, showed high ovaHRDscar levels.
However, the vulnerability of PTEN deficient cancers to PARP
inhibitors remains to be verified in the clinical setting28,36. Further,
ovaHRDscar showed a higher concordance with SBS3 than the
Telli2016 algorithm. Most importantly, ovaHRDscar can be applied
to detect HRD in HGSC samples using WGS or SNP-arrays, making
it an attractive biomarker for the clinical setting.
A dichotomous thresholding of a predictive HRD biomarker is

needed for therapeutic decision-making. In the Telli2016 algo-
rithm, the cut-off for the total number of events was derived from
a mixture of breast and ovarian cancer samples10. More recently,
Takaya et al. set out to improve the HRD test by adjusting the cut-
off value in ovarian cancer19. However, only BRCAmut status was
used for separating HRD from HRP samples and the same genomic
features of HRD-AIs were used as in Telli et al. In ovaHRDscar, after

the development of accurate definitions of both the criteria of
HRD-AIs and the cut-off, we identified more samples as being HRP,
and separated HRD from HRP with improved accuracy over
previous algorithms. When testing the Telli2016 algorithm using
the ovaHRDscar cut-off value of 54, the accuracy was still below
that of ovaHRDscar, indicating that both the accurate identifica-
tion of the HRD-AIs and the selection of the optimal cut-off are
needed to improve HRD detection in HGSC. In agreement, in most
survival analyses, especially in the independent validation cohorts,
ovaHRDscar outperformed the previous algorithms in predicting
clinical outcomes.
HRD tumors are known to have superior responses to

platinum-based chemotherapy and prolonged overall survival37.
Consistently, ovaHRDscar improved the prediction of PFS and
OS for platinum-based chemotherapy in the OVA-TCGA, also
after excluding patients used when defining the criteria for
ovaHRDscar. ovaHRDscar significantly predicted PFS and OS also
among only the BRCAwt tumors. Importantly, ovaHRDscar
improved the prediction of clinical outcomes in two indepen-
dent patient cohorts and in multivariable models after adjusting

Fig. 4 Intra-patient spatiotemporal variation of ovaHRDscar levels in 98 prospective HGSC samples. a Overview of the samples and their
ovaHRDscar levels per patient in a prospective cohort (DECIDER). The tumor samples were collected at three different treatment phases and
from different anatomical sites; the corresponding number of samples are displayed in parentheses. b Levels of ovaHRDscar in samples
harboring different genetic or epigenetic alterations associated with HRD. The colors correspond to the ovaHRDscar levels, in the outer ring of
the pie chart every bar represents a sample carrying the corresponding alteration, and average values for the genetic groups are displayed in
the center of the pie chart. c ovaHRDscar values between paired samples for each patient (connected dots) did not change (Wilcoxon test)
between the samples collected at different treatment phases. For the box plots, the black horizontal lines represent the sample medians, the
boxes extend from first to third quartile and whiskers indicate the values at 1.5 times the interquartile range. d Comparison of anatomical site
prioritizations using Cox regression models for PFS using the Telli2016 or the ovaHRDscar algorithms. The size of the dot represents the HR
and color of the dot represents the p-value. The HR-status for each patient is shown assessed using three anatomical sample prioritization
approaches: (1) average HRD-AIs per all samples (2) omentum, and OVA/ADN if omentum sample not available (OME-OVA/ADN) (3) OVA/ADN,
and then omentum if OVA/ADN not available (OVA/ADN-OME). In the case of multiple samples per same site, the average was used.
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for clinical covariables, indicating that ovaHRDscar reliably
captures the phenotypic clinical behavior of HRD in HGSC.
Further, using a disease-specific, systematic approach in the
classification of HR-status, we could improve the prediction of
the clinical outcomes also in TNBC, and tnbcHRDscar

significantly predicted disease-free survival in the TCGA and in
an independent dataset. However, none of the clinical cohorts
included patients treated prospectively with, e.g., PARP inhibi-
tors; therefore, prospective validation in larger patient series is
warranted.
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Finally, as HGSC is characterized by a high intra-tumor
heterogeneity, we aimed at assessing whether the anatomical
site of tumor sampling or the exposure to chemotherapy affects
HRD detection. Our analysis of 98 samples collected from different
anatomical sites and treatment phases indicated that ovaHRDscar
levels remain similar within each patient, including anatomically
site-matched samples collected before and after neoadjuvant
chemotherapy. ovaHRDscar can thus be reliably assessed during
routine clinical practice and also after neoadjuvant chemotherapy,
given that the tumor purity remains higher than 30%. Interest-
ingly, ovaHRDscar levels were also similar between treatment-
naive and relapsed tumors, reflecting the nature of HRD-AIs as a
historical consequence rather than a dynamic read-out of
functional HRD. Analysis of different anatomical sites revealed
that the overall inter-patient variation was higher than the intra-
patient variation. However, in four out of 21 (19%) patients with
samples from multiple anatomical sites, the HRD category
depended on the anatomical site of sampling. The survival
analyses indicated that ovarian or adnexal sites, followed by
omentum, could be the preferred sites for HRD testing, warranting
future validation in larger cohorts.
In conclusion, ovaHRDscar shows promise as a precise, clinically

feasible assay for both outcome prediction and selection of
patients for HR-directed therapies. With the fully documented,
publicly available algorithms and generation pipeline, ovaHRDscar
can be applied to other tumor types and implemented clinically
for optimal patient selection to improve outcomes for patients
with cancer.

METHODS
Dataset collection and classification
For pan-cancer samples, allele-specific copy-number segments
were obtained from the Genomics Data Commons (GDC) portal
(https://portal.gdc.cancer.gov/). The list of TNBC samples was
adopted from Lehmann et al.38. For TNBC, samples were
considered with BRCAmut if reported by Knijnenburg et al.39 to
contain a gene deletion, gene mutation, or gene silencing of
BRCA1 or BRCA2; while BRCAwt were considered those with no
reported alterations.
For OVA-TCGA analysis, allele-specific copy-number segments,

DNA methylation, gene-level copy-number profiles (including
gene deletions), and clinical information data were obtained from
the GDC data portal. Genes were considered with a “strong signal
of deletion” if reported as such (labeled by −2) by Taylor et al.40.
Gene promoter hypermethylation was considered when the
probes up to 1500 bp downstream of the transcription start site
had an average beta value ≥0.75. The catalog of mc3 somatic
mutations was obtained from the PanCanAtlas-GDC data portal
(https://gdc.cancer.gov/about-data/publications/pancanatlas).
Somatic mutations were classified according to the recommenda-
tions of the American College of Medical Genetics and Genomics41

using the web-tool VarSome42. Only pathogenic somatic muta-
tions were considered in the analysis. For germline mutations, we
selected those labeled as pathogenic and prioritized by Huang
et al. 201843. Genes were considered part of the HR pathway or
other associated pathways according to the Kyoto Encyclopedia of
Genes and Genomes database44. Complementary clinical informa-
tion was obtained from the PanCanAtlas-GDC data portal. For
PCAWG: allele-specific copy-number segments, mutational drivers,
and clinical information were obtained from the International
Cancer Genome Consortium data portal (https://dcc.icgc.org/
pcawg).

Pan-cancer characterization of AIs
We used the allele-specific copy-number segments from the
Genomics Data Commons. Segments that did not span a whole
chromosome and with a total copy-number value different from
two were selected as AIs. AIs shorter than 3 Mb and longer than
50Mb were ignored. We quantified the number of AIs per sample
and the median length of the AIs. The skewness of the distribution
of the length AIs in different types of cancers was performed using
the package DescTools.

Selection of criteria for HRD-AIs
First, we annotated the OVA-TCGA samples as HRD and HRP
according to the following. For HRD samples, samples harboring
somatic or germline mutations, promoter hypermethylation, or
strong signal of deletion of the genes BRCA1, BRCA2, and RAD51
paralogs (Fig. 2a); for HRP sample annotation, we selected those
with none of the HRD selection criteria, plus available data for
methylation, gene deletion, somatic mutations and no deletion of
any HR gene. The rest of the samples were annotated as
“undefined” (Fig. 2a). The HRD and HRP annotation was used as
“ground truth” in posterior accuracy assessment analysis. The HRP
sample TCGA-13-1511 was annotated as “undefined” as an outlier in
the number of total AIs. Then, for the annotated HRD/HRP samples,
we quantified the HRD-AIs (LOH, LST, TAI) according to Marquard
et al.45 under different criteria. For LOH, we used length criteria
(minimum length: lmin, maximum length: lmax). Exhaustively for each
pair of values, lmin and lmax, we quantified the number of LOH per
sample. We selected the pair of values that produced the highest
classification power (see below) according to the HRD and HRP
annotations. The quantification of LST events, defined by the
parameters s (minimum AI length) and m (maximum distance
between the AI events that comprise an LST event), was optimized
similarly. Finally, we quantified TAI events if they were larger than k,
where the length k was evaluated following the same approach.
The classification power was evaluated by combining two
approaches: (1) differential abundance of selected AIs in the
annotated HRD vs HRP using one-tailed Mann–Whitney U test; (2)
classification performance by decision trees (R package ‘rpart’)
taking the abundance of the selected AIs as split-point. For the

Fig. 5 Machine learning-aided detection of HRD-AI in TNBC improves the prediction of clinical outcomes. a Number of AIs for TNBC in
HRD and HRP samples in the TCGA. Corresponding box plots are shown, the black horizontal lines represent the sample medians, the boxes
extend from first to third quartile and whiskers indicate the values at 1.5 times the interquartile range. b Detection of LOH events. The size of
the dots represents the decision tree balanced accuracy (BA) of classifying HRD and HRP using LOHs of the corresponding length, and the dot
colors represent the difference in abundance of LOH between HRD versus HRP samples (U test, p-value). Black box corresponds to the
selection criteria utilized in the Telli2016 algorithm, and the blue box corresponds to the tnbcHRDscar BA and U test value. c Evaluation of the
cut-off for tnbcHRDscar to define HR-status. The black dots connected with a line represent the balanced accuracy (BA) of the classification of
the HRD and HRP samples using the given cut-off value, the 95% confidence intervals are shown in gray, the value of 53 (red dashed line)
shows the highest BA. d Density distribution of HRD-AIs according to the Telli2016 and tnbcHRDscar algorithms. The red dashed line
represents the cut-off established to define HR-status using Telli2016 (≥ 42) and tnbcHRDscar (≥53). The balanced accuracy (BA) for classifying
the HR-status is shown for Telli2016 and ovaHRDscar algorithm. e–g Kaplan–Meier plots of PFS (Log-rank test) in TNBC patients in the TCGA
stratified using: the BRCAmut/del status (e), the Telli2016 algorithm (f), the tnbcHRDscar (g). h–j Kaplan–Meier plots of distant relapse-free
interval (DRFI, Log-rank test) of the TNBC patients in the validation dataset stratified using: the BRCAmut/del status (h), the Telli2016 algorithm
(i), the tnbcHRDscar algorithm (j).
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decision trees approach, samples above the split-point were
tentatively considered as HRD and below - HRP, then true positive
rate (TPR) and true negative rate (TNR) was computed when
compared against the ground truth annotations (Fig. 2b). For each
type of HRD-AI, we selected the set of parameters ({lmin, lmax},{s,m}, k)
with the highest product of U test p-value (p) and balance accuracy
BA ¼ TPRþTNR

2

� �
, the product was inferred with the formula:

−1*log10(p)*BA. The selected set of parameters was incorporated
in ovaHRDscar. The sum of HRD-AIs under the selected criteria was
named the ovaHRDscar levels or values. A cut-off value to define the
HR status (samples with values above the cut-off are considered
HRD and below—HRP) for ovaHRDscar and tnbcHRDscar levels was
determined by exploring different cut-off values. For each cut-off
value, we resampled with replacement 29 of the annotated HRD
and 29 of the HRP cases 10,000 times; for each pseudo replicate, we
calculated the balanced accuracy by comparing the HR status using
the cut-off value versus the ground truth annotations. Finally, we
selected the cut-off value that produced the highest median
balanced accuracy.

Quantification of HRD-AIs
The quantification of HRD-AIs by the Telli2016 algorithm, the
Takaya2020, the ovaHRDscar, and the tnbcHRDScar was per-
formed using an in-house R-package (see code availability)
adapted from the package scarHRD46. This package allows for
the quantification of LOH, LSTs and TAIs under different selection
criteria. Allelic imbalances smaller than 50 bp were smoothed, as
previously suggested by Popova et al.7. The selection criteria of
HRD-AIs for Telli2016: LOH lmin= 15 Mb, lmax= 50 Mb; LSTs
s= 12Mb, m= 1 Mb, TAI k= 1 Mb, samples with HRD-AIs ≥ 42
were considered HRD otherwise—HRP. For the Takaya2020
algorithm, the same HRD-AIs selection criteria as for Telli2016
were used: samples with HRD-AIs ≥ 63 were considered HRD, and
otherwise—HRP. For ovaHRDscar, the HRD-AIs selection criteria
are LOH lmin= 15Mb, lmax= 50 Mb; LSTs s= 12 Mb, m= 1 Mb, TAI
k= 1 Mb; samples with HRD-AIs ≥54 were considered HRD, and
otherwise—HRP.

Survival analysis
Survival plots, Log-rank and Cox regression models were
performed in R using the packages “survminer” and “survival”.
For OVA-TCGA, only patients disease treated with cisplatin or
carboplatin were selected. For PCAWG, data from all patients were
used (no treatment information available). Only data from primary
samples (treatment-naive) were used. The BRCAmut/del status
includes pathogenic somatic mutations, germline mutations, and
“strong signal of deletion” in the genes BRCA1 or BRCA2. Residual
tumor after surgery was categorized as present or absent. For the
indicated Cox regressions, residual tumor status or patient age at
diagnosis was used as a covariable. Progression-free survival (PFS)
and overall survival (OS) were defined as in Liu et al.47. The CHORD
signature HR-status classification for PCAWG samples was adopted
from Nguyen et al. 202011. In the TNBC cohort from TCGA, only
patients with advanced Stage III-IV were selected. For survival
analysis using HRDetect stratification, positive status was labeled
for patients with an HRDetect value ≥ 0.7, and HRDetect negative
for those with a value ≤ 0.2, patients with intermediate values
were ignored. The mean differences of PFS and OS between HRD
and HRP patients according to different criteria were calculated by
bootstrapping the patients 1000 times; for each bootstrapping
replicate was calculated the fold-change of median PFS or OS as
median survival (PFS or OS) time in HRD patients divided by
median survival (PFS or OS) time in HRP patients.

Prospective DECIDER and TERVA data analysis
The tumor samples were prospectively collected in the DECIDER
(http://www.project-DECIDER.eu) and TERVA (https://www.hea
lthcampusturku.fi/innovation-new/terva-project/) projects. The
Ethics Committee of the Hospital District of Southwest Finland
approved both studies (Dnro: 145 /1801/2015). All patients gave
their written informed consent to take part in the study. For
DECIDER, paired fresh tumor and normal blood samples were
sequenced using Illumina-HiSeq X Ten WGS. Raw reads were
trimmed and filtered with Trimmomatic48, followed by duplicate
marking with Picard Tools (https://broadinstitute.github.io/picard/).
Alignment to the human genome GRCh38 was done using the
Burrows-Wheeler aligner BWA-MEM49. Mutations were detected
using GATK4-Mutect2 approach50. GATK4-Mutect2 was used for the
detection of allele-specific copy numbers; regions listed in the
ENCODE blacklist51 were omitted. Tumor purity was estimated using
two approaches: (1) Based on somatic copy-number profiles using
the software ASCAT v2.5.251 (2) Based on variant allele frequency of
the truncal mutation in gene TP53 (TP53-VAF), purity was estimated
using the formula: 2/((CN/TP53-VAF) - (CN - 2)), where CN
corresponds to the absolute copy-number value estimated by
ASCAT in the corresponding truncal mutation locus. Subsequently,
the higher purity value was selected. For the TERVA samples tumor-
only profiling, tumor samples were genotyped using the Infinium™

Global Screening Array-24 v2.0. B allele frequency and LogR ratios
per sample probe were calculated using Illumina-GenomeStudio.
ASCAT software was used for the detection of allele-specific copy
numbers, ascat.predictGermlineGenotypes module was performed,
adjusting parameters according to a panel of 200 normal germline
blood samples. Intra- and inter-patient variability of ovaHRDscar
values in the DECIDER cohort was determined by calculating the
absolute value of the pairwise ovaHRDscar difference between all
pair combinations of samples52. Patient P19 was omitted from
survival analysis because she received PARP inhibitors as main-
tenance after the first-line therapy.

Statistics
The statistics analysis was performed in R. Difference in
abundances was calculated using one-sided Mann–Whitney U
test unless stated it was two-sided. Paired difference in
abundances was calculated using two-sided Wilcoxon test.
Agreement was calculated using the Cohen kappa test. Con-
cordance was measured using Lin’s concordance correlation
coefficient. Level of correlations was assessed using Pearson
correlations. P-value less than 0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Somatic whole genome sequencing data for the DECIDER and TERVA cohort are
available through the European Genome-Phenome Archive under the study
accession number EGAS00001006775.

CODE AVAILABILITY
The code used for the data analysis is available on Github (https://github.com/
farkkilab/pubs/tree/master/Perez_et_al_2022). The ovaHRDscar algorithm implemen-
tation is available as an R package on Github (https://github.com/farkkilab/
ovaHRDscar).
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