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Abstract Combinatorial therapies have been recently proposed to improve the efficacy of anti-

cancer treatment. The SynergyFinder R package is a software used to analyze pre-clinical drug

combination datasets. Here, we report the major updates to the SynergyFinder R package for

improved interpretation and annotation of drug combination screening results. Unlike the exist-

ing implementations, the updated SynergyFinder R package includes five main innovations. 1) We

extend the mathematical models to higher-order drug combination data analysis and implement

dimension reduction techniques for visualizing the synergy landscape. 2) We provide a statistical

analysis of drug combination synergy and sensitivity with confidence intervals and P values. 3)

We incorporate a synergy barometer to harmonize multiple synergy scoring methods to provide

a consensus metric for synergy. 4) We evaluate drug combination synergy and sensitivity to pro-

vide an unbiased interpretation of the clinical potential. 5) We enable fast annotation of drugs

and cell lines, including their chemical and target information. These annotations will improve

the interpretation of the mechanisms of action of drug combinations. To facilitate the use of

the R package within the drug discovery community, we also provide a web server at www.s

ynergyfinderplus.org as a user-friendly interface to enable a more flexible and versatile analysis

of drug combination data.
Introduction

Many complex diseases including cancer and infectious dis-
eases develop drug resistance [1,2]. To achieve more sustain-
able clinical efficacy, multi-targeted drug combinations have

been proposed to tackle disease signaling pathways more sys-
ciences /
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Figure 1 Summary of the SynergyFinder Plus workflow

We highlight the new features including: 1) the ability to analyze

drug combinations of more than two drugs, 2) tailored statistical

testing to account for uncertainty for data with replicates, 3)

harmonized visualization of multiple synergy score metrics, 4)

visualization of the relationship between sensitivity and synergy

scores, and 5) a data annotation web server to query cell line and

drug information.
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tematically [3]. With the advances in high-throughput drug
screening technologies, an increasing number of drug
combinations are being tested in multiple disease models,

such as cancer cell lines and patient-derived primary cultures.
These preclinical drug combination experiments are con-
ducted to identify the most synergistic and effective drug

combinations that result in improved cellular responses, such
as cell viability and toxicity. With the potential hits priori-
tized from screening, more functional studies are warranted

to elucidate the mechanisms of action of the drug interac-
tions, leading to the identification of drug combination
response biomarkers that are critical for stratifying patients
for more targeted therapies.

For the evaluation of the potential of a drug combina-
tion, mathematical and statistical models are needed to
characterize the expectation if the drugs are not interactive;

thereafter the boosting effects of the drug combination can
be formally quantified. There are currently four major syn-
ergy models: highest single agent (HSA) [4], Loewe additiv-

ity (LOEWE) [5], Bliss independence (BLISS) [6], and zero
interaction potency (ZIP) [7]. However, the overall effects
of a drug combination may not lead to sufficient efficacy,

despite a strong degree of interaction. Therefore, it is rec-
ommended to evaluate synergy (i.e., the degree of interac-
tions) and sensitivity (i.e., the overall treatment efficacy)
simultaneously [8]. Previously developed tools that can ana-

lyze drug combination synergy include COMPUSYSN [9],
BRAID [10], Combenfit [11], SynergyFinder [12], and Syn-
ergy [13]. However, these tools are designed mainly for

analyzing two-drug combinations only. More recently, the
SynergyFinder2 tool [14] has been developed, which extends
to three-drug combinations. However, only the HSA model

was appropriately constructed for its implementation. The
key differences in the modeling are summarized in
Table S1. Furthermore, the visualization of high-order drug

combinations becomes non-trivial, as none of the existing
visualization methods can deal with combinations of three
or more drugs [15]. More importantly, there is a lack of
implementation tools that can harmonize multiple synergy

models to derive a consensus about the degree of interac-
tions [16].

To address these limitations, we provide a major update

of the SynergyFinder R package that enables novel functions,
including 1) formal mathematical models to assess the syn-
ergy of high-order drug combinations and visualization of

the degree of synergy using a dimension reduction technique;
2) formal statistical methods to evaluate the significance of
synergy; 3) implementation of the synergy barometer to sys-
tematically compare the results from different synergy mod-

els; 4) implementation of a synergy–sensitivity (SS) plot to
evaluate the potential of a drug combination unbiasedly;
and 5) finally, we develop data annotation tools to retrieve

the pharmacological and molecular profiles of the drugs
and cells, facilitating the discovery of mechanisms of action
of the most synergistic and effective drug combinations. We

provide a new website at www.synergyfinderplus.org to allow
users to upload their experimental results and run all the
analyses with the R package in the backend. All functions

and source codes are freely accessible to academic users
(Figure 1).
Method

Synergy models for high-order drug combinations

Considering the response of a drug to be measured as a % inhi-

bition y that ranges from 0 to 1, a higher value indicates a bet-
ter efficacy. For a combination that involves n drugs, the
observed combination response is denoted as yc, whereas the

observed monotherapy response of its constituent drugs is
yi;i ¼ 1; :::; n. The expected combination response is determined

by the assumption of non-interaction. Currently there are four
major synergy reference models [16,17]. For the HSA model,

the expected response is the highest monotherapy response,
that is, yHSA ¼ max y1; :::; yi; :::; ynð Þ: For the BLISS model,
the expected response is derived from the probabilistic inde-
pendence of the monotherapy effects, that is,

yBLISS ¼ 1�Qi 1� yið Þ. For the LOEWE model, the expected

response satisfies
P

i
xi

f�1
i yLOEWEð Þ

� �
¼ 1, where xi is the dose of

each constituent drug in the combination, and f�1
i yLOEWEð Þ is

the inverse function of the dose–response curve. For the ZIP

model, the expected response satisfies yZIP ¼ 1�Qi 1� byið Þ,
where byi is the predicted dose response of the monotherapy

by a monotonically increasing curve fitting model byi ¼ fi xið Þ.
For example, a common choice for modeling drug dose–
response curves is the four-parameter log-logistic model

f xð Þ ¼ EminþEmax x=mð Þk
1þ x=mð Þk , where Emin, Emax, m, and k are the minimal

and maximal responses, half maximal inhibitory concentration
(IC50), and slope of the dose–response curve, respectively.

https://www.synergyfinderplus.org/
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Accordingly, the multi-drug synergy score for the observed
combination response yc can be determined as follows:

SHSA ¼ yc �max y1; :::; yi; :::; ynð Þ ð1Þ

SBLISS ¼ yc � 1�
Y

i
1� yið Þ

� �
¼ yc �

X
i
yi �

X
i<j
yiyj þ �1ð Þrþ1 �

X
i<j

Yr

j
yj

�
þ �1ð Þnþ1 �

Y
i
yi

�
ð2Þ

SLOEWE ¼ yc � yLOEWE; s:t:
X

i

xi

f�1
i yLOEWEð Þ

 !
¼ 1 ð3Þ

To determine the ZIP-based synergy score, yc needs to be

replaced with the predicted average response byc given by the

curve fitting models f 0i to make it comparable to yZIP:

SZIP ¼ byc � yZIP ¼ 1

n

X
i
f 0i xið Þ � 1�

Y
i
1� fi xið Þð Þ

� �
ð4Þ

where Emin f 0i
� � ¼ f 0�i x�ið Þ. Namely, f 0i xð Þ stands for the log-

logistic model defined for the combination response at dose x
of drug i when the other drugs are present. Furthermore,
Emin of f 0i xð Þ is determined by f 0�i x�ið Þ, which is the fitted curve

of the combination response while drug i is absent. Note that the
ZIP model captures the shift of potency for a drug combination

in comparison to its monotherapy drugs; therefore, the ZIP
model compares the difference between fitted models for the
drug combination f 0i xið Þ and for the monotherapy drug fi xið Þ.
Figure 2 Dimension reduction for the visualization of high-order drug

In this example, the two-dimensional coordinates of each three-drug do

on the similarity of their dose ranges, after which the synergy scores an

map is annotated with its associated dose rankings for the three d

combination involves the 4th dose of drug 1, the 1st dose of drug 2, a
Visualization of higher-order synergy and sensitivity scores

The commonly utilized synergy or sensitivity landscape models
are not directly applicable for the visualization of higher-order
drug combinations. It is non-trivial to determine the coordi-

nates of the multi-dimensional dose vectors in a two-
dimensional space where similar dose vectors remain proximal
to each other. In this study we propose a dimension reduction
technique that is based on multi-dimensional scaling, similar to

the recent application in transforming numerical data into
images [18]. For a drug combination in an n-dimensional dose
space, with its coordinates of X ¼ x1; :::; xnð Þ, we consider their
rankings R ¼ r1; :::; rnð Þ. For example, a combination X =
(0.1, 10, 1000) nM in three-dimensional dose space has a rank-
ing vector R = (1, 3, 6), suggesting that 0.1 nM is the mini-

mum dose in the tested dose range of drug 1, 10 nM is the
third smallest dose of drug 2, and 1000 nM is the sixth dosage
of drug 3. Euclidean distance is a common choice for quanti-

fying the similarity between two dose ranking vectors. We uti-
lize multi-dimensional scaling to minimize the error of the
pairwise distance in a two-dimensional space in which the syn-
ergy and sensitivity scores can be visualized as a synergy land-

scape (Figure 2). Using the dose rankings as the input for
multi-dimensional scaling can ensure that the resulting two-
dimensional coordinates are equally distanced among the

neighboring dose conditions, thus making the visualization
easier to interpret. Furthermore, for the case of two-drug com-
binations, the algorithm can converge to the actual dose rank-

ings, thus preserving the consistency across all orders of
combinations

se combination are determined by multi-dimensional scaling based

d sensitivity scores can be visualized on the map. Each dot in the

rugs r1; r2; r3ð Þ. For example, a dot with a label 4;1;2 shows a

nd the 2nd dose of drug 3.
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combinations. We also develop functions to visualize the syn-
ergy and sensitivity scores for a specific dose condition in a
grid of bar plots, which can help identify the most synergistic

and sensitive areas in the synergy landscape.

Statistical analysis

The statistical significance of synergy can be defined at a sin-
gle dose or at the whole dose matrix level. Consider a two-
drug combination experiment as an example. We assume

that the replicates of drug responses are measured indepen-
dently within each dose in the dose matrix (Figure 3). At
each dose level, we propose using a bootstrapping approach

to determine the confidence intervals of the synergy scores.
To determine a bootstrap dose–response matrix, we sample
the responses for each dose combination from a normal dis-
tribution N l; rð Þ, where l and r are the mean and standard

deviation of the replicates. The synergy scores for the HSA
and BLISS models can be derived simply by comparing the
bootstrapped responses at the dose combination and at their

corresponding monotherapy doses, i.e., using Equations (1)
and (2). However, for the LOEWE and ZIP models [7],
bootstrapped synergy scores will be derived using the curve

fitting over the whole dose matrix, i.e., Equations (3)
and (4).

Suppose that B bootstrap samples are drawn from the repli-
cates and suppose that s1; :::; sB are the estimates of the synergy

scores determined from these bootstrap samples, with a mean
of s. We determine the bootstrap standard error (SE) as
follows:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB

i¼1
si � sð Þ2

r
ð5Þ

The 95% confidence interval for the synergy score is
approximately s� 1:96SE; sþ 1:96SE½ �.

At the whole dose matrix level, we provide an empirical P
value to assess the significance of the difference between the

estimated average synergy score over the whole dose matrix
and the expected synergy score of zero under the null hypoth-
esis of non-interaction.

Letting s01; :::; s
0
B are the estimates of the average synergy

scores over the whole dose matrix from the bootstrap samples,

the P value is [19]:

P ¼ exp �0:717z� 0:416z2
� �

where z ¼ abs s0ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B�1

PB
i¼1 si 0 � s0Þ2ð

q
.

Figure 3 Statistical testing of synergy scores

Dose-specific confidence intervals and P values for the average synerg

matrix.
For a scenario in which no replicates are available, the con-
fidence interval cannot be determined at the dose level. How-
ever, the P value of the average synergy score of the whole

dose–response matrix can still be derived by pooling the syn-
ergy scores together and then comparing them to zero. For
both scenarios, we report the overall P values of synergy and

the confidence intervals at the dose-specific level when repli-
cates are available. We test the accuracy of the bootstrapping
with the simulation (File S1) and show that the P values for

synergy scores determined from bootstrap are highly corre-
lated with the true P values (Figure S1).
Harmonization of multiple synergy models

As the SynergyFinder R package provides four synergy models
(i.e., HSA, BLISS, LOEWE, and ZIP) that differ in their null
hypotheses of non-interaction, the synergy scores do not nec-

essarily coincide with each other for a given dataset. To pro-
vide a more harmonized representation of the synergy score
results, we introduce a novel tool to enable a more systematic

comparison of the synergy scores. We leverage the implemen-
tation of the four models to derive the expected response of
non-interaction (i.e., yHSA, yBLISS, yLOEWE, and yZIP). Because

all the expected responses share the same unit as the observed
response (i.e., % inhibition), we may utilize a synergy barom-
eter to compare these values. The expected and observed
responses for a given combination at a specific dose are posi-

tioned on the same scale. With such a tool as the synergy
barometer, one can evaluate the degree of synergy of a specific
model and easily understand the differences in the results. A

strong synergy should be concluded if the observed response
goes beyond the expected responses of all the four models.

Prioritization of drug combinations

In addition to synergy, the sensitivity of a drug combination is
equally important [8]. Prioritization of drug combinations

based on the degree of synergy may only result in an excessive
number of false positives, as a clinical endpoint for approving
a drug combination is commonly its efficacy rather than the
synergy. In cases where a strong synergy is obtained, the drug

combination may not necessarily reach sufficient levels of
therapeutic efficacy. To capture the sensitivity of a drug com-
bination, we previously developed a combination sensitivity

score (CSS) model that calculates the relative inhibition of a
drug combination based on the area under the log10 scaled
y score can be derived using bootstrapping of the dose–response



Figure 4 Example of surface plots for higher-order drug combinations

A. The dose–response map for a synergistic drug combination (pyronaridine tetraphosphate–piperaquine–darunavir ethanolate, left panel)

compared to an antagonistic drug combination (pyronaridine tetraphosphate–piperaquine–lopinavir, right panel). B. The ZIP synergy

score map for the same drug combinations. For surface plots of other synergy scores, including HSA, BLISS, and LOEWE, see Figure S2.

HSA, highest single agent; BLISS, Bliss independence; LOEWE, Loewe additivity; ZIP, zero interaction potency.
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dose–response curves at the IC50 doses of the constituent

drugs [8]. The CSS has the same unit as a drug response
(i.e., % inhibition), which makes it directly comparable with
the synergy scores defined in Equations (1)–(4). Therefore,
we propose a scatter plot of CSS versus synergy score for a

set of drug combinations. The proposed SS plot significantly
aids in the prioritization of drug combinations from a high-
throughput experiment.
Annotation of drug combinations

Drugs and cell lines in a drug screening dataset are annotated

by querying related databases. PubChem CID, Isomeric
SMILES, and standard InChIKey for drugs are extracted from
PubChem [20]. Furthermore, we provide the molecular for-

mula, clinical stage, disease indication, cross references to mul-
tiple major chemical compound databases (i.e., ChEMBL [21],
ChEBI [22], DrugBank [23], BindingDB [24], PharmGKB [25],
Guide to Pharmacology [26], Selleck, and ZINC [27]), and
drug target profiles from MICHA [28]. Cell line annotation

is obtained from Cellosaurus [29] (version 37.0).

Results

Analysis of three-drug combinations

To test the algorithms designed for higher-order combinations,
we utilize a recent anti-malaria study in which 16 triple
artemisinin-based combination therapies have been tested

against 15 parasite lines [30]. The study aimed to identify syn-
ergistic partner drugs that can be combined with artemisinin to
overcome the emergence of malaria resistance. For each triple
drug combination, a 10 � 10 � 12 multi-dimensional dose

matrix was constructed, resulting in n = 1200 viability values.
The datasets are obtained from the NCATS data portal at
https://tripod.nih.gov/matrix-client/.

We analyze the triple drug combinations in terms of their
sensitivity and synergy and visualize them in surface plots

https://tripod.nih.gov/matrix-client/
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using dimension reduction techniques. Figure 4 and Figure S2
show a synergistic triple combination, pyronaridine
tetraphosphate–piperaquine–darunavir ethanolate (PYR–

PQP–DRV) compared to an antagonistic combination,
pyronaridine tetraphosphate–piperaquine–lopinavir (PYR–
PQP–LPV). Despite similar sensitivities (the average % inhibi-

tion is 78.87 for PYR–PQP–DRV and 74.97 for PYR–PQP–
LPV), their synergy scores differ drastically (the average ZIP
score is 12.02 for PYR–PQP–DRV and �13.39 for PYR–

PQP–LPV), suggesting more complex behaviors of the drug
interactions as the number of drugs increases. Because of the
lack of computational tools for analyzing higher-order drug
combinations, the authors of the anti-malaria studies provided

only the results of pairwise drug combinations, whereas the
Figure 5 Example of visualizations for two-drug combinations with re

A. An example of the confidence interval plots of a synergistic drug pa

pair (paclitaxel and L-778123; lower panel). B. The synergy barometer

combination with niraparib at 2.75 mM; right panel: paclitaxel at 0.00

sensitivity plot for drug pairs tested in the A2058 cell line.
actual interactions of the three drugs were unexplored. There-
fore, our method may provide novel insights that leverage
higher-order drug combination design in a more tailored

manner.
Analysis of two-drug combinations with replicates

We obtain the ONEIL dataset from the DrugComb data por-
tal [31]. The ONEIL data is a pan-cancer drug combination
study in which 583 drug combinations were tested across 39

cell lines [32]. Four replicates were produced for each drug
combination, making it a representative example dataset to
analyze the significance of the synergy scores. In Figure 5, we
plicates

ir (MK-1775 and niraparib; upper panel) and an antagonistic drug

for a given dose combination. Left panel: MK-1775 at 0.2 mM in

16 mM in combination with L-778123 at 2 mM. C. The synergy–
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show the selective drug combinations tested in the A2058 cell
line (melanoma).

As shown in Figure 5A, the confidence intervals for the

responses and synergy scores vary at different doses, suggest-
ing that not all scores are equally significant. Furthermore,
we observe a general trend that a higher response or synergy

score tends to have a smaller confidence interval, consistent
with the expectation of a typical drug screening experiment.
To evaluate the synergy scores more systematically, we provide

a synergy barometer for specific dose combinations. For exam-
ple, for MK-1775 at 0.2 mM combined with niraparib at
2.75 mM, the drug combination response reaches 77.84% inhi-
bition, as indicated by the pointer readout on the barometer

(Figure 5B, left panel). Such a drug combination response is
synergistic, as the expected responses of the HSA, LOEWE,
BLISS, and ZIP models are much smaller, shown as the marks

on the barometer. In contrast, paclitaxel at 0.0016 mM in com-
bination with L-778123 at 2 mM shows a near-zero response
(0.29% inhibition), which is much smaller than the expected

response among all the synergy models (Figure 5B, right
panel); therefore, it is considered strong antagonism. Using
the synergy barometer, the actual drug combination response

can be directly compared with the expectations of non-
interaction among multiple synergy models.

Furthermore, we also show the CSS and ZIP synergy scores
of all the drug combinations tested in the A2058 cell line in an

SS plot (Figure 5C, Figure S3). CSS indicates the efficacy of a
drug combination, whereas the synergy score indicates the
degree of interaction. To prioritize potential drug combina-

tions, it is necessary to identify those with higher CSS and
higher synergy scores, that is, the top-right corner of the SS
plot.

Annotation of mechanisms of action of drug combinations

Recent advances in machine learning and artificial intelligence

studies have shown great potential in predictive modeling of
drug synergies [33–35]. In these studies, the chemical structure
information regarding drugs and the molecular profiles of cells
are considered predictive features. However, for most of the

drug combination datasets, annotations of drug and cell fea-
tures are not provided. To facilitate the interpretation of mech-
anisms of action of drug combinations, it would be beneficial

to provide data integration tools for effective annotation and
accurate matching to public databases such that more compre-
hensive features used for synergy predictions can be obtained.

Efforts to annotate and harmonize existing drug screening
data, such as DrugComb [31,36] and DrugCombDB [37], have
significantly contributed to the development of data-driven
pharmacological modeling [38–40]. For newly generated drug

screening datasets, we develop the SynergyFinder Plus portal
as a companion tool for retrieving publicly available informa-
tion in a more automated fashion. With one click of the but-

ton, users can obtain cross-database identifiers of the drugs
and cells, as well as additional information, such as the mech-
anism of action and disease indication (Figure 6).

We show how SynergyFinder Plus annotates a particular
drug combination in the ONEIL [32] dataset (5-fluorouracil
and vorinostat tested in the A2058 cell line, Figure 6A). After

users upload the dataset, SynergyFinder Plus returns two
annotation tables describing the cell and drug identities. For
example, the cell annotation table includes synonyms, Cel-
losaurus accession, tissue origin, disease name, and disease
NCI Thesaurus ID, whereas the drug annotation table includes

InChIKey, isomeric SMILES, molecular formula, clinical trial
phase, cross references, and disease indication. In addition, a
third table listing primary and potent drug target information

is provided. These annotations enable a more systematic explo-
ration of drugs and cell lines tested in a high-throughput exper-
iment (Figure 6B). With such a comprehensive collection of

identifiers, we believe that the drug combination data can be
better integrated with other related data sources for further
downstream analysis.

Discussion

Synergistic and effective drug combinations have long been

studied to improve disease management. Testing potential
drug combinations using clinically representative cell cultures
has become an important tool for detecting signs of drug sen-

sitivity and resistance; in some cases, the results have already
provided informative decision-making resources to guide
patient stratification in clinical trials [41]. To facilitate the pri-
oritization of drug combinations, informatics tools that enable

formal assessment of the degree of synergy as well as sensitivity
are highly needed. We provide a major update to the com-
monly used SynergyFinder R package, which models drug

interactions for any higher-order combinations [15]. Higher-
order drug combinations have been recently explored in lung
cancer [42], colorectal cancer [43], and ovarian cancer [44].

Therefore, it is expected that promising multi-drug combina-
tions will enter formal clinical trials for multiple diseases
[45]. Furthermore, we develope a statistical analysis of drug

combinations, which is also generally applicable for higher-
order combinations. Importantly, the mathematical models
for higher-order combinations have been consistent with those
for two-drug combinations; therefore, their scores are readily

comparable across different orders. To visualize higher-order
combinations, we develop a dimension reduction technique
to display the synergy and the sensitivity landscape on a

two-dimensional plane.
In addition to providing multiple synergy models, we

address the problem of harmonization. With the increasing

number of models that have been proposed to characterize
drug synergy, there is an increasing need to help users under-
stand the differences between these models such that a user

may make an informed interpretation of the drug combination
results. We propose the use of a synergy barometer on which
all the synergy models can be systematically compared with
the observed drug combination response. Despite only includ-

ing the four major synergy models, HSA, BLISS, LOEWE,
and ZIP, we propose the incorporation of other synergy mod-
els that can readily have their synergy scores put into the

barometer for comparison with existing models. With the syn-
ergy barometer, we hope that the drug discovery community
may derive a consensus on the best reporting guideline for

drug combination data analysis, which has been long sought
since the time of the Saariselkä agreement [46] and thereafter
[47].

We also provide the formal statistical analysis for replicates

of drug combinations. The confidence intervals and P values
for all four synergy scores are comparable. Even for the cases



Figure 6 Example of mechanisms of action annotation for drug combination

A. An example of a drug screening annotation table. The tested drug combination, 5-fluorouracil and vorinostat, is further annotated with

their chemical and target information. Cell line information for the A2058 is also provided, including synonyms, tissue, and disease types.

B. Summary of cell line tissue origin, drug clinical stage, and drug target protein class for the ONEIL dataset.
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in which no replicates have been performed, the significance of
synergy over all the dose conditions can be provided, thus
enabling a statistical evaluation of drug combinations in a pri-

mary screen that usually does not provide replicates due to the
high number of combinations. Once a drug combination hit
passes the initial screening based on the synergy barometer

and the statistical significance, we recommend a confirmation
screen that involves more doses and replicates to formally eval-
uate its synergy. If a user would like to study the mechanism of

action of the drug combination, we also provide integrative
tools to retrieve the chemical structure information and other
functional annotations of the drugs, which will help in down-
stream analysis of the drug combinations. For higher-order

drug combinations, the interpretation of drug synergies is a
challenging problem. We hope that our tool provides the first
evidence to pinpoint synergistic higher-order drug
combinations.

Finally, we provide new features to harmonize the assess-
ment of synergy and sensitivity. The synergy models that have
been developed in the SynergyFinder R package have the same

scale as the drug combination sensitivity method that was
developed earlier, thus allowing a direct comparison in an SS
plot. We recommend that users consider the SS plot when

reporting their drug combination results, as sensitivity is the
clinical endpoint for approving any drug or drug combina-
tions. The drug combination sensitivity values also have the
same scale as monotherapy drug responses in the unit of per-

centage inhibition; therefore, we can readily compare a drug
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combination with a single drug to evaluate their efficacy. With
the harmonization of drug combination sensitivity and
monotherapy sensitivity, we may provide an integrated data

source for developing advanced machine learning approaches
for predicting drug sensitivity, such as drug sensitivity datasets
deposited in DrugComb [31]. To facilitate the FAIRification

(findable, accessible, interoperable, and reusable characteris-
tics) of drug combination analysis, we provide a web server
at www.synergyfinderplus.org to allow users to upload the

data and obtain the analysis results in the form of reports.
In addition, we encourage users to deposit their experimental
data in DrugComb at https://drugcomb.org/, currently one
of the most comprehensive drug screening databases. With

the algorithms and the source code made available through
the SynergyFinder R package, we welcome the machine learn-
ing community to leverage the harmonized drug combination

and monotherapy datasets for more robust and transferable
predictions to further facilitate the drug combination discovery
[34,48–50].

Code availability

All the source code for implementing the data analysis and

visualization is available as the SynergyFinder R package
at https://bioconductor.org/packages/release/bioc/html/syner-
gyfinder.html.

Data availability

The web server for SynergyFinder is accessible at www.

synergyfinderplus.org, which is located at the CSC-IT Center
for Science in Finland.
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