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Abstract

Leading neuroimaging studies have pushed 3T MRI acquisition resolutions below 1.0 mm 

for improved structure definition and morphometry. Yet, only few, time-intensive automated 

image analysis pipelines have been validated for high-resolution (HiRes) settings. Efficient 

deep learning approaches, on the other hand, rarely support more than one fixed resolution 

(usually 1.0 mm). Furthermore, the lack of a standard submillimeter resolution as well as 

limited availability of diverse HiRes data with sufficient coverage of scanner, age, diseases, or 

genetic variance poses additional, unsolved challenges for training HiRes networks. Incorporating 

resolution-independence into deep learning-based segmentation, i.e., the ability to segment images 

at their native resolution across a range of different voxel sizes, promises to overcome these 

challenges, yet no such approach currently exists. We now fill this gap by introducing a Voxel-

size Independent Neural Network (VINN) for resolution-independent segmentation tasks and 

present FastSurferVINN, which (i) establishes and implements resolution-independence for deep 

learning as the first method simultaneously supporting 0.7–1.0 mm whole brain segmentation, 

(ii) significantly outperforms state-of-the-art methods across resolutions, and (iii) mitigates the 

data imbalance problem present in HiRes datasets. Overall, internal resolution-independence 

mutually benefits both HiRes and 1.0 mm MRI segmentation. With our rigorously validated 
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FastSurferVINN we distribute a rapid tool for morphometric neuroimage analysis. The VINN 

architecture, furthermore, represents an efficient resolution-independent segmentation method for 

wider application.
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1. Introduction

While neuroimaging pipelines have benefited substantially from the standardization of 

Magnetic Resonance Imaging (MRI) at 1.0 mm, the resulting fixed-resolution paradigm 

now hinders transition to high-resolution (HiRes) MRI. With the hope of advancing 

quantification of structural detail, increasing explanatory power, and improving our 

understanding of the brain in health and disease (Glasser et al., 2013; Mellerio et al., 

2014; Solano-Castiella et al., 2011; Stankiewicz et al., 2011; Wattjes et al., 2006; Zaretskaya 

et al., 2018), leading large-cohort neuroimaging studies have started to acquire structural 

MRI at 3T field strength and 0.7–0.9 mm resolutions (see Section 2.1). However, the lack 

of reference segmentations and limited diversity of HiRes MRI datasets (e.g. regarding 

scanner, disease, genetic variation) lead to substantial limitations for bias-free method 

development and validation. Additionally, since no de-facto standard resolution exists for 

HiRes imaging, neuroimaging tools introducing HiRes processing (Bazin et al., 2014; Gaser 

and Dahnke, 2016; Huntenburg et al., 2018; Yushkevich et al., 2014; Zaretskaya et al., 2018) 

have to provide resolution-independence instead of following the fixed-resolution paradigm. 

Although Convolutional Neural Networks (CNNs) deliver convincing performance under 

the fixed-resolution paradigm (Chen et al., 2018; Coupé et al., 2020; Henschel et al., 

2020; Huo et al., 2019; Ito et al., 2019; McClure et al., 2019; Mehta et al., 2017; 

Roy et al., 2019; Sun et al., 2019; Wachinger et al., 2018), no methodological solution 

leverages explicit knowledge of the native image resolution, consequently limiting all output 

segmentations to one pre-defined voxel size and potentially ignoring important structural 

detail specifically for submillimeter scans. By introducing Voxel-size Independent Neural 
Networks (VINNs), we now leverage the diversity of widely available 1.0 mm MRIs 

and enrich the model with details derived from HiRes MRI, achieving not only resolution-

independence but improving segmentation performance across resolutions.

For resolution-independent deep learning, we establish two core requirements: 1. Native-

resolution segmentation: the network’s input and output for training and crucially inference 
should be at the native resolution, to avoid any external resampling. 2. Resolution-

independence: the network should be able to learn and predict from images at a range 

of different resolutions. Segmentation for HiRes images additionally aims to improve the 

quality of fine structures (e.g. narrow sulci, gyri and white matter (WM) details). To 

achieve high-quality whole brain segmentation and avoid training biases, a neural network 

should generalize to various resolutions (seen and unseen during training) and datasets 
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with different characteristics (e.g. with respect to scanners, demographics, diseases, genetic 

variation) ideally sharing and transferring knowledge between resolutions.

While some traditional neuroimaging pipelines fulfill these requirements (Bazin et al., 2014; 

Gaser and Dahnke, 2016; Huntenburg et al., 2018; Yushkevich et al., 2014; Zaretskaya 

et al., 2018), no related work directly addresses these challenges with deep learning. 

Fig. 1 illustrates two adaptations to form baseline solutions: A. dedicated fixed-resolution 

networks and B. a single resolution-ignorant CNN that accepts multiple resolutions through 

training. Training one dedicated network per resolution (A.) trades the potential of a larger, 

more diverse training corpus for compatibility with the native resolution raising bias and 

generalization limitations (there are, for example, currently no HiRes neurodegeneration 

datasets). However, a fixed-resolution network trained and evaluated on its native resolution 

represents an upper bound for achievable performance under same-size training datasets. 

On the other hand, if one network is naïvely trained on multiple resolutions (B.), each 

convolutional layer has to learn to generalize across scales as the network cannot easily 

differentiate between different voxel sizes (i.e. resolution-ignorant), which allocates network 

capacity to this task. To support this process and reduce potential bias from missing or 

unbalanced resolution data, one can add external scale augmentation (+exSA) by resampling 

individual images and reference labels during training. This, however, induces information 

loss and interpolation artefacts, e.g. from lossy nearest-neighbour (NN) interpolation of 

discrete label maps. Since neither approach (A. or B.) has been implemented or compared 

for submillimeter whole brain segmentation, we introduce respective baseline models 

utilizing our proposed, optimized micro-architecture in all models for a fair comparison.

To overcome limitations of both approaches (A. and B.), we propose a VINN with 

innovations including its micro-architecture and the addition of a HiRes loss. The core 

contribution, however, is the network-integrated resolution-normalization to support native 

segmentation at various voxel sizes. In fact, any UNet-based architecture (Ronneberger et 

al., 2015) is, by design, a multi-scale approach where pooling operations represent fixed-

factor integer down- and up-scale transitions (usually by the scale factor 2). Our network-

integrated resolution-normalization in VINN now replaces this fixed scale transition with 

a flexible re-scaling for the first and last scale transitions. This has the advantage of 

placing our interpolation operation at a position where information loss naturally occurs 

(down- or up-scaling via pooling). As illustrated in Fig. 1C., we retain compatibility with 

a range of resolutions for input and output (MultiRes) by shifting the interpolation into 

the architecture itself. At the same time, we leverage the lower variance of perceived size 

differences in the inner normalized resolution blocks (FixedRes). This has the advantages of 

(i) retaining important image information at the native resolution in the MultiRes blocks, (ii) 

interpolating multi-dimensional continuous feature maps rather than discrete labels or single 

slice images hence avoiding lossy NN interpolation and extending contextual neighbourhood 

information during the resolution-normalization, and (iii) disentangling perceived voxel 

versus actual structure size differences inside the VINN.

Especially the last point may have been underappreciated so far: Due to the nature of 

convolutional layers, CNNs ‘perceive’ distances and thus structure sizes by number of 

voxels rather than millimeters. Therefore, the original voxel size impacts perceived distances 

Henschel et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for baseline architectures, requiring them to cover larger size variety during training and 

inference in the multi-resolution context. The VINN, on the other hand, transitions from 

a voxel-based distance context in the MultiRes blocks to a standardized distance context 

in FixedRes via the network-integrated resolution-normalization and, therefore, releases 

network capacity in the inner layers for other tasks.

1.1. Contributions

All in all, our VINN, for the first time, effectively addresses the challenges associated with 

HiRes MRI (i.e. multiple resolutions and reduced variety in datasets) in a single framework. 

We extensively test variations of the network architectures and demonstrate that inherent 

biases introduced by the unavailability of certain HiRes scans are reduced by transferring 

information across resolutions via our network-integrated resolution-normalization.

Specifically, we show that our VINN

i. segments 3T brain MRI at their native resolutions (0.7–1.0 mm) into 95 regions 

in less than 1 min on the GPU and generalizes robustly to unseen resolutions 

within and beyond the training corpus,

ii. significantly outperforms state-of-the-art scale augmentations as well as fixed-

resolution models with respect to segmentation accuracy and generalizability 

with an optimized architecture, and

iii. improves accuracy by combining and leveraging both the increased structural 

information from submillimeter 3T brain scans and the generalizability to 

intensity, scanner, disease, and other variations from standard 1.0 mm MRIs.

2. Related work

2.1. High-resolution MRI

In neuroimaging, spatial resolution is of great importance as the available voxel size directly 

dictates the degree to which fine-scale subcortical and cortical structures, specifically narrow 

gyri and sulci, can be resolved in an MRI. In particular, the diversity of tissue types in a 

single voxel, which heavily depends on its size, influences the signal intensity known as the 

partial volume effect (PVE). A strong partial volume effect (PVE) specifically complicates 

the delineation of tissue borders on the voxel grid (Glasser et al., 2013; Zaretskaya et 

al., 2018). HiRes images offer finer sampling of the underlying information, thereby 

directly reduce PVE and enable more accurate segmentations, improved volume-based 

measurements, morphometry, surface placement, and derived thickness measures (see Fig. 

2) (Glasser et al., 2013; Luesebrink et al., 2013; Zaretskaya et al., 2018).

It is, therefore, not surprising that HiRes MRIs are becoming increasingly popular within 

the neuroimaging community. While most established large-scale neuroimaging studies 

acquire data at 1.0 mm, the current and next generation studies are shifting to submillimeter 

resolutions (e.g. Human Connectome Project (HCP) (Glasser et al., 2013), Rhineland 

Study (RS) (Breteler et al., 2014), Autism Brain Imaging Data Exchange II (ABIDE-II) 

(Di Martino et al., 2017), TRACK-PD (Wolters et al., 2020)). However, to date the 
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consolidated superset of publicly available 3T HiRes neuroimages is sparse, unbalanced, and 

heterogeneous with respect to available submillimeter resolutions (e.g. HCP: 0.7 and 0.8, 

ABIDE-II: 0.7-0.9, RS: 0.8). Especially the limited data variety at each specific resolution 

poses a real challenge for data-driven computational methods, which translates into limited 

compatibility with scanners, age spans, and especially disease groups. Moreover, unbalanced 

training data can easily lead to the introduction of biases into the model.

While suffering from stronger PVEs and ensuing detrimental effects on segmentation 

accuracy, the available collection of standardized 1.0 mm images, on the other hand, is large 

and diverse. Consequently, a wide coverage of age-groups, diseases, genetic variants, and 

scanners can be retrieved from the rich reservoir of openly available MRI data sources (e.g. 

OpenfMRI database (Poldrack et al., 2013; Poldrack and Gorgolewski, 2014), OpenNeuro 

(Markiewicz et al., 2021), NITRC-IR2). Furthermore, manual reference labels for validation 

are exclusively published openly for 1.0 mm (Klein and Tourville, 2012). To address 

dataset sparsity and bias at submillimeter resolutions, we believe data-driven computational 

methods require built-in resolution-independence. Only a single model that spans across the 

available resolutions can simultaneously provide benefits for both HiRes and standard 1.0 

mm image analysis.

2.2. Automated analysis of high-resolution images

Traditionally, common neuroimaging pipelines have been developed and optimized for 1.0 

mm voxels (Fischl et al., 2002; Friston et al., 2007; Gaser and Dahnke, 2016; Jenkinson et 

al., 2012; Zhang et al., 2001) representing the de-facto standard for years. FreeSurfer offers 

a validated HiRes stream (Zaretskaya et al., 2018), which provides sub-segmentation of the 

cortex into 31 structures per hemisphere (DKTatlas) (Klein and Tourville, 2012). However, 

one problem here is the extended processing time caused by the cubic voxel increase – a 

common issue limiting applicability of traditional tools to large cohort studies.

The introduction of CNNs for whole brain segmentation has substantially reduced 

processing times to seconds on the GPU. Recent works employ both 2.5D and 3D UNet 

architectures (Billot et al., 2020; Chen et al., 2018; Coupé et al., 2020; Henschel et al., 

2020; Huo et al., 2019; Iglesias et al., 2021; Ito et al., 2019; McClure et al., 2019; 

Mehta et al., 2017; Roy et al., 2019; Sun et al., 2019; Wachinger et al., 2018). Since 

GPU memory limitations render full volume 3D models impractical specifically for higher 

number of feature channels and output classes, top performing methods process the volume 

in slices (QuickNat (Roy et al., 2019), FastSurfer (Henschel et al., 2020)) or in large patches 

(DeepNat (Wachinger et al., 2018), SLANT (Huo et al., 2019), AssemblyNet (Coupé et al., 

2020)) and then leverage aggregation schemes to recombine predictions into the full volume.

Despite their success for brain segmentation and other applications no work has introduced 

deep learning for submillimeter whole brain segmentation. Since CNNs require a large 

and diverse number of volume and segmentation pairs for effective training, the missing 

availability of diverse training data hinders this resolution transition. Additionally, the 

cubic relationship between resolution increase and GPU memory requirements puts memory 

2www.nitrc.org.
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hungry 3D architectures at a disadvantage, e.g. factor of 2.92 = (1/0.7)3 memory demand for 

a 1 to 0.7 mm reduction of voxel sizes.

In the past, multi-branch segmentation frameworks (Fu et al., 2018; Gerard et al., 2020; 

Gu et al., 2018; Kamnitsas et al., 2017; Liu et al., 2020; van Rijthoven et al., 2021; 

Wang et al., 2017; Xu et al., 2021; Yang and Peng, 2018; Zheng et al., 2021) have 

been used to avoid memory issues while simultaneously leveraging HiRes information. 

Here, multiple potentially cross-linked pathways are dedicated to specific down-scaled or 

cropped versions of the original image. The same principle is employed in other scale-aware 

networks (Chen et al., 2016; Huang et al., 2021; Li et al., 2019) by implementing more 

trans-scale connections or combinations of different dilation and kernel sizes. To further 

avoid sub-optimal equal weighting of different scale information, the networks often include 

attention mechanisms (Chen et al., 2016; Qin et al., 2018; Xu et al., 2021; Yang and Peng, 

2018; Zheng et al., 2021). In practice, these methods are only compatible with the discrete 

input and sub-level resolutions they were trained on, leaving subvoxel scaling more common 

in neuroimaging data (0.7/0.8/1) unexploited. In fact, their intend is to explicitly integrate 

information from multiple image scales rather than achieve multi-resolution compatibility. 

Critically, in neuroimaging settings the true scale is known (image resolution) while scale-

aware architectures assume this knowledge is not available. In VINN we inject this explicit 

knowledge into the network at the spatial resolution normalization step.

2.3. Resolution-independence in deep learning

Built-in resolution-independence in CNNs has not been described for brain segmentation 

nor – to our knowledge – for any other segmentation tasks. Approaches such as (Billot et 

al., 2020; Iglesias et al., 2021) pre-sample input images (with associated reliability maps) 

to a common resolution (here 1.0 mm) and provide outputs there, which makes them 

inherently fixed-resolution techniques. While they can provide 1.0 mm segmentations (and 

even images) for lower resolutional clinical scans via heavy augmentation, they can neither 

profit from submillimeter details, nor provide native HiRes segmentations. A transfer to 

higher resolutions would require retraining with a fixed submillimeter training set. This is, 

however, problematic as (i) no standard submillimeter resolution exists, meaning one would 

either need to train multiple versions or focus on the highest available resolution to retain 

input resolution-independence, (ii) HiRes datasets, as mentioned before, demonstrate low 

subject variance (disease, age, genetics) making this approach susceptible to training biases, 

and (iii) upscaling the 3D-UNet architecture to 0.7 mm would require 2.9-times as much 

GPU memory surpassing memory limits.

Different from segmentation networks, state-of-the-art super-resolution networks aim 

specifically at reconstructing a (fixed resolution) HiRes image based on a low-resolution 

(LowRes) input, also requiring ground truth at the higher resolution. They often rely on 

pre-sampling, i.e. using interpolation-based up-sampling methods to initialize the desired 

output grid and fine-tune the features in the following network (Dong et al., 2016; Kim 

et al., 2016a; 2016b). Using augmentation, these networks are trained to restore images 

coming from various lower resolutions via a single model, similar to the discussed 

segmentation strategy (Fig. 3B.). While showing better performance than dedicated single-
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scale models (fixed input and fixed output resolution), pre-sampling significantly increases 

the computational complexity and cost of the architectures due to the increase in image size. 

To overcome this limitation, interpolation-based post-sampling has been introduced recently 

(Alao et al., 2021; Shen et al., 2021). Here, the up-sampling step is shifted towards the end 

of the network architecture and performs the interpolation in the latent space. Interestingly, 

this post-sampling approach is as effective or even superior to the pre-sampling methods, 

while maintaining versatility with respect to the chosen output scale (Alao et al., 2021; 

Shen et al., 2021). All these super-resolution architectures, in addition to not being aimed at 

segmentation, differ from our approach by transitioning once, from the input resolution to 

an output resolution. In contrast, we insert two latent-space interpolation blocks transitioning 

both ways between the native and the inner resolution.

More generally, multi-source domain adaptations (MSDAs) leverage available data with 

different underlying distributions (i.e. resolutions in our case). This field of research focuses 

on enhancing the generalization ability of a model by transferring knowledge between 

resource-full source domains (i.e. LowRes data) to a sparsely represented target domain (i.e. 

HiRes data) by transforming either the features in the latent space or images on a pixel-level. 

In contrast to our resolution-normalization, the latent space transformations in MSDAs are 

based on optimizing a discrepancy (Guo et al., 2018; Peng et al., 2019; Zhu et al., 2019) 

or adversarial loss (Li et al., 2019; Wang et al., 2019; Xu et al., 2018). These latent space 

alignments are, however, often insufficient for segmentation tasks due to their focus on 

high-level information only (Zhao et al., 2019). To circumvent this problem, intermediate 

domain generators have been proposed and successfully applied for semantic segmentation 

(Hoffman et al., 2018; Russo et al., 2019; Zhao et al., 2019). Here, a pixel-level alignment 

between source and target domain is learned through Generative adversarial networks. 

However, these MSDA methods are limited to a single target distribution. Extension 

to multi-targets is a relatively unexplored area with only a few published methods for 

classification tasks so far (Chen et al., 2019; Gholami et al., 2020; Jin et al., 2020; Liu et al., 

2020; Peng et al., 2019; Roy et al., 2021; Yang et al., 2020).

Spatial transformers (Jaderberg et al., 2015) represent another technology relying on internal 

interpolations as an important building block. Here, spatial invariance (registration) is 

targeted via a learnable affine transformation inside the network (localisation network). 

After the source feature map coordinates are computed (grid calculator), intensity values for 

each target pixel are determined via bi-linear interpolation (sampler). Spatial transformers 

hence attempt to implicitly learn data representations in a resolution-ignorant way. While 

our approach shares grid calculation and interpolation within the network with spatial 

transformers, our training approach is different: Instead of a localisation network, we 

directly determine the sampling-grid based on the input scale factors, i.e. the ratio 

between the native input resolution and the desired normalized inner resolution. Hence, we 

explicitly integrate knowledge about the image resolutions into the architecture. As a result, 

computational complexity is reduced while still achieving desired resolution-independence.
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3. Material and methods

3.1. Datasets

The following three submillimeter MRI datasets were selected for training, testing, and 

validation of FastSurferVINN. An extended list of the used 1.0 mm datasets can be 

found in the Section A.3 including a tabulated overview of all used datasets (Table 3). 

When not specifically mentioned otherwise, all sets are balanced for gender, age, and 

study. Participants of the individual studies gave informed consent in accordance with the 

Institutional Review Board at each of the participating sites. Complete ethic statements are 

available at the respective study webpages.

ABIDE-II—The Autism Brain Imaging Data Exchange II Di Martino et al. (2017) contains 

cross-sectional data and focuses on autism spectrum disorders. The dataset contains 

1114 subjects from 19 different institutions in total and is accessible online3. The 3D 

magnetization prepared rapid gradient echo (MPRAGE) sequence, or a vendor specific 

variant, was used to acquire all data using 3T GE, Philips, and Siemens scanners. Voxel 

resolutions are not standardized across sites although most scans are acquired at 1.0 mm. 

In this work we use only the ETH_1 sub-cohort, which provides 0.9 mm HiRes scans 

acquired on a 3T Philips Achieva with a repetition time (TR) of 3 ms, an echo time (TE) 

of 3.90 ms, an inversion time (TI) of 1.15 ms, and flip angle of 8°. Since HiRes datasets 

often exclusively feature Siemens scanners, a subset of 25 HiRes scans from ABIDE-II 

ETH_1 covering an age range of 20–31 years serves as an independent test set to evaluate 

generalizability to this unseen Philips scanner and 0.9 mm resolution.

HCP—The Human Connectome Project Young Adult (Van Essen et al., 2012) is a cross-

sectional study including 3T MRIs from 1200 healthy participants acquired on a customized 

Siemens scanner (Connectome Skyra). It provides 0.7 mm isotropic de-faced scans of 

individuals between ages 22 and 35. All scans follow the same MPRAGE protocol with 

TR 2.4 s, TE 2.14 ms, TI 1 s, and flip angle of 8°. The full dataset is available online.4 

The Human Connectome Lifespan Pilot Project (Phase 1a)5 is an extension of the Young 

Adult project and contains imaging data from five age groups. Five participants per age 

group 25–35, 45–55, and 65–75 were scanned on a 3T Siemens Connectome scanner at 

an isotropic voxel resolution of 0.8 mm following the Young Adult protocol except for a 

slightly smaller TE of 2.12 ms. In the present study, 30 cases from the Young Adult dataset 

are used for network training and 20 for validation. A total of 80 cases are used in the final 

test set. Further, 10 scans from the Lifespan Pilot Project are assembled into a separate test 

set to assess generalizability to another dataset at 0.8 mm in Section 4.4.

Rhineland Study—The Rhineland Study (Breteler et al., 2014) is a large cohort 

population dataset spanning ages 30 to 90. The 0.8 mm isotropic T1-weighted MRI data 

is acquired on a 3T Siemens Magnetom Prisma scanner using a multi-echo MPRAGE 

(ME-MPRAGE) sequence with TR 2560 ms, 10 TEs (1.68 ms, 3.29 ms, 4.90 ms, 6.51 

3http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html.
4https://www.humanconnectome.org/study/hcp-young-adult.
5https://www.humanconnectome.org/study-hcp-lifespan-pilot.
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ms, 6 × 5.0 ms), TI 1100 ms, and flip angle 7°. Two separate sets of 30 and 20 subjects 

are selected for network training and validation, respectively. The final testing set contains 

another 80 RS subjects.

All datasets were processed using the open source neuroimage analysis suite FreeSurfer6 

Fischl (2012); Fischl et al. (2002). In particular, the FreeSurfer v7.1.1 HiRes stream 

(Zaretskaya et al., 2018) was used to generate the desired parcellations following the 

“Desikan–Killiany–Tourville” (DKT) protocol atlas (Desikan et al., 2006; Klein and 

Tourville, 2012). We follow the same label mapping approach as in FastSurferCNN 

(Henschel et al., 2020). In short, identical cortical regions on the left and right hemisphere 

are joined into one class unless they are in close proximity to each other reducing the 

total number of labels from 95 (DKT without corpus callosum segmentations) to 78 during 

network training. The affiliation to the left or right hemisphere are restored in the final 

prediction by estimating the closest WM centroid (left or right hemisphere) to each label 

cluster. A list of all segmentation labels is provided in the Appendix (see Table 5). In 

accordance with the FreeSurfer HiRes stream, all MRI brain volumes are conformed to a 

uniform coordinate orientation at their respective isotropic voxel resolutions and robustly 

normalized to unsigned characters (0… 255), i.e. the trained network does not depend on 

skull stripping or bias-field removal.

3.2. Voxel size independent neural network

As mentioned above, inside a standard UNet (Ronneberger et al., 2015), fixed transitions 

between scales (i.e. resolutions) are performed via down- and up-sampling operations 

(e.g. pooling and unpooling, see Fig. 3), naturally leading to a reduction in information. 

Theoretically, any scale-transition operation is replaceable with an alternative sampling 

strategy as long as it still allows gradients to flow effectively through the network. In 

FastSurferVINN, we use this concept to enforce voxel size independence by changing the 

first level transition in the encoder and the last in the decoder to a flexible interpolation 

step (i.e. network-integrated resolution-normalization, see Fig. 3). Thus, variable transitions 

between resolutions without restrictions to pre-defined fixed voxel sizes become possible, 

both during training and inference.

3.2.1. Network-integrated resolution-normalization—Similar to spatial 

transformers (Jaderberg et al., 2015), the interpolation-based scale transition can be 

divided into two parts: (i) calculation of the sampling coordinates (grid generator) and (ii) 

interpolation operation (sampler) to retrieve the spatially transferred output map.

The sampling coordinates are calculated based on the scale factor SF ∈ ℝ+ – the quotient of 

the resolution information of the inner normalized scale Resinner (a tuneable hyperparameter 

set to 1.0 mm throughout our experiments) and the input image Resnative. For optimal 

interpolation, SF is slightly adjusted to ensure integer feature map dimensions. In the first 

transition step (Fig. 3, pre-IDB to IDB), the output feature map V ∈ ℝHinner × W inner × C is 

produced by sampling the input feature map U ∈ ℝHnative × W native × C. in the final transition 

6http://surfer.nmr.mgh.harvard.edu/.
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step (Fig. 3, CDB to post-CDB), this process is reversed effectively by using the inverse 

scale factor 1/SF. The interpolation itself is performed by applying a sampling kernel to 

the input map U to retrieve the value at a particular pixel in the output map V. Different 

interpolation strategies can be defined based on the selection of the sampling kernel. 

Theoretically, any kernel with definable (sub-)gradients is applicable. Here, we evaluate 

the bi-linear, bi-cubic, area, and integer sampling kernels (=NN interpolation). The sampling 

is identical for each channel, hence, conserving the spatial consistency.

3.2.2. Network architecture modifications—The proposed interpolation strategy 

can, in general, be included in any CNN equipped with pooling-based scale transitions. 

Here, due to its success in neuroanatomical segmentation, the principal network design is 

based on FastSurferCNN (Henschel et al., 2020) – a UNet-type network with a series of 

four competitive dense blocks (CDB) in the encoder and decoder arm separated by a CDB 

bottleneck layer. In FastSurferVINN (FastSurferVINN) one additional CDB layer is added 

(Fig. 3 to each arm, i.e. the pre-IDB and post-CDB).

CDB design: In FastSurferCNN (Henschel et al., 2020), a CDB is formed by repetitions 

of the basic composite function consisting of a 5 × 5 convolution, followed by batch-

normalization (BN) and a probabilistic rectified linear unit (pReLU) activation function. In 

this work we optimize the architecture design slightly by replacing each 5 × 5 convolution 

kernel with two 3 × 3 kernels (see Fig. 3). This keeps the effective receptive field 

size within each block identical to FastSurferCNN while reducing parameter load. We 

implement this change in FastSurferVINN and also, for better comparability, in an updated 

FastSurferCNN version denoted by: FasturferCNN*. An ablation study detailing the changes 

from FastSurferCNN to FasturferCNN* is included in the appendix (Section A.2). As in 

FastSurferCNN, feature competition is achieved by using maxout (Goodfellow et al., 2013) 

instead of concatenations (Jégou et al., 2017) in the local skip connections. In order to 

guarantee normalized inputs to the maxout activation, the feature map stacking operation is 

always performed after the BN (see position of maxout in CDB design in Fig. 3).

Pre-IDB: The additional encoder block in FastSurferVINN (see Fig. 3, pre-IDB) transfers 

image intensity information from the native image to the latent space and encodes voxel 

size-dependent information before the internal interpolation step. In contrast to the described 

CDB, the raw inputs are normalized by first passing them through a BN-Conv-BN 

combination before adhering to the original composite function scheme (Conv-BN-pReLU) 

(see Fig. 3, (pre-)IDB).

Post-CDB: Akin to the pre-IDB, an additional CDB block in the decoder is used to merge 

the non-interpolated feature information returned from the pre-IDB skip connection and the 

upsampled feature maps from the network-integrated resolution-normalization step. Both 

maps are combined via a concatenation operation and then fed to a standard CDB block (see 

Fig. 3, (post-)CDB). After the final 1 × 1 convolution a softmax operation returns the desired 

class probabilities.
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3.3. High-res network modifications

To improve segmentation accuracy of detailed structural features, we explore two 

network modifications, namely a loss-function weighting scheme and an adaptive attention 

mechanism.

Loss function—The network is trained with a weighted composite loss function of 

logistic loss and Dice loss (Roy et al., 2017). With pl,i(x) the estimated probability of pixel i 
to belong to class l and the corresponding ground truth probability y, the loss function can be 

formulated as

L = −∑
l, i

ωi yl, i log pl, i(x)

Logistic loss

− ∑
l

2∑i pl, i(x)yl, i
∑i pl, i(x) + ∑iyl, i

Soft Dice loss
(1)

with ωi = ωmedian freq. + ωgradient + ωGM + ωWM/Sulci.

Localized weights—Here, ωmedian freq. represents median frequency balancing and 

ωgradient boundary refinement through a 2D gradient vector (Roy et al., 2017). We now 

extend (ωi by two weighting terms (ωGM and ωWM/Sulci) to improve segmentation quality in 

highly convoluted areas of the cortex that are better represented in submillimeter scans. The 

WM strand and deep sulci mask (ωWM/Sulci) emphasizes thin WM strands and narrow sulci, 

and is defined by the voxels added through a binary closing operation on the gray matter 

(GM) labels (left side of Fig. 4). The outer gray matter mask (ωGM) accentuates pixels 

at the boundary of the cortex and is defined by the voxels lost during brain mask erosion 

(right side of Fig. 4). Overall, ωGM and ωWM/Sulci aim to adjust the underlying decision 

boundary to closely match the target segmentation in PVE-affected locations by assigning 

higher weights to narrow WM strands, deep sulci, and tissue boundaries with emphasis on 

the border between cortex and cerebrospinal fluid (CSF).

Adaptive attention module—Context-driven learnable attention mechanisms have been 

used to automatically select optimal scale or filter sizes for specific image regions and can 

boost segmentation accuracy of differently sized structures within an image (Qin et al., 

2018). As a reference, we therefore evaluate the addition of attention in the pre-encoder and 

post-decoder. The generation of the activation map follows the method proposed in Qin et 

al. (2018). A detailed description is given in the Appendix (Section A.1). In short, learned 

activation maps from the attention module are used to dynamically weight each feature 

response generated by the sequence of convolutions within the CDB. This online weight 

calculation introduces non-linearities outside the activation function into the CDB.

3.4. View aggregation

In order to account for the inherent 3D geometry of the brain, we adopt the same view 

aggregation scheme as in Henschel et al. (2020) for all evaluated models: one F-CNN per 

anatomical plane is trained and the resulting probability maps are aggregated through a 

weighted average. Due to missing lateralization in the sagittal view, the number of classes is 

effectively reduced from 78 to 50 and the weight of the sagittal predictions is reduced by one 
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half compared to the other two views. Inherently, and similar to ensemble learning, the view 

aggregation combines final soft predictions boosting segmentation accuracy.

3.5. Augmentations

External scaling augmentation for CNNs (exSA)—The current state-of-the-art 

method to introduce resolution invariance into neural networks is extensive scale 

augmentation (see Fig. 1B). Therefore, we contrast our proposed network-integrated 

resolution-normalization against this approach. We use random linear transforms with 

scaling parameters sampled from a uniform distribution of the predefined range 0.8 to 1.15 

to augment images during the training phase. Every minibatch hence consist of a potentially 

scaled MRI (bi-linear interpolation) and a corresponding equally re-scaled label map 

(NN sampling). To disentangle resolution-independence strategies from micro-architecture 

changes, we use the same CDB and IDB implementations as for FastSurferVINN described 

above, with the exception of the resolution-normalization.

Internal scaling augmentation for VINNs (inSA)—In order to increase the robustness 

of the latent space interpolation, we augment the scale factor SF introduced by the 

VINN with a parameter α, so SF = Resinner/Resnative + α during the network-integrated 

resolution-normalization. This effectively introduces small resolution variations within the 

grid sampling procedure. The values for α are sampled from a Gaussian distribution with 

parameters sigma=0.1 and mean=0. Overall, this modification can be interpreted as an 

internal scale augmentation randomly resizing the feature maps in the latent space (as 

opposed to externally augmenting the native images).

3.6. Evaluation metrics

We use the Dice Similarity Coefficient (DSC) and Average Surface Distance (ASD) 

to compare different network architectures and modifications against each other, and 

estimate similarity of the predictions to a number of previously unseen scans with respect 

to FreeSurfer and manual labels as a reference. Both are standard metrics to evaluate 

segmentation performance.

Here, the DSC Dice (1945); Sørensen (1948) is defined as twice the intersection of ground 

truth and prediction divided by the sum of their cardinalities and multiplied by 100. A larger 

DSC represents better overlap between the segmentations with a maximum value of 100 for 

perfect agreement. The ASD measures the average distance (in mm) between all points x ∈ 
Y, x′ ∈ P on the outer surface of the ground truth (Y) and the prediction (P). It is defined as

ASD = 1
∣ Y ∣ + ∣ P ∣ ∑x ∈ Y d(x, P ) + ∑x′ ∈ P d(x′, Y ) (2)

with distance d(x, P) = minx′) ∈P ∥x − x′∥2 representing the minimum of the Euclidean 

norm. In contrast to the DSC, a smaller ASD indicates better capture of the segmentation 

boundaries with a value of zero being the minimum (perfect match). Within each section, 

improvements in segmentation performance are confirmed by statistical testing (Wilcoxon 

signed-rank test (Wilcoxon, 1945) after Benjamini-Hochberg correction (Benjamini and 

Hochberg, 1995) for multiple testing) referred to as corrected p throughout the paper.
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3.7. Training setup

Training dataset—Due to the nature of the experiments performed in this paper, the 

dataset composition varies between individual sections. An overview of the different 

trainingsets is given in the Appendix (Table 4). All representative datasets are balanced 

with regard to gender and age. Empty slices were filtered from the volumes. All 

directly compared networks are trained under the same conditions unless stated otherwise. 

Experimental setups demanding different datasets for training are separated by vertical white 

lines between bar plots and/or indicated in the figure legend. We additionally discuss this 

in the corresponding sections. In the first ablative evaluations of FastSurferVINN (Sections 

4.1 and 4.2), 120 representative subjects are selected for training (60 1.0 mm and 60 

submillimeter subjects, see Table 4: Mix), leaving on average 155 single view planes 

per subject and a total training size of at least 23k images per network. To determine 

the generalization performance of FastSurferVINN across resolutions, the training set is 

changed such that the submillimeter scans are of the same resolution and study (see Table 

4: No 0.7 mm and No 0.8 mm). Similarly, the fixed-resolution networks are trained with 

60 or 120 0.8 mm scans (see Table 4: Only 0.8 mm). For the LowRes version 120 1.0 mm 

scans are used (see Table 4: Only 1.0 mm). In Big-FastSurferVINN, the 1.0 mm component 

is extended to 1255 scans while keeping the same number (60) of HiRes scans as in the 

original training set (see Table 4: Mix (Big)).

Training parameters—Independent models for the coronal, axial, and sagittal plane are 

implemented in PyTorch (Paszke et al., 2017) and trained for 70 epochs using one NVIDIA 

V100 GPU with 32 GB RAM. The modified adam optimizer (Loshchilov and Hutter, 2019) 

is used with a learning rate set to 0.001. A cosine annealing schedule (Loshchilov and 

Hutter, 2017) adapts the learning rate during training where the number of epochs between 

two warm restarts is initially set to 10 and subsequently increased by a factor of two. The 

momentum parameter is fixed at 0.95 to compensate for the relatively small mini batch size 

of 16 images. For maximum fairness, all networks presented within this paper have been 

trained under equal hardware and hyper-parameter settings.

4. Results

We group the presentation of results into two blocks: 1. ablative architecture improvements 

to determine the best performing multi-resolution architecture (Sections 4.1 and 4.2), and 

2. performance analysis to comprehensively characterize the advantages of our VINN on 

a wider variety of datasets, resolutions, scanners, and variations of the training corpus 

(Sections 4.3-4.5). Following best practice in data-science, we utilize completely separate 

datasets during the evaluations: the validation set Table 4: Validation (for 1.), and various 

test sets Table 4: Testing (for 2.). This avoids data-leakage and overfitting, i.e., it ensures that 

training, architectural design decisions, and final testing cannot influence each other, which 

could lead to overly optimistic results.
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4.1. Scaling augmentation versus network-integrated resolution-normalization in 
FastSurferVINN

The central contribution of this paper is the design and evaluation of a Voxel-size 

Independent Neural Network for (sub)millimeter whole brain segmentation. Here, we 

compare segmentation performance of our FastSurferVINN, which avoids interpolation of 

label maps, with several approaches that rely on traditional scaling data augmentation. Each 

subsequent improvement in segmentation performance is confirmed by statistical testing 

(corrected p < 0.05).

Firstly, the original FastSurferCNN CDBs consecutively perform two 5 × 5 convolution 

operations followed by a final 1 × 1 convolution (Section 3.2.2, FastSurferCNN in Fig. 

5). In total, an average DSC of 88.63 and a SD of 0.317 mm is reached for the 

subcortical structures while the cortical structures average around 87.09 for the DSC and 

0.283 mm for the ASD. Optimization of the CDB design (kernel size of 3 × 3, Section 

3.2.2) leads to a significant increase in the DSC and reduction of the ASD on both, 

the subcortical and cortical structures (Fig. 5, FastSurferCNN*). Particularly, the cortical 

segmentations are improved with an average DSC of 88.01 and a SD of 0.257 mm. 

Similarly, addition of external scaling augmentation (exSA) to FastSurferCNN* significantly 

improves segmentation accuracy on the cortical structures (Fig. 5, FastSurferCNN* + exSA). 

Performance on the subcortical structures is, however, slightly reduced.

Interestingly, VINN, which avoids label map interpolation al-together, shows a positive 

effect across structures compared to FastSurferCNN* with and without scaling augmentation 

(Fig. 5, VINN). Specifically, combination of VINN with our internal scaling augmentation 

(VINN + inSA, referred to as FastSurferVINN) strengthens segmentation performance 

significantly. The DSC increases to 89.05 for the subcortical and 88.93 for the cortical 

structures representing the best value across the compared architectures. Similarly, the ASD 

is significantly reduced with a distance of 0.293 mm for the subcortical and 0.226 mm 

for the cortical structures (Fig. 5, FastSurferVINN). Finally, addition of external scaling 

augmentation negatively impacts segmentation performance of VINN (Fig. 5, VINN + inSA 

+ exSA). On average, performance on the subcortical structures is reduced to the level 

of FastSurferCNN* + exSA, while the cortical structures still represent the second best 

result for both, DSC and ASD. Overall, FastSurferVINN outperforms all traditional scale 

augmentation approaches by a significant margin (corrected p < 10−7).

As our network-integrated resolution-normalization directly operates on continuous 2D 

feature maps in the latent space, various sampling kernels can be incorporated. Here, we 

evaluate the effect of four different interpolation strategies, namely NN, area, bi-cubic, and 

bi-linear. As visible in Fig. 6, with the exception of NN changing the sampling kernel 

does not significantly affect segmentation performance. The NN interpolation (Fig. 6, first 

column) overall reduces performance by 2% for DSC. The change on the ASD is more 

severe with a decrease in performance by 13% for the subcortical and 7% for the cortical 

structures. The bi-linear kernel (Fig. 6, last column) shows the best performance overall with 

a 89.05 DSC and an ASD of 0.293 mm for the subcortical structures and a 88.93 DSC 

and an ASD of 0.226 mm for the cortical structures. Given that the bi-linear interpolation 
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is computationally favourable to bi-cubic, we henceforth keep it as the sampling kernel of 

choice.

4.2. HiRes specific adjustments

The higher resolution in submillimeter scans reduces PVEs and offers a potential to 

optimize segmentation performance (see Fig. 2). Overall, the changes in tissue and border 

assignment might, however, not be accurately captured during network training as they 

represent marginal changes in the loss compared to the whole brain volume. In order to 

focus on the PVE affected regions (specifically small WM strands and deep sulci), we 

test two different modifications. First, a HiRes loss function (HiRes Loss) up-weights 

information from the areas in question. Second, attention mechanisms are introduced 

to enable automatic refocusing on important information during network training. Here, 

we equip FastSurferVINN separately with both modifications and evaluate the change in 

segmentation performance with respect to the DSC and ASD.

Training FastSurferVINN with the new HiRes loss function (see Fig. 7, + HiRes Loss, right 

bar) significantly improves segmentation performance on the cortical structures (corrected p 
< 10−5), while maintaining high accuracy on the subcortical structures (no significant change 

consistent with expectations). A final DSC of 89.3 and an ASD of 0.209 mm is achieved 

for the cortical structures. Further addition of attention, while simultaneously adjusting the 

number of feature maps to keep the total number of network parameters of FastSurferVINN 

constant, does not lead to a significant change in segmentation performance (see Fig. 7, + 

attention, middle bar). Due to the overall significant improvement on DSC and ASD, the 

HiRes Loss modification is included in all further comparisons.

4.3. Generalizability

After selection of the best architectures for both, VINN and CNN, we now perform a 

detailed evaluation in a broad selection of test scenarios (see Table 4: Testing). To highlight 

the advantages of our VINN, we compare FastSurferVINN with FastSurferCNN* + exSA. 

The latter is improved over the state-of-the-art FastSurferCNN by architectural updates. 

The difference between FastSurferCNN* + exSA and FastSurfer-VINN is exclusively the 

substitution of external scale augmentation (exSA, Section 3.5) with network-integrated 

resolution-normalization (see Section 3.2.1) and internal scale augmentation (inSA, Section 

3.5).

4.3.1. Across datasets—In this section, we evaluate the generalization capabilities of 

FastSurferVINN in comparison to scale augmentation on the test corpus to establish the 

performance metrics across multiple datasets.

FastSurferVINN consistently reaches the best DSC and ASD across all nine datasets (Fig. 

8, orange bar). All improvements compared to external scale augmentation (dark green 

bar) are again significant (corrected p < 0.01). The best performance is reached for the 

submillimeter scans from HCP and RS with a subcortical DSC of 88.78 and 90.07 and 

a cortical DSC of 89.86 and 89.68, respectively. La5c reaches the highest DSC for the 

1.0 mm scans (89.51 and 89.07 subcortical and cortical DSC). Similar to the DSC, the 
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ASD is significantly improved for FastSurferVINN compared to the scale augmentation by 

around 5.2% for the subcortical and 10.5% for the cortical structures. On the cortical and 

subcortical structures the best ASD is reached for HCP (0.31 mm, 0.22 mm), RS (0.28 

mm, 0.21 mm) and la5c (0.27 mm, 0.22 mm). The biggest improvement with regards to 

comparability between FastSurfer-VINN and scale augmentation can be seen for ABIDE-II. 

Here, the DSC differs by 1.1 and 2.1% for the subcortical and cortical DSC and around 11% 

for the ASD. This again reflects the better cross-resolution generalization performance of 

FastSurferVINN already outlined in the previous section. ADNI and OASIS1 also benefit 

strongly from FastSurferVINN, specifically for the cortical structures. Here, the DSC and 

ASD are improved by around 1.66% and 12.1%, respectively. Overall, the cortical structures 

benefit stronger from the internal resolution-normalization in FastSurferVINN.

4.3.2. Unseen resolutions—A core aspect of FastSurferVINN is the implicit 

compatibility with a variety of resolutions independent of their explicit presence in the 

training corpus. In order to investigate the generalization capacity of FastSurferVINN 

in contrast to scale augmentation approaches, we evaluate the inter- and extrapolation 

capabilities of the trained networks based on the segmentation performance for three 

resolutions purposefully excluded during network training.

To this end, we specifically drop either (i) all 30 0.8 mm, or (ii) all 30 0.7 mm scans 

from the training corpus (see Table 4: No 0.7 mm and No 0.8 mm). In order to ensure 

comparability with respect to the total number of data points and balance between HiRes 

and LowRes scans, an equal number of subjects from the other respective HiRes datasets 

are added. In addition, we evaluate performance using the original mixed training set on 25 

subjects from ABIDE-II, representing an unseen scanner type (Philips) and resolution (0.9 

mm).

As presented in Fig. 9, FastSurferVINN (orange bar) consistently outperforms traditional 

scale augmentation (dark green bar) across all resolutions (corrected p < 10−4). 

Segmentation performance on the 0.7 mm scans reflects the network’s resolution 

extrapolation capabilities (training corpus consists of 0.8 mm and 1.0 mm scans only). 

Here, FastSurferVINN reaches a DSC of 86.49 and 87.50 for the subcortical and cortical 

structures, respectively, representing a significant increase compared to the traditional scale 

augmentation approach. The improvements on the ASD are even more pronounced with 

FastSurferVINN reducing the ASD by 4.5% to 0.397 mm on the subcortical and by 19.7% 

to 0.294 mm on the cortical structures. Comparison of the interpolation capabilities reflected 

in the 0.8 mm results (training corpus consists of 0.7 mm and 1.0 mm) paint a similar 

picture. FastSurferVINN reaches the highest DSC and lowest ASD for both subcortical 

(DSC: 88.75, ASD: 0.316 mm) and cortical structures (DSC of 88.28 and ASD of 0.273 

mm). The difference to traditional scale augmentation approaches is again more evident on 

the cortical structures. Finally, metrics on the 0.9 mm Philips scans are significantly better 

with FastSurferVINN. A final DSC of 87.85 and 83.68 and an ASD of 0.311 mm and 0.313 

mm is reached on the subcortical and cortical structures, respectively.

We face the limitation that no publicly available 3T datasets exists at finer resolutions 

than 0.7 mm. In order to further explore the extrapolation capabilities of FastSurferVINN 
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in comparison to traditional scale augmentation (FastSurferCNN* + exSA), we therefore 

evaluate segmentation performance at lower resolutions vastly outside the training range 

(1.4 mm and 1.6 mm). Note, that FreeSurfer segmentations are not available at lower 

native resolutions either, as images at resolutions coarser than 1.0 mm are upsampled to 

a millimeter voxel resolution in an initial conversion step (Fischl, 2012). Therefore, we 

downsample the high-resolution FreeSurfer segmentations of HiRes test sets (HCP and RS) 

by a factor of 2 along each axis using majority voting to generate “ground truth”. The 

intensity images used for inference were resampled using cubic interpolation.

In Fig. 10 we illustrate a strong divergence between FastSurferVINN (orange) and 

FastSurferCNN* + exSA (dark green) as we test with resolutions increasingly outside the 

training range. With FastSurferVINN, accuracy stays consistently high for both, 1.4 mm and 

1.6 mm downsampled images. Here, FastSurferVINN reaches a DSC of above 84.90 and 

a ASD of 0.473 mm on the subcortical structures (left plot) and a DSC of around 77.70 

(77.88 on the 1.4 mm and 77.69 on the 1.6 mm images) and an ASD of 0.480 mm and 

0.494 mm on the cortical structures (right plot). The difference to FastSurferCNN* + exSA 

is again more evident on the cortical structures. Overall, FastSurferVINN outperforms the 

scaling augmentation by 6.74% on the subcortical and 16.80% on the cortical structures with 

respect to the DSC when using the downsampled 1.6 mm image as an input. Note, that this 

comparison is solemnly performed to visualize the performance difference between VINN 

and augmentation in the absence of high-resolution ground truth beyond the training range. 

We expect a reduction of performance at low resolutions due to stronger PVE and an 8-fold 

information reduction.

4.3.3. Comparison to manual reference—Due to the limited availability of manual 

labels, FreeSurfer segmentations have been used as the reference for comparison so far. In 

order to account for potential biases we now also evaluate DSC and ASD for the manually 

edited cortical regions on 78 subjects from the 1.0 mm Mindboggle101 dataset (Klein and 

Tourville, 2012). The subcortical segmentations available for a subset of 20 subjects within 

this cohort are used for subcortical evaluations.

On the subcortical structures (see Fig. 11, left part of left plot), FastSurferVINN (orange 

bar) and traditional scale augmentation (dark green bar) perform equally well with respect 

to both, DSC (80.26) and ASD (0.616 mm). The difference between the two methods is 

more pronounced on the cortical structures (Fig. 11, right side of left plot). FastSurferVINN 

reaches a final DSC of 81.89 and an ASD of 0.471 mm), representing a significant 

improvement compared to the external scale augmentation approach (corrected p < 0.005). 

These results again indicate that the cortical structures specifically benefit from the internal 

interpolation approach of FastSurferVINN.

In order to evaluate the benefit of FastSurferVINN for submillimeter scans, we compare 

segmentation accuracy on three structures (WM, GM and hippocampus) on an in-house 

set, as no manual HiRes full brain segmentations are publicly available. Note, while we 

previously reported averages across the 45 cortical and 33 subcortical structures listed in 

Table 5 for clarity, we now calculate performance measures specifically for these three 

individual structures. To generate manual annotations, a trained expert corrected FreeSurfer 
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generated segmentations on six cases from the RS. The results are depicted in the left part 

of Fig. 11. FastSurferVINN again outperforms traditional scale augmentation with a final 

DSC of 97.54, 96.04, and 93.04 and ASD of 0.075 mm, 0.062 mm, 0.181 mm for WM, 

GM, and hippocampus, respectively. Consistent with previous results, the GM segmentations 

show the strongest improvement. Due to the small sample size, no statistical analysis could 

be performed.

4.4. Fixed-resolution networks versus FastSurferVINN

In order to analyse the advantage of the multi-resolution training approach over a fixed-

resolution network, we compare FastSurferVINN with networks trained on (i) 60 0.8 mm 

subjects, (ii) 120 0.8 mm subjects, and (iii) 120 1.0 mm subjects (see Table 4: Only 0.8 
mm and Only 1.0 mm). Inherently, this analysis highlights how the interplay of HiRes 

information from submillimeter 3T scans and dataset-variations from LowRes MRIs can 

mutually benefit segmentation performance on the different resolutions. Overall, the analysis 

of Fig. 12 highlights three important properties.

First, increasing the number of data samples has a strong effect on segmentation 

performance. The fixed-resolution network trained with 60 0.8 mm scans (left plot; light 

green bar) reaches an average DSC of 89.28 and ASD of 0.257 mm for RS data (same 

cohort as in the training set). Doubling the number of cases to 120, significantly improves 

both measures (corrected p < 10−9) with a final DSC of 89.85 and ASD of 0.245 mm 

(FastSurferVINN, orange bar). Interestingly, FastSurferVINN trained with 60 HiRes (30 0.7 

mm and 30 0.8 mm) and 60 LowRes scans (1.0 mm) reaches the same accuracy, as if these 

scans were actually all HiRes scans from the RS cohort (120 0.8 mm, dark green bar). 

Benefits from the sample size increase are, therefore, independent of the data resolution. 

Advantageously, the additional 90 HiRes cases at 0.8 mm may easily be integrated into 

the FastSurferVINN training dataset, hence, increasing the training corpus with another 

expected performance gain.

Second, fixed-resolution networks perform well on the cohort they are trained on, but lack 

generalization capability to other datasets (left plot, HCPL). When comparing networks 

trained with equally sized datasets (120 HiRes RS fixed-resolution net (dark green bar) 

and FastSurferVINN (orange bar)) on the 0.8 mm HCPL cohort, FastSurferVINN clearly 

outperforms the fixed-resolution network with an increase in DSC to 88.99 and a decrease 

of the ASD to 0.326 mm, representing a significant improvement (corrected p < 0.005). The 

gap in segmentation accuracy between the RS and HCP cohort with respect to DSC is halved 

for FastSurferVINN compared to the fixed-resolution approach and a similar reduction is 

visible for the difference in ASD. Third, multi-resolution training benefits 1.0 mm datasets 

as well. In the right part of Fig. 12, we compare FastSurferVINN (orange bar) and two 

fixed-resolution 1.0 mm networks – the original FastSurferCNN (CNN, gray bar) as well 

as the optimized FastSurferCNN* (CNN*, dark green bar) – with DSC (top) and ASD 

(bottom) metrics. FastSurferCNN is included to highlight the cumulative performance gain 

of FastSurferVINN (architectural optimization already included in CNN* and voxel-size 

independence via resolution normalization). The training sets of all three networks contain 

the exact same subjects, with the only difference being the MRIs resolution: We train 
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the fixed-resolution networks exclusively with 1.0 mm images (native or downsampled 

from HiRes), while FastSurferVINN uses all images at their native resolution (1.0 mm, 

0.8 mm, or 0.7 mm). Note, since the FreeSurfer-based label maps are obtainable at either 

resolution, we circumvent resampling with NN. Interestingly, the HiRes information from 

submillimeter scans boosts performance for the 1.0 mm scans. FastSurferVINN reaches 

a DSC of 87.62 and an ASD of 0.296 mm representing a significant improvement in 

DSC and ASD compared to the fixed-resolution networks (corrected p < 0.001). Compared 

to the original FastSurferCNN, on average an improvement of 1.46% DSC and 10.06% 

ASD (0.93 to 2.37% and 8.3 to 12.7%, respectively, across datasets) can be achieved with 

FastSurferVINN.

Overall, the inherent voxel size independence of FastSurferVINN and resulting multi-

resolution training option is highly beneficial to both, submillimeter and 1.0 mm scans.

4.5. Big-FastSurferVINN

Based on the observed performance gain with a larger training corpus, we evaluate whether 

ASD and DSC can be further improved across resolutions by expanding the training set from 

120 to 1315 cases when exclusively adding 1.0 mm scans.

As illustrated in Fig. 13, expansion of the training corpus (n = 1315. yellow bar) leads 

to a noticeable performance gain. Specifically the 1.0 mm dataset benefits from the 

sample increase with a final DSC of 90.26 and an ASD of 0.231 mm. On average, a 

2.95% increase in the DSC and 16.26% decrease in the ASD can be observed for the 

1.0 mm scans compared to the smaller training set (n = 120, orange bar), representing 

a significant performance gain (corrected p < 10−20). Additionally, ASD and DSC are 

significantly improved for the 0.7 mm, 0.8 mm and most strongly for the 0.9 mm scans (p 
< 10−5, Wilcoxon signed-rank test). Here, DSC and ASD improve by 3.77% and 24.08%, 

respectively. Note, that the 0.9 mm dataset is exclusively present in the testing corpus and 

thus completely new to the networks. A significant resolution bias in the training set, hence, 

does not decrease, but rather elevate performance across 1.0 mm and submillimeter scans.

5. Discussion

In this paper, we present the first multi-resolution deep learning tool for accurate and 

efficient (sub)millimeter 3T MRI whole brain segmentation. FastSurferVINN addresses the 

two main difficulties associated with HiRes MRIs, namely limited availability and diversity 

specifically for certain groups (e.g. neurodegeneration or scanner types) as well as resolution 

non-uniformity. Applicability of deep learning approaches is generally restricted to domains 

were enough training data exists (traditionally 1.0 mm scans). FastSurferVINNs’ network-

integrated resolution-normalization provides independence to the input voxel grid during 

both, training and inference, and favourably extends processing spans to resolutions not 

explicitly included in the training corpus. Further, both, LowRes and HiRes scans, can be 

included during training and, in turn, benefit from each others favourable properties, i.e. 

coverage and size versus better representation of detailed structures.
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The current state-of-the-art to approximate voxel size independence in networks is data 

augmentation. Here, transformations with randomly sampled scale parameters are applied 

to the images (both intensity and label map) in the native space. In FastSurferVINN, we 

shift this step into the latent space by replacing the first scale transition from a pooling/

unpooling operation to interpolation-based down/upsampling. This network-integrated 

resolution-normalization interpolates the continuous feature maps on both the encoder and 

decoder arms and avoids alteration of the underlying ground truth labels entirely.

When optimizing the network architecture, we first show that the best results are achieved 

with a 3 × 3 kernel and bilinear interpolation. Also, our HiRes loss which focuses 

segmentation performance on PVE-affected structures (deep sulci, thin white matter strands 

and GM-CSF boundary) improves DSC and ASD specifically for the cortical structures. 

Interestingly, the improvement is consistent across resolutions, indicating that the structural 

information learned from the HiRes scans is effectively transferred to the 1.0 mm scans. 

Finally, we evaluate the introduction of attention mechanisms into the architecture. Overall, 

performance does not improve if the total number of parameters of the network with and 

without attention is controlled, indicating that network capacity (i.e. number of learnable 

parameters) rather than adaptive attention is the important factor here.

We demonstrate FastSurferVINN’s superior performance compared to state-of-the-art data 

augmentation for the fast and detailed segmentation of whole brain MRI. Our network-

integrated resolution-normalization in combination with internal scale augmentation 

outperforms traditional scale augmentation in terms of accuracy by a significant margin 

both with respect to FreeSurfer and a manual standard. Across nine different datasets and 

four resolutions, including both defaced (HCP) and full-head images, our network achieves 

the highest DSC compared to FreeSurfer as a reference (88.38 on average), as well as 

the lowest ASD (0.283 mm on average). In addition, FastSurferVINN achieves the best 

results on the manually labeled 1.0 mm Mindboggle101 dataset with a DSC of 81.89 and 

an AVG HD of 0.471 mm on the cortical structures. Correspondingly, WM, GM, and 

hippocampus are better segmented with FastSurferVINN on six manually corrected scans 

from the submillimeter RS dataset.

One possible explanation for the consistently improved segmentation metrics with our VINN 

compared to traditional scale augmentation is the circumvention of label interpolation. 

For discrete labels, NN or majority voting have to be applied. These kernels are prone 

to remove important structural details and create jagged segmentation maps (Allebach, 

2005; Parker et al., 1983; Schaum, 1993; Thevenaz, 2009). This is underlined by the 

observation that segmentation performance deteriorates for FastSurferVINN when external 

scale augmentation is added. Further, analysis of the interpolation methods during the 

network-integrated resolution-normalization also highlights the negative impact of the NN 

interpolation kernels. While all other methods (area, bi-linear, and bi-cubic) performed 

equally well, performance drops for NN kernels on average by approximately 2% DSC 

and 10% ASD. Overall, NN seems to have a systematic negative effect on segmentation 

performance and should, hence, be avoided wherever possible.
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In addition, our resolution-normalization interpolates a feature map of vectors instead 

of a single scalar image slice. As each vector describes a neighborhood in the input 

image, the available contextual information is extended before the interpolation step and 

may subsequently support a smoother transition between resolutions. Further, our network-

integrated resolution-normalization reduces the range of perceived anatomical size variation 

in the inner blocks, thereby liberating resources to focus on structural details at a common 

metric scale (structures have similar sizes after normalization). Finally, a skip-connection 

transfers the non-interpolated feature maps from the pre-IDB into the post-CDB, potentially 

improving ambiguous label borders with details available at the native resolution. The 

differentiation between native voxel-scale and normalized inner scale may specifically be 

helpful in settings with large inter-subject size similarities (e.g. head size is relatively stable). 

As such, our network-integrated resolution-normalization approach is not limited to the 

neuroimaging context, but can be expected to benefit segmentation performance in other 

domains.

FastSurferVINN further demonstrates excellent generalization performance with respect to 

inter- and extrapolation, achieving the best results for a variety of unseen submillimeter 

resolutions excluded from the training corpus. Especially more detailed cortical structures 

targeted with HiRes acquisition show a significant DSC increase on the 0.7 mm, 0.8 mm and 

0.9 mm scans, respectively. Similarly, ASD improved by 19.7%, 10% and 11% highlighting 

specifically the improved extrapolation capabilities of FastSurferVINN on the left-out 0.7 

mm dataset component compared to traditional scale augmentation. Given the lack of a 

de-facto standard in HiRes datasets, consistent performance towards unseen resolutions is an 

important property. Specifically, new releases such as the upcoming HCP disease studies7 

may benefit from a flexible and validated method to process scans with good accuracy 

at their native submillimeter resolution. Conveniently, FastSurferVINN avoids lossy image 

downsampling, as well as time intensive re-training, and simplifies re-validation. One future 

aspect to investigate, is the extend to which this generalization is effective. Unfortunately, 

with increasing resolutions, evaluation becomes virtually impossible due to (i) unavailability 

of manual segmentations and (ii) limited support by existing neuroimaging pipelines (i.e. 

validation is difficult here as well due to point (i)). Our substitute evaluation on the 

downsampled, lower resolution images underlines that FastSurferVINN robustly generalizes 

beyond the tested resolution range (see Section 4.3.2, Fig. 10). Specifically, differences to 

traditional data augmentation are magnified with a more than 16.8% increase in DSC for the 

1.6 mm scans. The improved generalizability of FastSurferVINN to under- or unrepresented 

resolutions especially indicates superior performance in real applications. Furthermore, 

FastSurferVINN was trained and evaluated on 3T scans only. Adoption to ultra high-field 

MRI capable of producing resolutions below 0.5 mm is an interesting future avenue, as 

direct transferability is limited due to the strong signal, contrast, and noise differences (van 

der Kolk et al., 2013; van der Zwaag et al., 2016).

Overall, FastSurferVINN allows processing of both LowRes and HiRes data without 

reducing precision on either set. On the contrary, we demonstrated that FastSurferVINN 

7https://humanconnectome.org/disease-studies.

Henschel et al. Page 21

Neuroimage. Author manuscript; available in PMC 2022 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://humanconnectome.org/disease-studies


even outperforms a fixed-resolution 1.0 mm network by a significant margin. As the only 

difference in the training corpus is the increased image resolution of 60 subjects, the gain 

in accuracy seems to be predominantly motivated by the structural details provided by the 

submillimeter scans.

Further, the intensity and demographical variety added by the 1.0 mm scans promoted 

generalization performance to the HCPL component when FastSurferVINN was compared 

to a fixed-resolution RS HiRes network. This is of special interest in longitudinal settings, 

where training on images from only the first time point may introduce a bias towards 

healthier or younger brains, which can be mitigated by introducing appropriate LowRes 

out-of-study cases. Similarly, potential future variations of acquisition parameters within 

studies may negatively affect performance of fixed-resolution networks and, hence, would 

require their retraining.

Comparison to fixed-resolution networks revealed another promising application of 

FastSurferVINN. As shown in Section 4.4, FastSurferVINN’s segmentation performance 

improves across resolutions even if only additional 1.0 mm scans are included. Surprisingly, 

performance is dominated by the training corpus size and not significantly influenced by 

its heterogeneous resolution. On RS, the performance was comparable for FastSurferVINN 

when training with a mixed resolution corpus (120 total, with only 30 0.8 mm RS cases) 

as opposed to a fixed-resolution network trained exclusively on 120 0.8 mm RS scans 

(see Section 4.4). This can be exploited in settings where training cases are scarce at a 

specific resolution and new acquisitions difficult (e.g. manual segmentations or custom 

sub-resolution acquisition protocols). FastSurfer-VINN’s resolution flexibility is optimally 

suited to integrate a breadth of already existing resources, reducing the amount of newly 

acquired data necessary to achieve good performance.

Finally, the results of Big-FastSurferVINN indicate that an imbalance between 1.0 mm 

and submillimeter data distribution does not introduce a resolution bias. On the contrary, 

increasing the 1.0 mm component in Big-FastSurferVINN by a factor 20 improved 

segmentation performance across all resolutions (0.7 to 1.0 mm). Specifically, the 0.9 mm 

dataset (ABIDE-II) benefits from the training set extension with an 3.67% increase in DSC 

and 22.11% decrease in ASD. Unlike HCP and RS, the 0.9 mm ABIDE-II scans were 

acquired on a Philips scanner, which is present in a larger proportion in the extended 

training set (30% Philip scanners compared to 1.6%). However, no submillimeter Philips 

scan was included at any point during training. The improved performance on ABIDE-II, 

therefore, highlights the potential for FastSurferVINN to actively reduce scanner-biases 

through inclusion of 1.0 mm MRIs. Exploring an expected alleviation of age- or disease-

biases in submillimeter datasets with FastSurferVINN presents an interesting direction for 

future work.

Overall, we introduce a fast, voxel size independent neural network that scales well to large 

datasets and enables seamless integration of a variety of resolutions during both, training 

and inference. Thereby, FastSurferVINN offers the potential to improve generalization 

performance to future HiRes datasets without retraining, reduce potentially existing dataset 

biases, and curtail necessary labour and time intensive manual labeling efforts.
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FastSurferVINN will be made available as part of the open source FastSurfer (Henschel et 

al., 2020) package.8
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Appendix A

A1. Attention

A context-driven learnable attention mechanism following the method proposed in Qin et 

al. (2018) is evaluated as a reference. This modular mechanism can be inserted into any 

CDB and offers variable placement across the network architecture. Here, we investigate 

the addition of attention in the pre-IDB and post-CDB (see Section 3.2.2) as they are 

predominantly dealing with feature maps at the native image resolution. In short, a sequence 

of two convolutions (H1
a: 3 × 3 kernel, half the number of filters as the input; H2

a: 1 × 

1 kernel, one more filter than convolutions in the dense blocks) is followed by a final 

8https://github.com/Deep-MI/FastSurfer.
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elementwise softmax function normalizing the activations, denoted as λ0, λ1, λ2 and λ3, 

to a sum of 1. The activation map λ0 is used for weighting the input features representing 

an effective receptive field of 1. Each voxel is, therefore, assigned a different attention 

value driven by the image context. In contrast to Qin et al. (2018), the feature responses 

at different scales (c1, c2 and Xa) are generated by a sequence of convolutions within the 

CDB (Ha
1, Ha

2 and Ha
3). Each convolution increases the receptive field size by (k1 − 1 × k2 

− 1) with (k1 × k2) representing the kernel size. The calculated attention maps are then used 

to weight the local skip connections which combine the outputs of each convolution within 

these blocks. This is mathematically formulated in Eqs. (A.1a)-(A.1c).

Xa = λ3Ha
3(c2) (A.1a)

c2 = max(λ2Ha
2(c1), c1) (A.1b)

c1 = max(λ1Ha
1(Xa − 1), λ0Xa − 1)

Attention CDB
(A.1c)

A2. Ablative optimization of FastSurferCNN

Ablative evaluation of the CNN base architecture optimizations are summarized in Tables 

1 and 2. Training and validation are based on the multi-resolution datasets listed in Table 

4 (Mix). The original FastSurferCNN CDBs consecutively perform two 5 × 5 convolution 

operations followed by a final 1 × 1 convolution (Section 3.2.2, first row in Tables 1 and 

2). In total, an average DSC of 88.63 and 87.09 and a ASD of 0.317 mm and 0.283 mm 

is reached for the subcortical and cortical structures, respectively. Changing the kernel size 

to 3 × 3 while keeping the effective receptive field size of 9 × 9 per CDB constant (Tables 

1 and 2, 3 × 3, 64 F) leads to a significant improvement in DSC (p < 0. 01, Wilcoxon-

signed rank test). Increasing the number of filters per layer from 64 to 71 preserves the 

original number of trainable parameters (approximately 1.85 × 106). This change leads to a 

slight improvement on the subcortical and cortical structures. For comparability to our final 

VINN, we also add the pre-IDB and post-CDB blocks (Tables 1 and 2, FastSurferCNN*). 

This addition merely assures comparability between the augmentation and interpolation 

approach. As visible in Tables 1 and 2, this change improves segmentation accuracy further 

with a final DSC of 88.85 and 88.01 and an ASD of 0.307 mm and 0.257 mm. The 

optimized FastSurferCNN* architecture is used as the baseline for all comparisons (i.e. 

augmentation and interpolation).
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Table 1

FastSurferCNN optimization. Dice Similarity Coefficent evaluation.

DSC

Datasets Subcortical Cortical

FastSurferCNN 88.63 (±1.87) 87.09 (±2.4)

+3 × 3, 64F 88.75 (±1.78) 87.68 (±2.35)

+3 × 3, 71F 88.79 (±1.79) 87.78 (±2.41)

FastSurferCNN* 88.85 (±2) 88.01 (±2.4)

Table 2

FastSurferCNN optimization. Average surface distance evaluation.

ASD

Datasets Subcortical Cortical

FastSurferCNN 0.317 (±0.081) 0.283 (±0.085)

+3 × 3, 64F 0.312 (±0.077) 0.267 (±0.08)

+3 × 3, 71F 0.311 (±0.08) 0.264 (±0.084)

FastSurferCNN* 0.307 (±0.077) 0.257 (±0.082)

A3. 1.0 mm Datasets

ABIDE I

The Autism Brain Imaging Data Exchange I Di Martino et al. (2013) is a cross-sectional 

study involving 17 international sites and focuses on autism spectrum disorders. It 

contains data for 1112 individuals between 7 and 64 years of age. Scanner and sequence 

parameters vary depending on the site and can be accessed on the ABIDE website (https://

fcon_1000.projects.nitrc.org/indi/abide/abide_I.html). All MRI data were acquired using 3 

Tesla scanners (either Philips, Siemens or GE). 20 cases from the ABIDE-I were used for 

testing, 68 for training Big-FastSurferVINN.

ADNI

The Alzheimer’s Disease Neuroimaging Initiative (Mueller et al., 2005) was launched in 

2003 as a public-private partnership, led by principal investigator Michael W. Weiner, 

MD. The ADNI database has > 2000 participants and is available online at http://

adni.loni.usc.edu. The primary goal of ADNI has been to test whether serial MRI, positron 

emission tomography, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment and 

early Alzheimer’s disease (see www.adni-info.org for up-to-date information). Data were 

acquired at a resolution of 1.0x1.0x1.2 mm with 1.5T and 3T-MRIs scanners from the three 

largest MRI vendors (GE, Philips and Siemens) using an MP-RAGE sequence. Scanner 

parameters are optimized for the different vendors (see Jack et al. (2008) for details). 

15 cases from ADNI where used for training, 8 for validation and 215 for training Big-
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FastSurferVINN. 40 different cases were used for assessing accuracy and generalizability in 

the final testset.

IXI

This data collection provides 600 MRIs from normal, healthy subjects. The data has 

been collected at three different sites in London, UK on one GE (1.5T) and two Philips 

(1.5T and 3T) scanners and is available online (https://brain-development.org/ixi-dataset/) 

under Creative Commons License BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-

sa/3.0/legalcode). Detailed sequence parameters are available at the given URL. 43 scans 

from IXI were used for testing and 400 for training Big-FastSurferVINN.

LA5c

The cross-sectional UCLA Consortium for Neuropsychiatric Phenomics LA5c Study 

(Poldrack et al., 2016) includes 142 individuals diagnosed with a neuropsychiatric or 

neurodevelopmental disorder (schizophrenia, bipolar disorder, ADHD) and 130 normal 

controls (ages 21–50). All participants were scanned on a 3T Siemens Trio at a single-center. 

T1-weighted MP-RAGE images were acquired with field of view of 250, 256x256 matrix, 

and 176 1.0 mm sagittal partitions. An TI of 1.1 s, TE of 3.5-3.3 ms, TR of 2.53 s and flip 

angle of 7° was used for all scans. This data was obtained from the OpenfMRI database 

(https://openfmri.org/dataset/ds000030/). Its accession number is ds000030. 16 cases from 

LA5c were used for training, 9 for validation, 203 for training Big-FastSurferVINN, and 15 

for the final testset.

Table 3

Summary of datasets used for training, validation and testing. Table lists the scanner 

manufacturer, field strength, (disease) groups, age range and isotropic resolution (Res) used 

in the paper.

Dataset Scanner 1.5T/3T Groups Age Res

HCP Siemens 3T Normal 22–35 0.7 mm

HCPL Siemens 3T Normal 25–75 0.8 mm

RS Siemens 3T Normal 30–95 0.8 mm

ABIDE-II ETHZ1 Philips 3T ASD/Normal 20–31 0.9 mm

ABIDE-I Philips/GE/Siemens 3T ASD/Normal 18–64 1.0 mm

ADNI Philips/GE/Siemens 1.5T/3T AD/MCI/Normal 55–93 1.0 mm

IXI Philips/GE 1.5T/3T Normal 19–87 1.0 mm

LA5C Siemens 3T Neuropsych/Normal 21–50 1.0 mm

MBB Siemens 3T Normal 20–77 1.0 mm

MIRIAD GE 1.5T AD/Normal 55–86 1.0 mm

OASIS1 Siemens 1.5T/3T Normal 18–90 1.0 mm

OASIS2 Siemens 1.5T/3T AD/Normal 60–96 1.0 mm
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Table 4

Composition of training, validation and testing set used throughout the paper. The asterisk 

(*) indicates submillimeter datasets are resampled to 1.0 mm.

Usage Datasets (subjects) n

Training

Mix
HCP (30), RS (30), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 
(14), OASIS2 (8) 120

No 0.8 mm
HCP (60), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 (14), 
OASIS2 (8) 120

No 0.7 mm
RS (60), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 (14), OASIS2 
(8) 120

Only 0.8 mm RS (small=60, big= 120) 60/120

Only 1.0 mm
HCP* (30), RS* (30), ADNI (15), LA5C (16), MIRIAD (7), OASIS1 
(14), OASIS2 (8) 120

Mix (Big)
HCP (30), RS (30), ABIDE-I (68), ADNI (215), IXI (400), LA5C 
(203), MBB (195), MIRIAD (30), OASIS1 (79), OASIS2 (65) 1315

Validation

Mix (Big), No 0.8 
mm, No 0.7 mm

HCP (20), RS (20), ADNI (8), LA5C (9), MIRIAD (7), OASIS1 (11), 
OASIS2 (5) 80

Only 0.8 mm RS (20) 20

Only 1.0 mm
HCP* (20), RS* (20), ADNI (8), LA5C (9), MIRIAD (7), OASIS1 
(11), OASIS2 (5) 80

Testing

Mix
HCP (80), RS (80), ABIDE-II (25), ABIDE-I (20), ADNI (40), IXI 
(43), LA5C (15), OASIS1 (30), OASIS2 (17) 350

No 0.7 mm, No 0.8 
mm HCP (80), RS (80), ABIDE-II (25) 185

Manual Labels RS (6), Mindboggle (78) 84

Only 0.8 mm, Only 
1.0 mm

RS (102), HCPL (10), ABIDE-I (20), ADNI (40), IXI (43) LA5C 
(15), OASIS1 (36), OASIS2 (17) 259

Mix (Big)
HCP (80), RS (80), ABIDE-II (25), ABIDE-I (20), ADNI (40), IXI 
(43), LA5C (15), OASIS1 (35), OASIS2 (17) 355

Mindboggle-101

The largest manually corrected set of free, publicly accessible (https://osf.io/nhtur/) 

labeled brain images based on a consistent human cortical labeling protocol (DKTatlas) 

Klein and Tourville (2012). Mindboggle-101 consists of 101 labeled brain surfaces and 

volumes derived from T1-weighted brain MRIs of healthy individuals. Except for five 

subjects (MMRR-3T7T-2, Twins-2, and Afterthought-1), all MRIs are from publicly 

available collections (i.e. Test-Retest OASIS1 (Marcus et al., 2007), the Multi-Modal 

Reproducibility Resource (Landman et al., 2011), Nathan Kline Institute Test-Retest and 

Nathan Kline Institute/Rockland Sample, Human Language Network subjects (Morgan 

et al., 2009), and Colin Holmes 27 template (Holmes et al., 1998), see (Klein and 

Tourville, 2012) for details). Manually labeled subcortical segmentations are available 

for the OASIS1 Test-Retest portion (20 subjects) within Mindboggle-101 (released under 

Creative Commons License BY-NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/

4.0) by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/)). All 78 volumes with 

isotropic voxel sizes are used to evaluate network performance with respect to a manual 

reference.

Henschel et al. Page 27

Neuroimage. Author manuscript; available in PMC 2022 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/nhtur/
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
http://Neuromorphometrics.com/


MIRIAD

The Minimal Interval Resonance Imaging in Alzheimer’s Disease (Malone et al., 2013) 

is a publicly available longitudinal study with focus on neurodegeneration (see http://

miriad.drc.ion.ucl.ac.uk/). MRIs of 23 elderly controls and 46 Alzheimer’s diseased patients 

(ages 55+) were acquired at a single center with a 1.5T Signa MRI scanner (GE Medical 

systems), using an inversion recovery prepared fast spoiled gradient recalled sequence, field 

of view of 24 cm, 256 × 256 matrix, 124 1.5 mm coronal partitions (voxel size 0.9 ×0.9 × 1. 

5), TR 15 ms, TE 5.4 ms, flip angle 15°, and TI 650 ms. 7 cases from MIRIAD were used 

for training and validation, respectively, and 23 for training Big-FastSurferVINN.

Mind-brain-body

The MPI Leipzig Mind-Brain-Body cohort (A mind-brain, 2019; Mendes et al., 2019) 

consists of 321 healthy participants between 20 and 77 years of age. MRIs were acquired 

on a Siemens Verio 3T with a weighted T1 Magnetization-Prepared 2 Rapid Acquisition 

Gradient Echoes (MP2RAGE) protocol and sagittal acquisition orientation, one 3D volume 

with 176 slices, TR of 5000 ms, TE of 2.92 ms, TI1 of 700 ms, TI2 of 2500 ms, flip angle 

1 or 4 degrees, flip angle 2 of 5 degrees, echo spacing of 6.9 ms, 1.0 mm isotropic voxel 

size and field of view of 256 mm. This data was obtained from the OpenfMRI database. Its 

accession number is ds000221. 195 MRIs were used for training Big-FastSurferVINN.

Oasis-1

Marcus et al.(2007) and Oasis-2 Marcus et al.(2010) The Open Access Series of 

Imaging Studies 1 and 2, are publicly available (https://www.oasis-brains.org/) cross-

sectional (Oasis-1) and longitudinal (Oasis-1) studies covering non-demented and demented 

individuals with very mild to moderate Alzheimer’s disease. All subjects were scanned at 

a single-center using either a 1.5T Vision or a 3T TIM Trio Siemens Scanner in sagittal 

orientation with a voxel resolution of 1.0x1.0x1.25 mm. For acquisition, a MP-RAGE 

sequence with a TR of 9.7 ms, TE of 4.0 ms, flip angle of 10° and TI of 20 ms was used. 

Oasis-1 includes 416 subject between ages 18 to 96, while the longitudinal Oasis-2 focuses 

on older adults (150 subjects at age 60+). 14 cases from Oasis-1 and 8 from Oasis-2 were 

used for training, 11 and 5 for validation, 79 and 65 for training Big-FastSurferVINN and 35 

and 17 for final testing.

Participants of the individual studies gave informed consent in accordance with the 

Institutional Review Board at each of the participating sites. Complete ethic statements 

are available at the respective study webpages.

Table 5

FastSurfer (FastS) internal segmentation IDs and mapping to FreeSurfer (FreeS).

Subcortical structures FastS FreeS Cortical structures FastS FreeS

Cerebral white matter (lh) 1 2 caudalanteriorcingulate (lh) 34 1002

Lateral Ventricle (lh) 2 4 caudalmiddlefrontal (lh, rh) 35 1003, 2003

Inferior Lateral Ventricle (lh) 3 5 cuneus (lh) 36 1005
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Subcortical structures FastS FreeS Cortical structures FastS FreeS

Cerebellar White Matter (lh) 4 7 entorhinal (lh, rh) 37 1006, 2006

Cerebellar Cortex (lh) 5 8 fusiform (lh, rh) 38 1007, 2007

Thalamus (lh) 6 10 inferiorparietal (lh, rh) 39 1008, 2008

Caudate (lh) 7 11 inferiortemporal (lh, rh) 40 1009, 2009

Putamen (lh) 8 12 isthmuscingulate (lh) 41 1010

Pallidum (lh) 9 13 lateraloccipital (lh, rh) 42 1011, 2011

3rd-Ventricle 10 14 lateralorbitofrontal (lh) 43 1012

4th-Ventricle 11 15 lingual (lh) 44 1013

Brain Stem 12 16 medialorbitofrontal (lh) 45 1014

Hippocampus (lh) 13 17 middletemporal (lh, rh) 46 1015, 2015

Amygdala (lh) 14 18 parahippocampal (lh) 47 1016

CSF 15 24 paracentral (lh) 48 1017

Accumbens (lh) 16 26 parsopercularis (lh, rh) 49 1018, 2018

Ventral DC (lh) 17 28 parsorbitalis (lh, rh) 50 1019, 2019

Choroid Plexus (lh) 18 31 parstriangularis (lh, rh) 51 1020, 2020

Cerebral white matter (rh) 19 41 pericalcarine (lh) 52 1021

Lateral Ventricle (rh) 20 43 postcentral (lh) 53 1022

Inferior Lateral Ventricle (rh) 21 44 posteriorcingulate (lh) 54 1023

Cerebellar White Matter (rh) 22 46 precentral (lh) 55 1024

Cerebellar Cortex (rh) 23 47 precuneus (lh) 56 1025

Thalamus (rh) 24 49 rostralanteriorcingulate (lh, rh) 57 1026, 2026

Caudate (rh) 25 50 rostralmiddlefrontal (lh, rh) 58 1027, 2027

Putamen (rh) 26 51 superiorfrontal (lh) 59 1028

Pallidum (rh) 27 52 superiorparietal (lh, rh) 60 1029, 2029

Hippocampus (rh) 28 53 superiortemporal (lh, rh) 61 1030, 2030

Amygdala (rh) 29 54 supramarginal (lh, rh) 62 1031, 2031

Accumbens (rh) 30 58 transversetemporal (lh, rh) 63 1034, 2034

Ventral DC (rh) 31 60 insula (lh, rh) 64 1035, 2035

Choroid Plexus (rh) 32 63 caudalanteriorcingulate (rh) 65 2002

WM-hypointensities 33 77 cuneus (rh) 66 2005

isthmuscingulate (rh) 67 2010

lateralorbitofrontal (rh) 68 2012

lingual (rh) 69 2013

medialorbitofrontal (rh) 70 2014

parahippocampal (rh) 71 2016

paracentral (rh) 72 2017

pericalcarine (rh) 73 2021

postcentral (rh) 74 2022

posteriorcingulate (rh) 75 2023

precentral (rh) 76 2024

precuneus (rh) 77 2025

superiorfrontal (rh) 78 2028
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A4. Tabulated results

In Table 6, 7, 8, 9, 10, 11, 12, 13,14,15, 16. we provide numeric values for DSC and 

ASD metrics for Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13. A note on reproducibility: Authors 

wishing to compare their methods to FastSurferVINN and FastSurferCNN are strongly 

encouraged to download our code from our repository (github.com/DeepMI/FastSurfer). For 

reproducibility and fair comparison, we provide a reproducibility guide with training and 

evaluation instructions for FastSurferVINN and FastSurferCNN on github. Particularly, we 

recommend re-running evaluations to avoid inconsistencies in non-identical training and 

evaluation datasets (subjects) as well as reference segmentation.

Table 6

Compiled results of Fig. 5 - Ablative optimization of FastSurferCNN and comparison 

to FastSurferVINN. Microarchitectural changes from FastSurferCNN yield the optimized 

FastSurferCNN*. Combination of external scale augmentation (+exSA), network-integrated 

resolution-normalization (VINN) and internal scale augmentation (VINN + inSA = 

FastSurferVINN) with FastSurferCNN* are shown. Dice Similarity Coefficient (DSC) and 

average surface distance (ASD) are reported for the subcortical and cortical structures.

DSC ASD

Networks Subcortical Cortical Subcortical Cortical

FastSurferCNN 88.63 (± 1.87) 87.09 (± 2.4) 0.317 (± 0.081) 0.283 (± 0.085)

FastSurferCNN* 88.85 (± 2) 88.01 (± 2.4) 0.307 (± 0.077) 0.257 (± 0.082)

FastSurferCNN* + exSA 88.79 (± 1.33) 88.33 (± 2.23) 0.311 (± 0.066) 0.242 (± 0.077)

VINN 88.86 (± 1.82) 88.42 (± 2.28) 0.308 (± 0.081) 0.243 (± 0.077)

FastSurferVINN 89.05 (±1.7) 88.93 (±2.01) 0.293 (±0.076) 0.226 (±0.066)

FastSurferVINN + exSA 88.83 (± 1.31) 88.6 (± 2.13) 0.31 (± 0.066) 0.23 (± 0.069)

Table 7

Compiled results of Fig. 6 - Influence of sampling kernels in the network-integrated 

resolution-normalization of FastSurferVINN. Comparison of nearest-neighbour (NN), area, 

bi-cubic and bi-linear sampling kernels. Dice Similarity Coefficient (DSC) and average 

surface distance (ASD) are reported for the subcortical and cortical structures.

DSC ASD

Networks Subcortical Cortical Subcortical Cortical

NN 87.17 (± 1.95) 87.24 (± 2.3) 0.343 (± 0.081) 0.24 (± 0.071)

Area 88.99 (± 1.72) 88.85 (± 2.06) 0.304 (± 0.078) 0.228 (± 0.068)

Bi-Cubic 89.04 ( ± 1.73) 88.91 (± 2.08) 0.304 (± 0.079) 0.226 (±0.068)

Bi-Linear 89.05 (± 1.7) 88.93 (± 2.01) 0.303 (± 0.076) 0.226 (± 0.066)
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Table 8

Compiled results of Fig. 7 - High-Resolution specific adjustments of the original loss 

function (FastSurferVINN). Addition of attention (+Attention) or high-resolution weights 

focusing on areas strongly effected by PVEs (+HiRes Loss). Dice Similarity Coefficient 

(DSC) and average surface distance (ASD) are reported for the subcortical and cortical 

structures.

DSC ASD

Networks Subcortical Cortical Subcortical Cortical

FastSurferVINN 89.05 (±1.7) 88.93 (± 2.01) 0.303 (± 0.076) 0.226 ( ± 0.066)

+ Attention 88.99 (± 1.71) 88.79 (± 2.03) 0.304 (± 0.077) 0.230 (± 0.068)

+ HiRes Loss 89.03 (± 1.73) 89.30 (±2.07) 0.298 (±0.074) 0.209 (±0.063)

Table 9

Compiled results of Fig. 8: Generalization comparison between optimized FastSurferCNN* 

+ external scale augmentation (exSA) and FastSurferVINN. Dice Similarity Coefficient 

(DSC) and average surface distance (ASD) for the subcortical and cortical structures across 

nine different datasets are reported.

Subcortical Cortical

FastSurferCNN* + 
exSA FastSurferVINN FastSurferCNN* + 

exSA FastSurferVINN

DSC

HCP 88.5 (± 1.25) 88.78 (± 1.2) 89.12 (± 1.93) 89.86 (± 1.89)

Rhineland 89.54 (± 0.94) 90.07 (± 0.88) 88.71 (± 2.16) 89.68 (± 2.21)

abide-i 86.55 (± 2.37) 86.67 (± 2.31) 84.42 (± 3.12) 84.97 (± 3.13)

abide-ii 86.9 (± 1.2) 87.85 (± 1.19) 81.92 (± 1.72) 83.68 (± 1.55)

adni 88.65 (± 1.86) 88.58 (±2) 87.3 (± 2.99) 87.96 (± 2.69)

ixi 86.51 (± 3.33) 86.54 (± 3.67) 85.94 (± 3.01) 86.2 (± 2.83)

la5c 89.49 (± 0.51) 89.63 (± 0.49) 88.86 (± 1.83) 89.46 (± 1.49)

oasis1 88.9 (± 0.88) 89.12 (± 0.91) 88.33 (± 0.88) 89.03 (± 0.8)

oasis2 88.35 (± 1.59) 88.49 (± 1.65) 87.00 (± 2.21) 87.57 (± 2.26)

ASD

HCP 0.317 (± 0.06) 0.306 (± 0.059) 0.245 (± 0.126) 0.224 (± 0.128)

Rhineland 0.291 (± 0.043) 0.276 (± 0.042) 0.241 (± 0.13) 0.215 (± 0.131)

abide-i 0.428 (± 0.114) 0.421 (± 0.108) 0.366 (± 0.225) 0.345 (± 0.226)

abide-ii 0.347 (± 0.058) 0.311 (± 0.054) 0.352 (± 0.079) 0.313 (± 0.073)

adni 0.307 (± 0.07) 0.31 (± 0.075) 0.278 (± 0.176) 0.261 (± 0.164)

ixi 0.44 (± 0.203) 0.416 (± 0.151) 0.296 (± 0.107) 0.281 (± 0.102)

la5c 0.279 (± 0.038) 0.274 (± 0.034) 0.236 (± 0.076) 0.217 (± 0.062)

oasis1 0.291 (± 0.034) 0.283 (± 0.034) 0.233 (± 0.031) 0.215 (± 0.028)

oasis2 0.312 (± 0.058) 0.309 (± 0.065) 0.255 (± 0.064) 0.24 (± 0.064)
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Table 10

Compiled results of Fig. 9 - Generalization of FastSurferCNN* + exSA (external scaling 

augmentation) and FastSurferVINN to unseen resolutions purposefully excluded from the 

training set (0.7 mm, 0.8 mm and 0.9 mm). Dice Similarity Coefficient (DSC) and average 

surface distance (ASD) are reported for the subcortical and cortical structures. Note, that 

comparisons between the different data resolutions are not possible due to differing training 

sets.

DSC ASD

Data Networks Subcortical Cortical Subcortical Cortical

0.7 mm

FastSurferCNN* + exSA 85.8 (± 1.69) 86.11 (± 1.69) 0.416 (± 0.088) 0.367 (± 0.088)

FastSurferVINN 86.49 (± 1.62) 87.5 (± 1.62) 0.397 (± 0.084) 0.294 (± 0.084)

0.8 mm

FastSurferCNN* + exSA 88.31 (± 1.13) 87.31 (± 1.13) 0.328 (± 0.057) 0.273 (± 0.057)

FastSurferVINN 88.75 (± 0.93) 88.28 (± 0.93) 0.316 (± 0.042) 0.246 (± 0.042)

0.9 mm

FastSurferCNN* + exSA 86.9 (± 1.2) 81.92 (± 1.2) 0.347 (± 0.052) 0.352 (± 0.052)

FastSurferVINN 87.85 (± 1.19) 83.68 (± 1.19) 0.311 (± 0.049) 0.313 (± 0.049)

Table 11

Compiled results of Fig. 10 - Generalization of FastSurferCNN* + exSA (external scaling 

augmentation) and FastSurferVINN to resolutions vastly outside the training range (1.4 

mm and 1.6 mm). Synthetic ground truth labels and input images have been resampled 

with majority voting and cubic interpolation from the 0.7 mm and 0.8 mm data to allow 

comparisons here. Dice Similarity Coefficient (DSC) and average surface distance (ASD) 

are reported for the subcortical and cortical structures.

DSC ASD

Data Networks Subcortical Cortical Subcortical Cortical

1.4 mm

FastSurferCNN* + exSA 84.54 (± 2.12) 76.73 (± 2.96) 0.482 (± 0.087) 0.597 (± 0.198)

FastSurferVINN 84.94 (± 1.65) 77.88 (± 2.06) 0.473 (± 0.084) 0.480 (± 0.136)

1.6 mm

FastSurferCNN* + exSA 80.33 (± 6.13) 66.52 (± 7.57) 0.758 (± 0.329) 1.302 (± 0.674)

FastSurferVINN 85.74 (± 1.33) 77.69 (± 2.48) 0.473 (± 0.062) 0.494 (± 0.142)

Table 12

Compiled results of Fig. 11 - Part 1: Performance of FastSurferCNN* + external scale 

augmentation (exSA) and FastSurferVINN on the 1.0 mm manual reference Mindboggle. 

Dice Similarity Coefficient (DSC) and average surface distance (ASD) are reported for the 

subcortical (n = 20) and cortical structures (n = 78).

DSC ASD

Networks Subcortical Cortical Subcortical Cortical

FastSurferCNN* + exSA 80.06 (± 1.17) 81.23 (± 1.63) 0.617 (± 0.03) 0.489 (± 0.062)

FastSurferVINN 80.06 (± 1.2) 81.89 (± 1.67) 0.616 (± 0.029) 0.471 (± 0.062)
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Table 13

Compiled results of Fig. 11 - Part 2: Performance of FastSurferCNN* + external scale 

augmentation (exSA) and FastSurferVINN on n = 6 manually corrected 0.8 mm FreeSurfer 

labels. Dice Similarity Coefficient (DSC) and average surface distance (ASD) are reported 

for the white matter (WM), gray matter (GM) and hippocampus.

Measure FastSurferCNN* + exSA FastSurferVINN

DSC

GM 95.77 (± 0.46) 96.04 (± 0.5)

WM 97.40 (± 0.4) 97.54 (± 0.38)

Hippocampus 92.94 ( ± 1.02) 93.04 (± 1.07)

ASD

GM 0.067 (± 0.016) 0.062 (± 0.018)

WM 0.079 (± 0.025) 0.075 (± 0.024)

Hippocampus 0.185 (± 0.078) 0.181 (± 0.081)

Table 14

Compiled results of Fig. 12 - Part 1: Comparison of fixed-resolution networks and multi-

resolution FastSurferVINN. FastSurferCNN* trained on n = 60 or n = 120 high-resolution 

subjects are compared to FastSurferVINN trained on a mixed set (60 high-resolution and 

60 1.0 mm scans). Dice Similarity Coefficient (DSC) and average surface distance (ASD) 

are reported for the two 0.8 mm datasets (Rhineland study (RS) and Human Connectome 

Project Lifespan (HCPL)).

DSC ASD

Networks RS HCPL RS HCPL

FastSurferCNN* (n = 60 ) 89.28 (± 0.06) 87.42 (± 0.05) 0.391 (± 0.05) 0.257 (± 0.062)

FastSurferCNN* (n = 120 89.83 (± 0.06) 88.14 (± 0.05) 0.358 (± 0.05) 0.240 (± 0.062)

FastSurferVINN* (n = 120 89.85 (± 0.06) 88.99 (± 0.03) 0.326 (± 0.033) 0.245 (± 0.063)

Table 15

Compiled results of Fig. 12 - Part 2: Comparison of fixed-resolution networks and multi-

resolution FastSurferVINN. State-of-the-art FastSurferCNN and optimized FastSurferCNN* 

trained on 120 mm scans are compared to FastSurferVINN trained on a mixed set (60 

high-resolution and 60 1.0 mm scans). Note, that the scans are equivalent between the 

training sets and only differ in their resolution. Dice Similarity Coefficient (DSC) and 

average surface distance (ASD) are reported for six 1.0 mm datasets.

Networks FastSurferCNN (n = 120) FastSurferCNN* (n = 120) FastSurferVINN (n = 120)

DSC

ABIDE-I 83.33 (± 4.29) 84.55 (± 3.46) 85.30 (± 2.88)

ADNI 86.99 (± 2.15) 87.59 (± 2.09) 87.94 (± 1.91)

IXI 84.46 (± 4.61) 85.22 (± 5.05) 86.14 (± 3.70)

LA5C 88.3 (± 1.40) 88.84 (± 1.33) 89.25 (± 1.35)

OASIS1 88 (± 1.38) 88.53 (± 1.37) 88.89 (± 1.39)
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Networks FastSurferCNN (n = 120) FastSurferCNN* (n = 120) FastSurferVINN (n = 120)

OASIS2 87.36 (± 1.53) 87.81 (± 1.51) 88.18 (± 1.26)

ASD

ABIDE-I 0.441 (± 0.140) 0.416 ( ± 0.129) 0.402 (± 0.125)

ADNI 0.315 (± 0.094) 0.294 ( ± 0.086) 0.281 (± 0.079)

IXI 0.381 (± 0.128) 0.367 (± 0.148) 0.332 (± 0.106)

LA5C 0.273 (± 0.045) 0.256 (± 0.044) 0.241 (± 0.043)

OASIS1 0.278 (± 0.062) 0.264 ( ± 0.063) 0.255 (± 0.066)

OASIS2 0.29 (± 0.048) 0.276 ( ± 0.048) 0.262 (± 0.039)

Table 16

Compiled results of Fig. 13: Influence of training set size. Comparison of FastSurferVINN 

trained on the original training set (n = 120) and a version with approximately 20 times more 

1.0 mm scans (n = 1315). Dice Similarity Coefficient (DSC) and average surface distance 

(ASD) are reported for four different resolutions (0.7 mm, 0.8 mm, 0.9 mm and 1.0 mm).

Datasets FastSurferVINN + 
inSA (n = 120)

FastSurferVINN + 
inSA (n = 1300)

FastSurferVINN + 
inSA (n = 120)

FastSurferVINN + 
inSA (n = 1300)

DSC

0.7 mm 89.4 (± 1.29) 89.87 (± 1.28)

ASD

0.259 (± 0.08) 0.243 (± 0.080)

0.8 mm 89.84 (± 1.46) 90.57 (± 1.44) 0.241 (± 0.079) 0.218 (± 0.080)

0.9 mm 85.45 (± 1.13) 88.75 (± 1.39) 0.347 (± 0.050) 0.263 (± 0.052)

1.0 mm 87.67 (± 2.51) 90.26 (± 1.54) 0.296 (± 0.105) 0.231 (± 0.074)

Abbreviations:

HiRes high-resolution

LowRes low-resolution

VINN Voxel-size Independent Neural Network

exSA external scale augmentation

inSA internal scale augmentation

SF scale factor

PVE partial volume effect
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Fig. 1. 
Resolution-independence in deep learning networks: A. Dedicated fixed-resolution 

convolutional neural networks (CNNs) only work on the resolution they are trained on 

and are limited by the availability and quality of corresponding datasets. B. One single 

resolution-ignorant CNN can learn to segment multiple resolutions by training on a diverse 

dataset. External scale augmentation (+exSA, B. left) simulates resolutions with few or no 

training cases by resampling the image and the reference segmentation map. Here, however, 

lossy interpolation and resulting artefacts, especially from nearest-neighbour interpolation of 

discrete label maps, may result in a loss of structural details and sub-optimal performance. 

C. Our voxel size independent neural network (VINN) avoids interpolation of the images 

and discrete labels by integrating the interpolation step into the network architecture. 

Further, the explicit transition from the native resolution to a normalized internal resolution 

facilitates an understanding of the difference between image features (MultiRes blocks 

with distances measured in voxels) and anatomical features (FixedRes inner blocks with 

normalized distances).
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Fig. 2. 
Image resolution affects the detail of discrete segmentation label maps and derived measures 

such as surface models and thickness. A. The low-resolution image is less detailed and 

causes partial volume effects (PVEs) by accumulating signals across tissue boundaries into 

larger voxels, whereas B. High-resolution images and derived segmentations allow more 

precise region delineation and capture details, e.g. for improved shape or thickness analysis 

(white arrows).
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Fig. 3. 
Voxel size independence in FastSurferVINN. Flexible transitions between resolutions 

become possible by replacement of (un)pooling with our network-integrated resolution-

normalization (green) after the first encoder (pre-IDB) and before the last decoder block 

(post-CDB). Scale transitions between the other competitive dense blocks (CDB) remain 

as standard MaxPool and UnPool operations. Each CDB is composed of four sequences of 

parametric rectified linear unit (PReLU), convolution (Conv) and batch normalization (BN). 

In the first two encoder blocks ((pre)-IDB), the PReLU is replaced with a BN to normalize 

the inputs.
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Fig. 4. 
HiRes weight mask generation. Left: The difference between the gray matter label map 

(blue) and its closure (gray) produces the deep sulci and WM strand mask. Right: The 

difference between the original (blue) and eroded (gray) brain mask produces the outer gray 

matter mask.

Henschel et al. Page 44

Neuroimage. Author manuscript; available in PMC 2022 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Ablative optimization of FastSurferCNN and comparison to FastSurfer-VINN. 

FastSurferCNN (light green) is optimized through a switch to 3 × 3 kernels 

(FastSurferCNN*, green). Addition of data augmentation (external scaling augmentation, 

FastSurferCNN* + exSA, dark green) improves performance further. VINN equipped 

with internal scaling augmentation (inSA) (FastSurferVINN, orange) outperforms all other 

models on both subcortical (left) and cortical (right) structures with respect to Dice 

Similarity Coefficient (DSC, top) and average surface distance (ASD, bottom). Further 

addition of external scaling augmentation negatively affects performance (VINN + inSA + 

exSA). Segmentation results with FastSurferVINN are significantly better compared to all 

other models (corrected p < 10−7).
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Fig. 6. 
Effect of sampling kernels on network-integrated resolution-normalization. Comparison of 

nearest-neighbour (NN, purple), area (light violet), bi-cubic (light yellow), and bi-linear 

(orange) sampling kernels with respect to the Dice Similarity Coefficient (DSC, top) and the 

average surface distance (ASD, bottom) for subcortical (left) and cortical (right) structures. 

Segmentation performance with NN is significantly worse than all other interpolation 

strategies (corrected p < 10−13). Area, bi-cubic and bi-linear give equivalent results.
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Fig. 7. 
Adaptation of the original loss function through addition of HiRes weights focusing on 

areas strongly effected by PVEs (HiRes Loss, right bar) significantly improves segmentation 

performance on the cortical structures (compared to FastSurferVINN with original loss, left 

bar). Addition of attention (middle bar) does not lead to a significant improvement compared 

to the baseline. Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, 

bottom) are shown for subcortical (left) and cortical (right) structures. Cortical structures 

are significantly better segmented with the HiRes Loss (corrected p < 10−5). No significant 

change was detected on the subcortical structures..
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Fig. 8. 
Improved generalization performance of FastSurferVINN across nine datasets. 

FastSurferVINN (orange) outperforms FastSurferCNN* + external scale augmentation ( + 

exSA, dark green) across subcortical (left) and cortical structures (right) with respect to 

Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, bottom). Results 

are consistently better for all datasets (HCP, RS, ABIDE-II, ABIDE-I, ADNI, IXI, LA5C, 

OASIS1 and OASIS2).
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Fig. 9. 
Improved generalization performance of FastSurferVINN to resolutions not encountered 

during network training (here training datasets are cus-tomized, see Sections 4.3.2 and 

A.3). FastSurferVINN (orange) outperforms FastSurferCNN* equipped with external scale 

augmentation (+ exSA, dark green) with respect to Dice Similarity Coefficient (DSC, top) 

and average surface distance (ASD, bottom) across subcortical (left) and cortical structures 

(right). Results are significantly better across all resolutions (0.7 mm, 0.8 mm, and 0.9 mm, 

corrected p < 10−4).
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Fig. 10. 
Superior generalization performance of FastSurferVINN to resolutions vastly outside 

the training domain (1.4 mm, 1.6 mm). FastSurferVINN (orange) outperforms scale-

augmentation (FastSurferCNN* + exSA, green) highlighting its extrapolation capabilities. 

Results are significantly better with respect to Dice Similarity Coefficient (DSC, top) and 

average surface distance (ASD, bottom) across subcortical (left) and cortical structures 

(right) (corrected p < 0.001 for 1.4 mm and p < 10−13 for 1.6 mm).
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Fig. 11. 
Performance of FastSurferVINN with respect to manual references. Based on the 1.0 mm 

scans in Mindboggle101 (left plot) FastSurferVINN (orange) outperforms external scale 

augmentation (+exSA, dark green) on the cortical structures (right, N = 78) with respect to 

Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, bottom). Results 

on the subcortical structures (left side, N = 20) are equivalent for both approaches. Similarly, 

segmentation results are better for the 0.8 mm scans of the RS (right plot, N = 6) for white 

matter (WM), gray matter (GM), and hippocampus (Hippo).
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Fig. 12. 
Flexible-versus fixed-resolution networks. FastSurferVINN (orange) is comparable to, or 

outperforms, all fixed-resolution networks (green) (left plot: 0.8 mm from RS only, right 

plots: 1.0 mm) with respect to the Dice Similarity Coefficient (DSC, top) and average 

surface distance (ASD, bottom). On the submillimeter scans (left plots) generalization to 

an unseen dataset (HCPL) is significantly improved. Results are consistently better for the 

1.0 mm scans (right plot). To highlight cumulative VINN and architectural optimizations, 

we also compare with the state-of-the-art FastSurferCNN (gray, without optimizations from 

Sections 4.1 and 4.2, which are already included in CNN*). We retrain this 1 mm fixed-

resolution network ensuring equal training datasets and conditions.
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Fig. 13. 
Big-FastSurferVINN trained with approximately 20 times more 1.0 mm scans (n = 1315, 

yellow) than the original version (n = 120, orange) raises segmentation performance across 

resolutions. Dice Similarity Coefficient (DSC, top) and average surface distance (ASD, 

bottom) improve on the submillimeter (0.7 mm–0.9 mm) as well as 1.0 mm scans.
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