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Abstract 

Background:  Extra-intestinal pathogenic Escherichia coli (ExPEC) are a leading cause of bloodstream and urinary tract 
infections worldwide. Over the last two decades, increased rates of antibiotic resistance in E. coli have been reported, 
further complicating treatment. Worryingly, specific lineages expressing extended-spectrum β-lactamases (ESBLs) 
and fluoroquinolone resistance have proliferated and are now considered a serious threat. Obtaining contemporary 
information on the epidemiology and prevalence of these circulating lineages is critical for containing their spread 
globally and within the clinic.

Methods:  Whole-genome sequencing (WGS), phylogenetic analysis, and antibiotic susceptibility testing were 
performed for a complete set of 2075 E. coli clinical isolates collected from 1776 patients at a large tertiary healthcare 
network in the USA between October 2019 and September 2020.

Results:  The isolates represented two main phylogenetic groups, B2 and D, with six lineages accounting for 53% of 
strains: ST-69, ST-73, ST-95, ST-131, ST-127, and ST-1193. Twenty-seven percent of the primary isolates were multidrug 
resistant (MDR) and 5% carried an ESBL gene. Importantly, 74% of the ESBL-E.coli were co-resistant to fluoroquinolo‑
nes and mostly belonged to pandemic ST-131 and emerging ST-1193. SNP-based detection of possible outbreaks 
identified 95 potential transmission clusters totaling 258 isolates (12% of the whole population) from ≥ 2 patients. 
While the proportion of MDR isolates was enriched in the set of putative transmission isolates compared to sporadic 
infections (35 vs 27%, p = 0.007), a large fraction (61%) of the predicted outbreaks (including the largest cluster 
grouping isolates from 12 patients) were caused by the transmission of non-MDR clones.

Conclusion:  By coupling in-depth genomic characterization with a complete sampling of clinical isolates for a full 
year, this study provides a rare and contemporary survey on the epidemiology and spread of E. coli in a large US 
healthcare network. While surveillance and infection control efforts often focus on ESBL and MDR lineages, our find‑
ings reveal that non-MDR isolates represent a large burden of infections, including those of predicted nosocomial 
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origins. This increased awareness is key for implementing effective WGS-based surveillance as a routine technology for 
infection control.

Keywords:  Escherichia coli, Genomic epidemiology, ST-131, Antibiotic resistance, Nosocomial

Background
Extra-intestinal pathogenic Escherichia coli (ExPEC) 
are a leading cause of healthcare-associated uri-
nary tract and bloodstream infections [1, 2]. Dis-
eases caused by multidrug-resistant (MDR) strains 
are associated with poor patient outcomes, including 
high morbidity and mortality, and higher healthcare 
costs [3–5]. In recent years, resistance to commonly 
prescribed antibiotics has increased in E. coli infec-
tions in the USA [e.g., 1.2 to 25% prevalence of fluo-
roquinolone resistance in the past 15 years [6, 7]] and 
internationally [1, 3, 8, 9]. Importantly, resistance to 
3rd- and 4th-generation cephalosporins, due to the 
acquisition and horizontal spread of extended-spec-
trum β-lactamase (ESBL) genes, has increased in both 
healthcare and community settings [10]. This alarming 
rise prompted the US Centers for Disease Control and 
Prevention to identify the ESBL-producing E. coli as a 
serious threat and urging increased surveillance efforts 
[11].

Previous molecular studies have separated E. coli into 
phylogenetic groups, including A, B1, B2, C, D, E, and F, 
with ExPEC (and consequently the specialized uropath-
ogenic [UPEC] pathotype) largely belonging to phylo-
groups B2 and D [12, 13]. Multilocus sequence typing 
(MLST) provides further characterization of E. coli line-
ages and has led to the identification of specific, glob-
ally distributed sequence types (STs). For example, the 
ST-131 ExPEC lineage is widely distributed and associ-
ated with the emergence of fluoroquinolone resistance 
and frequent carriage of plasmid-bound ESBL genes 
[12, 14–17]. Besides resistances, recent studies sug-
gest that the acquisition of virulence-associated genes 
also plays an integral role in the success and global 
emergence of ST-131 and other ExPEC lineages. These 
include a plethora of both structural (e.g., fimbriae, pili, 
curli, flagella) and secreted (e.g., toxins, iron-acquisition 
systems) virulence factors often enriched in non-MDR, 
UPEC lineages (e.g., ST-73, 95, and 127) [18–20].

The recent positioning of whole-genome sequenc-
ing (WGS) as a near-routine technology is creating a 
revolution in infection control and allows for targeted 
interventions to reduce the burden of healthcare-
associated infections (HAIs). Such effort requires an 
understanding of the frequency of nosocomial trans-
mission caused not only by MDR epidemic clones, 
but also by the more ubiquitous non-MDR lineages. 

While the latter are responsible for most E. coli infec-
tions, very few genome-based studies have examined 
their role in nosocomial transmission. Instead, most 
investigations have been performed on small cohorts, 
often limited to ESBL-producing isolates, which likely 
underrepresents the extent of E. coli nosocomial trans-
mission events [21].

Here, we retrospectively genome-sequenced and 
analyzed a complete set of 2075 E. coli clinical iso-
lates collected from 1776 patients over a 12-month 
period from a large military healthcare network in the 
Northeast United States. Genome-based detection of 
possible outbreak clusters revealed extensive roles for 
non-MDR lineages in suspected nosocomial transmis-
sions, while in-depth phylogenetic, genotypic, and phe-
notypic characterization revealed a detailed picture of 
the epidemiology, population structure, and prevalence 
of resistances in E. coli in this region.

Methods
Isolation and phenotypic characterization of E. coli 
collection
A total of 2075 E. coli isolates (including serial iso-
lates from the same patient) cultured from all clini-
cal specimens of 1776 patients receiving care in the 
National Capitol Medical Region healthcare network 
between October 2019 and September 2020 were col-
lected. Of note, no stool isolates were collected as 
these samples are not routinely sent for culture in 
the microbiology lab of this hospital and are instead 
analyzed by molecular and/or antigen diagnostic 
procedures. Antibiotic susceptibility testing (AST) 
was performed in a College of American Patholo-
gists (CAP)-certified laboratory using the BD Phoe-
nix (panel NMIC/ID304; BD Diagnostics), which 
encompasses 18 antibiotics from 11 different antibi-
otic classes. Where necessary, MICs were determined 
in triplicate using broth microdilution using Clinical 
and Laboratory Standards Institute (CLSI) guidelines 
[22]. Breakpoints were interpreted using CLSI guide-
lines (2018), with cefazolin MICs interpreted using 
breakpoints for complicated UTI/systemic infection 
[22]. Isolates with breakpoints interpreted as I or R 
were designated non-susceptible. To accurately calcu-
late the prevalence of resistances in the population, a 
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subset of 1828 primary isolates (first isolate of each 
ST per patient) was specifically used (Table 1).

Whole‑genome sequencing
DNA extraction and WGS were performed as previously 
described [23]. In brief, genomes were generated for all 

2075 isolates using an Illumina MiSeq platform with a 
2×300 nt paired-end protocol or a NextSeq-500 plat-
form with a 2×150 nt paired-end protocol. Libraries were 
prepared using the Kapa HyperPlus kit (Roche Diagnos-
tics) and quantified using the Kapa library quantifica-
tion kit Illumina/Bio-Rad iCycler (Roche Diagnostics) 
on a CFX96 real-time cycler (Bio-Rad). De novo assem-
blies were obtained using Newbler v2.7 (Roche Diagnos-
tics). Minimum thresholds for contig size and coverage 
were set at 200 bp and 49.5+, respectively. Assembled 
sequences were annotated using Prokka v1.14.6 [24].

Bioinformatic analysis
Species identification was determined using Kraken2 
(v2.0.8-β) [25] and E. coli phylogenetic groups were 
identified using EzClermont v0.6.3 [26, 27]. In silico ST 
detection was identified for all isolates using the Acht-
man MLST scheme through software [28]. This tool uses 
the PubMLST website [29] developed by Keith Jolley and 
sited at the University of Oxford. Novel ST was assigned 
using the MLST sequence archive at EnteroBase [30]. 
Serotyping and fimH typing were performed using the 
TORMES pipeline v1.3.0 [31] with the SerotypeFinder 
O-typing database [32] and FimTyper [33], respectively. 
Antimicrobial resistance genetic determinants were 
annotated using AMRFinderPlus [34] and ARIBA [35]. 
Plasmid replicons [36] and virulence-associated genes 
(based on the E. coli virulence-associated gene data-
bases EcVGDB and VFDB [37, 38]) were identified using 
ABRicate [39].

Phylogenetic analysis
For the phylogeny of the diverse set of 123 ESBL-E. coli, 
the annotated [Prokka v1.14.6 [24]] assemblies were used 
as input for Roary v3.13.0 [40] and a SNP-based align-
ment of 2698 core genes was generated. For the phylog-
eny of the clonal set of 275 ST-131 E. coli, SNP calling 
was performed with Snippy v.4.4.5 [41] using error cor-
rection [Pilon v1.23 [42]] and the annotated genome of 
ST-131 E. coli EC958 (accession no. GCA_000285655.3) 
as a reference. For both approaches, recombination was 
filtered from the alignments using Gubbins v2.4.1 [43] 
and a maximum-likelihood tree was generated with 
RAxML v8.2.12 [44] using the GTR+G (50 parsimony, 
50 random) model and 100 random bootstrap replicates. 
Trees were imported in iTOL v.5.5 [45] for visualization 
with metadata.

Finally, for the ST-131 phylogenetic analysis, clade 
designations (A, B, and C) were generally characterized 
by the carriage of type 1 fimbriae adhesion fimH alleles 
(fimH41, fimH22, and fimH30, respectively) and sub-
clades C0, C1, and C2 based on SNP typing of genetic 
markers gyrA, parC, and ybbW genetic markers, as 

Table 1  Prevalence of MDR and key resistances in E. coli isolates

a Deduplicated = primary isolate of each ST per patient
b Presence of extended-spectrum β-lactamases
c Phenotypic non-susceptibility to ciprofloxacin and levofloxacin

Total (n) MDR (%) Non-MDR 
(%)

ESBLb (%) FLQc (%)

All 2075 29 71 6 17

  Cluster 258 36 64 6 23

  Non-
cluster

1817 28 72 6 16

Dedupli‑
cateda

1828 27 73 5 15

  Cluster 228 35 65 6 21

  Non-
cluster

1600 26 74 5 14

B2 1290 26 74 4 16
  Cluster 186 33 67 5 22

  Non-
cluster

1104 25 75 4 15

  ST-131 215 64 36 16 52

    Cluster 36 72 28 22 56

    Non-
cluster

179 63 37 13 49

  ST-73 204 21 79 1 0

    Cluster 41 29 71 5 0

    Non-
cluster

163 20 80 1 1

  ST-95 196 7 93 0 0

    Cluster 21 24 76 0 0

    Non-
cluster

175 5 95 0 0

  ST-127 125 13 87 0 0

    Cluster 21 24 76 0 0

    Non-
cluster

104 11 89 0 0

  ST-1193 89 55 45 7 100

    Cluster 17 53 47 0 100

    Non-
cluster

72 56 44 9 100

D 243 40 60 8 11
  Cluster 42 48 52 7 12

  Non-
cluster

201 39 61 8 10

  ST-69 128 43 57 4 6

    Cluster 21 47 53 0 4

    Non-
cluster

107 42 58 5 6
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previously described [16, 46]. The G273A SNP in ybbW 
(subclade C2-specific allele) was identified using an indi-
vidual gene alignment produced by Roary v3.13.0 [40].

Nosocomial transmission analysis
Detection of clusters of transmission was performed in 
two stages. First, cgMLST allele assignment and mini-
mum spanning tree generation were performed with 
SeqSphere+ [47] using the E. coli cgMLST scheme 
developed by Zhou et al. [30]. The distance matrix from 
SeqSphere+ consisted of the pairwise allelic differences 
between all 2075 E. coli isolates. Using a threshold of ≤10 
allelic differences, a level previously identified as indica-
tive of potential E. coli transmission [48], 105 putative 
clusters of transmission were identified and comprised 
isolates from 2 distinct patients or more (Additional 
file  1: Table  S1). Clusters of serial isolates from single 
patients were removed. Second, to further investigate 
these putative clusters, an internal reference genome 
(first isolate temporally) was picked and whole-genome 
SNP analysis was individually performed for the 105 clus-
ters. Using a 17 SNP cutoff, a threshold previously identi-
fied between patient pairs sharing strong epidemiological 
links [9], 95 of the 105 original clusters were confirmed 
and were further analyzed in this report. To determine 
the prevalence of MDR isolates in the clusters, primary 
MDR cluster isolates (n=228) were used (serial isolates 
from the same patient and same MDR or non-MDR des-
ignation were removed) (Table 1).

Results
Isolate collection and population structure
Between October 2019 and September 2020, a set of 2075 
E. coli were collected from all 1776 patients who received 
care within the National Capitol Region healthcare net-
work (located on the East coast of the USA) (Additional 
file  1: Table  S1). While obtained from 21 facilities, the 
majority (59%) of the isolates originated from a single, 
large tertiary care hospital that also served as the cen-
tral microbiology hub for the remaining 20 facilities. 
This sampling represents >99% of all E. coli cultured 
from clinical specimens at the central microbiology lab-
oratory during this 1-year period. Isolates were primar-
ily obtained from urine (93%), followed by bloodstream 
infections (2%), wound infections (2%), and perirectal 
swabs (1%). A small number of isolates were cultured 
from fluid (.07%), tissue (.04%), and respiratory (.01%) 
cultures (Additional file 1: Table S1).

WGS and cgMLST analysis revealed a diverse popula-
tion that resolved into 5 main E. coli phylogenetic groups 
(Fig. 1A, Additional file 1: Table S1), with B2 and D the 

most represented (71% and 13%, respectively). Molecular 
typing by in silico MLST indicated the population was 
composed of 247 STs with 53% belonging to 6 known, 
globally prevalent STs. These include the epidemic line-
ages ST-131 (n = 275), ST-73 (n = 224), ST-95 (n = 215), 
ST-127 (n = 138), and the emerging ST-1193 (n = 112) 
all within phylogroup B2 [49]. Epidemic lineage ST-69 (n 
= 142) was the sole exception, belonging to phylogroup 
D. Notably, 133 (53%) STs were each found in isolate(s) 
from single patients and only 52 of 1776 patients carried 
strains with multiple STs (Additional file 1: Table S1).

Diversity of antibiotic susceptibility profiles
Comprehensive AST was performed on all isolates using 
18 antibiotics from 11 different classes (Fig.  2, Addi-
tional file 2: Table S2). For an accurate determination of 
the prevalence of resistances in this E. coli population, 
removal of serial isolates (same ST per patient) resulted 
in a collection of 1828 primary isolates (Table  1). From 
these, the highest prevalence of non-susceptibility was to 
ampicillin (41%), followed by tetracycline (23%), trimeth-
oprim/sulfamethoxazole (20%), and fluoroquinolones 
(15% to ciprofloxacin). In contrast, all isolates were sus-
ceptible to amikacin, 5% of E. coli were non-susceptible 
to third- and fourth-generation cephalosporins and <1% 
(n = 14) showed non-susceptibility to a carbapenem. Of 
the latter, 6 were resistant to imipenem only (MIC = 2), 5 
were resistant to ertapenem only (MIC > 0.5 ml/l), 3 were 
resistant to ertapenem and imipenem or meropenem, 
and none carried a carbapenemase (Fig.  2, Table  1 and 
Additional file 2: Table S2).

Distinct lineages of E. coli were enriched for pheno-
typic resistance to various classes of antibiotics: (i) 50% 
of ST-12 were non-susceptible to amoxicillin/clavulanate 
(vs. 13% across all isolates, p < 0.001 by Fisher exact test), 
(ii) ST-131 accounted for 59% of isolates non-susceptible 
to gentamicin and tobramycin (vs. 6% for all, p < 0.001), 
and (iii) ST-131 and ST-1193 alone represented 72% of all 
isolates with resistance to the fluoroquinolones (Fig.  2, 
Additional file 2: Table S2).

Overall, 27% of the primary isolates were classified as 
multidrug resistant (MDR) as defined by Magiorkas et al. 
(i.e., non-susceptible to at least one agent in ≥3 antibiotic 
categories) [50] (Fig. 1A and Additional file 2: Table S2), 
though the prevalence of MDR varied significantly 
among the distinct, most frequent E. coli lineages. For 
example, while lineages ST-131, ST-1193, and ST-69 were 
significantly enriched in MDR isolates (64%, 55%, and 
43%, respectively, with p-values < 0.01 by Fisher exact 
test), lineages ST-73, ST-127, and ST-95 largely com-
prised non-MDR isolates (21%, 13%, and 7%, respectively, 
with p-values < 0.03) (Fig. 1A).
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Genomic characterization of ESBL‑carrying E. coli
During the study period, 123 ESBL-producing E. coli 
were identified from 90 unique patients and all were clas-
sified as MDR (Additional file 3: Table S3). Interestingly, 
22% were cultured from non-urinary sites, a significant 
divergence from the overall population (7%, p<0.05). Phy-
logenomic analysis of all ESBL-E. coli isolates indicated 
ESBL producers were diverse and belonged to 26 STs, 
including prevalent lineages [ST-131 (from 36 patients), 

ST-1193 (7 patients), ST-69 (5 patients)], less common 
lineages in our dataset [ST-38 (11 patients), ST-10 (4 
patients)], and rarer ESBL-carrying lineages [ST-44 [51], 
ST-256, and ST-636 [52] each represented by 2 patients 
each]. As a result, an overrepresentation of ST-131 and 
ST-1193, which have fluoroquinolone resistance rates of 
52% and 100%, respectively, 74% of ESBL-producers were 
non-susceptible to fluoroquinolones (compared to 17% 
overall, p < 0.01) (Fig.  3). The most represented ESBL 

Fig. 1  Population structure of a complete collection of E. coli clinical isolates for a 1-year period at a US hospital. A cgMLST-based minimum 
spanning tree of 2075 E. coli isolates. Isolates belonging to the main phylogenetic groups observed in this study are circled and labeled. The 
dominant STs are shaded in light gray and the proportion of MDR (red) and non-MDR (gray) isolates within specific STs is indicated by pie charts. B 
Pie charts indicate the prevalence of MDR (red) primary isolates (27%) was similar to the prevalence of MDR isolates in primary isolates predicted to 
be part of clusters of transmission (35%) (Table 1)
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genes were blaCTX-M-15 (59%) and blaCTX-M-27 (22%). Fur-
thermore, blaCTX-M-14 was carried by 14% of the isolates 
including eight ST-38 isolates from 5 patients without an 
identified plasmid replicon. While carriage on a plasmid 
with an unknown replicon cannot be ruled out, chro-
mosomal carriage of blaCTX-M-14 has previously been 
described for strains of this ST collected from Mongo-
lian birds [53]. blaCTX-M-55 was observed in 3 isolates and 
blaCTX-M-24 and blaTEM-19 were observed once in distinct 
lineages (ST-354 and ST-131, respectively) (Fig. 3). Nota-
bly, the first description of ST-1193 harboring a blaCTX-

M-64 allele was observed in a singular isolate (Fig. 3). Nine 
plasmid replicon types regularly associated with ESBL 
carriage [54, 55] were identified with varying prevalence, 
from ≥10 to 76% (Fig. 3).

Outbreak detection reveals the role of non‑MDR E. coli 
in nosocomial transmission
Prediction of possible clusters of transmission was per-
formed in two steps: cgMLST followed by SNP analysis 
(Table  1). This filtering stringently confirmed 95 clus-
ters (from 105 identified by cgMLST) comprising 258 
isolates from 227 patients (Table  1). A total of 26 STs 

were represented and 61% of the clusters (58 out of 
95) were caused by a non-MDR clone (Fig.  4A, B and 
Additional file 1: Table S1). At the isolate level, the pro-
portion of primary MDR (35%) isolates from potential 
outbreaks clusters was slightly increased compared to 
primary non-cluster isolates (27%, p = 0.007 by Fisher 
exact test) while the proportion of ESBL producers 
remained comparable (6%) (Fig.  1B) (Table  1). At the 
lineage level, the largest number of outbreak clusters 
involved ST-131 (with 8/14 clusters caused by a MDR 
clone) and ST-73 (with 9/15 clusters caused by a non-
MDR clone) (Fig. 4B).

While the majority of clusters (78 out of 95) were 
composed of only two patients (an amount of trans-
mission that routine surveillance cannot influence), the 
remaining outbreaks involved 3 to 12 patients (Fig. 4C). 
Temporally, these clusters extended up to 11 months, 
and lineage ST-131 was once again the most repre-
sented, with 5 distinct outbreak clones including two 
(clusters e and m) that were ESBL-producers (Fig. 4C). 
The largest predicted outbreak involved 12 patients 
(cluster n) and was caused by a ST-73 clone that was 
largely non-MDR and cultured primarily from urine 
(Fig. 4C). The only exception was MDR isolate 836616 

Fig. 2  Comprehensive phenotypic antibiotic susceptibility testing of all E. coli isolates to 18 antibiotics from 11 classes tested in this 
study. Breakpoints were interpreted using CLSI guidelines and S (susceptible), I (intermediate), and R (resistant) classifications are labeled 
for each antibiotic/isolate: red, yellow, and gray, respectively. Interpretations are mapped onto the MST from Fig. 1. AMK amikacin, GEN 
gentamicin, TOB tobramycin, AMP ampicillin, AMC amoxicillin-clavulanic acid, TZP piperacillin-tazobactam, CFZ cefazolin, FEP cefepime, CAZ 
ceftazidime, CRO ceftriaxone, ETP ertapenem, IPM imipenem, MEM meropenem, ATM aztreonam, CIP ciprofloxacin, LVX levofloxacin, SXT 
trimethoprim-sulfamethoxazole, TET tetracycline

Fig. 3  Core genome phylogeny of all ESBL-carrying E. coli isolates in our dataset (n=123). Patient numbers are listed to identify serial isolates. 
Isolation source and phylogroups are color coded, indicated by the corresponding legends. Fluoroquinolone (FLQ) (ciprofloxacin and/or 
levofloxacin) non-susceptibility is indicated by a closed orange square, the presences of unique ESBL alleles are shown in a closed blue square, and 
plasmid replicon families identified with prevalence ≥10% are indicated by a gray closed square. Two novel ESBL-producing STs were characterized: 
ST-12869 and ST-12736

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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which was distinct by only 12 SNPs from non-MDR 
isolate 822264 from another patient in this cluster 
and uniquely acquired resistance genes blaTEM-1, sul2, 
aph(3)-lb, and aph(6)-ld (Additional file 3: Table S3).

Convergence of resistance and virulence determinants 
in ST‑131 E. coli
Considering the role played by ST-131 in both outbreak 
and sporadic infections, a detailed genetic analysis of the 
resistance and virulence genes found in these US isolates 
was performed. A maximum-likelihood core SNP-based 
phylogeny of all E. coli ST-131 genomes (n=275) in our 
dataset resulted in the 3 dominant ST-131 clades: clade 
A (n = 59, 21%), clade B (n = 29, 11%), and clade C (n = 
181, 66%) (Fig.  5). Ninety-three percent of clade A iso-
lates carried fimH41, 84% of clade B carried fimH22, all 
subclade B0 isolates carried fimH27, and 95% of clade C 
isolates carried the fimH30 variant. Of note, 19 isolates 
had non-typeable fimH alleles or a divergent allele desig-
nation (Additional file 1: Table S1).

Th predominant clade C isolates were further classi-
fied into subclades C0 (n = 38), C1 (n = 101), and C2 (n 

= 42) (Fig. 5). Unlike clade A, B, and C0 isolates, which 
were largely (94%) fluoroquinolone susceptible, 100% of 
clades C1 and C2 isolates carried double gyrA and parC 
mutations associated with high-level resistance (Fig.  5) 
[56]. Furthermore, clade C2 was enriched for ESBL-pro-
ducing isolates (69% of C2 isolates were ESBL compared 
to only 9% in other clades) and all carried blaCTX-M-15. 
Interestingly, 74% of clade C0 isolates were characterized 
as MDR (Fig.  5) despite being susceptible to fluoroqui-
nolone and cephalosporin antibiotics. This was largely 
due to a higher prevalence of resistance to aminoglyco-
sides (68% vs. 30% in all), folate pathway inhibitors (68% 
vs. 38%), and tetracycline (61% vs. 35%) in comparison to 
other clades (Additional file 2: Table S2).

In addition to the enrichment of resistance genes, iso-
lates in lineage ST-131 frequently (>80% and p < 0.01) 
carried virulence-associated genes previously identified 
and associated with ExPEC E. coli [57, 58], including the 
aerobactin locus (iucC and iutA otherwise found in ~34% 
of all E. coli), a secreted autotransporter toxin (sat, 25% in 
the whole population), and an IrgA-like adhesin (iha, 26% 
in other E. coli) (Additional file 4: Table S4).

Fig. 4  Potential clusters of transmission were defined as groups of isolates from ≥2 patients with ≤17 SNP differences. A Stacked histograms 
showing the number of MDR and non-MDR cluster isolates according to their ST and B the number of distinct outbreak clusters per ST. Clusters 
grouping either MDR or non-MDR isolates are shown in red and gray, respectively. Hybrid clusters (i.e., grouping both MDR and non-MDR isolates) 
are shown in yellow. STs associated with a single cluster were grouped into others and represent ST-244, ST-394, ST-62, ST-372, ST-404, ST-421, 
ST-428, ST-538, ST-607, ST-1431, ST-1597, and ST-7887. C Analysis of outbreak clusters (identified on the y-axis with the corresponding ST) involving 
≥3 patients (n = 24) and ordered temporally. The legend describes novel patients (filled circles), serial isolates (open circles), MDR isolates (red-filled 
circles), non-MDR (black-filled circles), and outbreaks consisting of all ESBL-E. coli isolates (dashed red line)
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Accumulation of virulence genes in non‑MDR ST‑73 lineage
Together with ST-131, isolates belonging to ST-73 
played a prominent role in both sporadic infections 
and possible cases of nosocomial transmission. How-
ever, unlike ST-131, no enrichment of antimicrobial 
resistance determinants was observed within this lin-
eage, and ST-73 isolates remained largely susceptible 
to aminoglycosides, cephalosporins, and fluoroqui-
nolones (Fig.  2, Additional file  2: Table  S2). In con-
trast, ST-73 isolates contained significantly (p < 0.01) 
more virulence-associated genes (between 239 and 

314) than ST-131 E. coli (between 201 and 309) [13] 
(Additional file 4: Table S4). Specifically, ST-73 isolates 
were enriched (>70% vs. <25% in the population as a 
whole) in uropathogenicity-associated virulence fac-
tors involved in invasion and colonization (pic, hek), 
cell lysis (hlyA), and adhesion and penetration (foc/sfa 
and cnf) [13, 57, 59] (Additional file 4: Table S4). When 
compared to the ST-131 population, ST-73 isolates 
were significantly enriched in a distinct set of virulence 
genes most likely contributing to the epidemiological 
success of the lineage (Additional file 4: Table S4).

Fig. 5  Core genome SNP-based phylogeny of all ST-131 E. coli isolates in our dataset (n=275). Labels for clades A, B, B0, C0, C2, and C1 are indicated 
and are colored purple, green, light green, light blue, blue, and dark blue, respectively. Metadata are represented as rings from inner to outer: 
variations in the fimH gene, presence of point mutations in gyrA and parC (filled yellow square), fluoroquinolone (ciprofloxacin and/or levofloxacin) 
non-susceptibility (closed orange square), presence of ESBL gene (closed blue square), and multidrug-resistant isolate (red closed square). 
Non-typeable fimH alleles due to truncation or missing gene were grouped with other rare variants identified (Additional file 1: Table S1)
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Discussion
A significant strength of this study lies in the >99% col-
lection of all E. coli isolates from clinical samples over 
a recent (2019–2020) 12-month period in a network of 
US military healthcare facilities. Together with com-
prehensive AST and WGS, this dataset offered a unique 
opportunity to describe (i) the continued success and 
emergence of high-risk ExPEC and UPEC lineages, (ii) 
the regional prevalence of phenotypic resistances (and 
associated, acquired antibiotic resistance determinants), 
and (iii) the respective burden of ESBL, MDR, and non-
MDR clones in infections of likely nosocomial origin.

Unlike the UK [60, 61], Canada [18], and other regions 
of the world [62, 63], recent genomic surveillance data on 
circulating E. coli lineages and resistances in the USA is 
limited. At a global scale, our analysis of this set of US 
isolates is consistent with previous epidemiological stud-
ies demonstrating the predominance (>50% of cases) of 
ST-69, 73, 95, 127, and 131 pandemic ExPEC lineages 
[16, 17]. E. coli is the world’s leading cause of UTIs, and 
this is reflected in our collection, where 93% of isolates 
were from urine samples. The distribution of major lin-
eages observed globally and here also mirrors genomic 
epidemiology studies of community-acquired (CA)-UTIs 
across Canada (2012–2015) and from UPEC isolates col-
lected at a Northern California university in 1999–2000 
and again in 2016–2017 [18, 19]. However, in contrast 
to these studies, our collection revealed the emergence 
of ST-1193 fluoroquinolone-resistant E. coli as one of 
the most prevalent lineages currently circulating in this 
region of the USA.

Over the past 20 years in the USA, fluoroquinolones 
have replaced trimethoprim-sulfamethoxazole as the 
treatment of choice for uncomplicated UTIs [64]. In 
our collection, fluoroquinolone non-susceptible iso-
lates largely belonged to only two lineages, ST-131 
and ST-1193 (72% between both lineages). For ST-131, 
numerous studies have described the rapid, global emer-
gence and dominance of subclones with acquired fluo-
roquinolone resistance mutations (subclade C1/H30-R) 
and a high prevalence of ESBL enzymes (C2/H30-Rx) 
[16, 17]. In this study, we show that the prevalence of C1 
and C2 in the USA (both as an aggregate [52% of ST-131 
isolates] and separately with 37% and 15%, respectively) 
is comparable to estimates from a recent report of a 
longitudinal collection of E. coli (albeit of bloodstream 
isolates) from the last two decades in Norway [62]. Inter-
estingly, these are also similar to earlier US estimates 
[collection of 261 isolates from 2010 to 2012 [16]] sug-
gesting the ST-131 population structure has remained 
relatively stable over the last decade and the overall 
prevalence of this lineage appears to have plateaued. In 
contrast, lineage ST-1193, which is the only other known 

clone driving the spread of fluoroquinolone-resistant E. 
coli globally [65–68], appears to be surging. For exam-
ple, though the first worldwide cases of ST-1193 only 
appeared in 2011 [68, 69], a recent US-based multicenter 
surveillance study of 6349 clinical E. coli showed that the 
fraction of fluoroquinolone-resistant ST-1193 increased 
from 18 to 25% between 2016 and 2017 [67]. In our 
study of isolates from 2019 to 2020, the fraction was 
31%, suggesting the rapid rise of ST-1193 is still ongo-
ing. At the molecular level, all ST-1193 in this collection 
carried three characteristic, non-synonymous mutations 
resulting in high-level fluoroquinolone resistance; ParC 
(S80I) and GyrA (D87N and S83L) acquired via homolo-
gous recombination from a single transfer event at the 
origins of that lineage [70]. In addition, a fourth substi-
tution in ParE (L416F) previously described in ST-1193 
lineage was found in all isolates [65].

In our collection, 5% of primary isolates were ESBL-pro-
ducers and, of particular concern for treatment regiments, 
a subset of 74% were co-resistant to the fluoroquinolo-
nes. These rates were comparable to the prevalence of 
resistances observed in a large (>1.5 million isolates), 
multicenter study of community-onset UTI in the USA 
over the last decade (6.4% ESBL-producers and 21% fluo-
roquinolone non-susceptible) [71]. In contrast, another 
nationwide US study focused on HAIs during a similar 
timeframe reported substantially higher rates of resistance 
to fluoroquinolone (35%) and extended-spectrum cephalo-
sporins (17%) [72]. Globally, the rate of ESBL-E. coli varies 
considerably from >40% in regions such as South America, 
Southeast Asia, India, and China to ~5 to 20% in Europe, 
Australia, Canada, and the USA [73]. Furthermore, preva-
lent lineages carrying ESBLs also vary globally (i.e., ST-648 
and ST-410 are underrepresented in our study yet are the 
most prevalent lineages circulating in intensive care units 
in Vietnam [74]). Importantly, ST-1193 was the third most 
frequent source of ESBL-producers in our collection, with 
8% (n = 7) carrying one of the variously represented alleles 
(blaCTX-M-15, blaCTX-M-27, blaCTX-M-55, and first report of 
blaCTX-M-64 carriage), suggesting multiple introductions. In 
contrast, ESBL-producers composed 69% of isolates within 
subclade C2 of ST-131 lineage and all carried the same 
blaCTX-M-15, most likely harbored on an IncF-type plas-
mid as previously characterized [75]. Finally, while other 
countries including France [76], Japan [77], and Germany 
[78] have seen an increase in the recently defined subclade 
C1-M27 ST-131 [77] clinical isolates carrying blaCTX-M-27, 
we see a low prevalence of subclade C1 blaCTX-M-27 carry-
ing isolates in this study.

While surveillance and infection control efforts are often 
and understandably (i.e., increased morbidity, mortal-
ity, and financial costs) focused on ESBL and MDR E.coli 
lineages, the global burden of colonization/infection with 
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non-MDR strains (e.g., global lineages ST-73, ST-95, and 
ST-127) remains invariably higher [5, 62]. In fact, in this 
cohort of 1776 patients, 3 out of 4 individuals were diag-
nosed with a non-MDR isolate (representing a diversity 
of E. coli lineages, most of which have yet to be explored). 
When focusing on patients where in-depth comparative 
genomics suggested nosocomial origin was likely (n = 227), 
a slight increase in the fraction of MDR cases is observed, 
but the majority (2 out of 3 patients) were still due to a non-
MDR clone. In fact, ExPEC pandemic lineage ST-73 was 
largely comprised of non-MDR isolates and was both one 
of the most frequent sources of potential clusters of trans-
mission and responsible for the largest predicted outbreak 
involving 12 patients. While the possibility of transmission 
happening outside the hospital (e.g., shared long-term facil-
ities or elderly care home) cannot be excluded, these find-
ings highlight the importance of surveilling E. coli isolates 
with diverse susceptibility profiles as investigations that 
focus on MDR only are likely to underestimate ongoing 
outbreaks in the patient population.

To our knowledge, just a single study has performed 
similar genome-based detection (albeit using a different 
methodology) of nosocomial transmission on a complete 
collection of clinical E. coli isolates [9]. That study exam-
ined stool samples from 97 inpatients over a 6-month 
period at a single UK hospital. Similar to our findings, the 
two largest clusters identified spanned the entirety of the 
study period and were caused by the nosocomial spread of 
non-MDR isolates. Interestingly, these clones were iden-
tified as ST-7095 (7 patients, 29 isolates) and ST-635 (4 
patients, 18 isolates) [9], two lineages comprised within 
phylogroup A that were not detected in our sampling. 
Whether the epidemic success of these non-MDR lineages 
simply stems from their overall abundance or could result 
from the acquisition of virulence/colonization factors (as 
observed here for ST-73) remains to be fully characterized.

Conclusions
By capturing all clinical isolates for a full year, this study 
provides a rare and contemporary survey of the genomic 
landscape of MDR and non-MDR E. coli lineages in a 
large healthcare network in the Northeast US. While 
pandemic ST-131 and expanding ST-1193 lineages (both 
characterized by high rates of co-resistance to fluoroqui-
nolones and extended-spectrum cephalosporins) warrant 
particular surveillance, our findings also indicate that 
non-MDR lineages play a significant role in nosocomial 
transmission. With WGS developing as a near-routine 
technology in infection control, such improved under-
standing of the epidemiology of hospital-acquired path-
ogens is critical for maximum effectiveness at reducing 
infections and healthcare-associated costs.
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