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1 Introduction

To handle the volume from next-generation sequencing data, mod-
ern sequence comparison often relies on summary sketches such as
minimizers (Roberts et al., 2004; Schleimer et al., 2003), syncmers
(Edgar, 2021) and minimally overlapping words (Frith et al., 2021).
Let us call a substring of length k within a sequence a k-mer.
Sequence sketches are often the consequence of a rule f for selecting
k-mers from a sequence. If the rule depends only on the k-mer under
scrutiny and not on the sequence context (Shaw and Yu, 2021), call
the rule 1-local. In this context, consider a long sequence where
bases are mutated independently with probability h. Eyeing applica-
tions where the mutated sequence is mapped onto the original se-
quence by k-mer matches, Theorem 2 of Shaw and Yu (2021)
quantifies how frequently k-mers in a sketch are conserved under
mutation of the original sequence.

Theorem 2 concerns itself with two vectors each of k probabil-
ities, denoted Prðaðh;kÞÞ and Prðf Þ. To explain Prðaðh;kÞÞ, call a run
of a consecutive unmutated k-mers, i.e. a run of kþ a� 1 unmu-
tated letters, an a-run. On the one hand, Prðaðh; kÞÞ focuses on a let-
ter chosen randomly from the middle of the long unmutated
sequence. The k-mers containing the chosen letter include a total of
2k� 1 letters. Let Prðaðh;kÞ ¼ aÞ be the probability that the longest
unmutated run within the 2k� 1 letters is an a-run. A classical for-
mula (Shaw and Yu, 2021) determines Prðaðh; kÞÞ ¼ ðPrðaðh; kÞ ¼
aÞ : a ¼ 1;2; . . . ; kÞ explicitly. To explain Prðf Þ, it relates a-runs dir-
ectly to the sketch determined by the rule f . Consider an a-run
(a ¼ 1; 2; . . . ; k) chosen randomly from the middle of a long random
sequence. Let the a-run probability Prðf ; aÞ be the probability that f
selects at least one k-mer from the a-run. For any rule f , then, we
can define the vector Prðf Þ ¼ ðPrðf ; aÞ : a ¼ 1;2; . . . ; kÞ of a-run
probabilities. Loosely, Prðf Þ quantifies the spread of the sketch with
rule f : if f bunches the k-mers it selects too closely, the sketch
is less likely to include a k-mer from a random a-run in the middle
of a long sequence. Further details may be found in Shaw and
Yu (2021).

Among other results in Shaw and Yu (2021), Theorem 2 gave a
dot-product anticipating the practical performance of a sketch using
a 1-local rule in mapping applications. In particular, the probability

that a randomly chosen letter is within an unmutated k-mer selected
by a rule f is

Consðf ; h;kÞ ¼ Prðaðh; kÞÞ � Prðf Þ; (1)

where the right side is the probability that the longest unmutated
run containing the letter is an a-run times the probability that the
rule f includes a k-mer from the a-run in the sketch, summed over
a ¼ 1;2; . . . ; k by a dot-product. Details may be found in the origin-
al article (Shaw and Yu, 2021).

Shaw and Yu (2021) examine the consequences of Equation (1)
for minimizers (Roberts et al., 2004; Schleimer et al., 2003) and for
both closed and open syncmers (Edgar, 2021). Note that the rule for
syncmers is 1-local, unlike the rule for minimizers. Section 4 in
Shaw and Yu (2021) analyzes rules for selecting minimizers and syn-
cmers under the assumption of a randomized hash function, neglect-
ing equal k-mers as rare and thereby imposing a uniform
distribution on the permutation ordering the relevant k-mer hashes.
Recursions on four variables calculated Prðf ; aÞ, with variants tail-
ored for the different rules under scrutiny. For closed syncmers, the
recursion was equivalent to a closed formula for Prðf ; aÞ, but for
minimizers and open syncmers, closed formulas appeared unavail-
able. From a practical point of view, the original four-variable recur-
sions pose programming difficulties and they are computationally
expensive for large parameter values. The purpose of this letter is to
replace the recursion for minimizers with a simple explicit formula
that alleviates these problems and to justify it directly with a com-
binatorial heuristic. The Section 3 points out that the formula is like-
ly to generalize to other sketches.

2 Methods and results

Our set-up follows Section 2.2.1 in Shaw and Yu (2021). In win-
dows consisting of w k-mers, therefore, the minimizers are the
smallest k-mers, where a fixed random hash function determines the
ordering O on the k-mers. Minimizers are the earliest sketch
(Roberts et al., 2004; Schleimer et al., 2003) and they come with
two very attractive properties. First, they have a window guarantee
that every substring of length wþ k� 1 contains at least one
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minimizer. Second, the distance between consecutive minimizers fol-
lows a uniform first-occurrence distribution: their spacing is uniform
on the set f1;2; . . . ;wg (Edgar, 2021).

For brevity, this letter identifies the k-mers with their random
hashes, so for our purposes below a k-mer or a minimizer has length
1; a k-mer is positioned at the sequence index of its start; an a-run
has length a; every w consecutive k-mers contains at least one min-
imizer; and if a minimizer is at index 0, the next minimizer has a
random index chosen uniformly from the set f1;2; . . . ;wg.

Let Fw;a be the event where the random a-run of the Section 1
contains no minimizer. Every window of length w or more contains
a minimizer, so on the one hand for a � w, PrðFw;aÞ ¼ 0. For
1 � a < w, on the other hand, there is a rightmost minimizer M�
strictly to the left of the a-run. For convenience, set up a sequence
coordinate system assigning index 0 to M�. Let Mþ be the next min-
imizer to the right of M�. The minimizer Mþ is at some uniformly
distributed index d 2 f1; 2; . . . ;wg (Edgar, 2021). The a-run starts
(by stationarity) at some uniformly distributed index b 2
f1;2; . . . ; dg between M� and Mþ. The total number of configura-
tions for the minimizer Mþ and the a-test window is thereforePw

d¼1

Pd
b¼1 1 ¼ 1

2 w wþ 1ð Þ.
On the event Fw;a, the a-run contains no minimizer, so Mþ

must be strictly to the right of the a-run, i.e. 1þ a � bþ a � d � w.
The total number of configurations allowed under Fw;a for the minimizer
Mþ and the a-run is therefore

Pw
d¼aþ1

Pd�a
b¼1 1 ¼ 1

2 w� að Þ w� aþ 1ð Þ.
For minimizers, all distributions involved are uniform (in particular, the
first-occurrence distribution of distance between consecutive minimizers),
so the probabilities are proportional to the configuration counts. Thus,

Pr Fw;a

� �
¼ w� að Þ wþ 1� að Þ

w wþ 1ð Þ : (2)

The present author and others (J.Shaw and Y.W.Yu, personal
communication) performed extensive numerical computations loop-
ing over both a and k to compare Equation (2) with the recursion in
Theorem 7 of Shaw and Yu (2021), confirming empirically that
PrðFw;aÞ ¼ 1� Prðf ; aÞ for minimizers. Notably for a ¼ 1, Equation
(2) yields PrðFw;1Þ ¼ ðw� 1Þ=ðwþ 1Þ, yielding the density of mini-
mizers 1� PrðFw;1Þ ¼ 2=ðwþ 1Þ, a classical result (Roberts et al.,
2004; Schleimer et al., 2003).

3 Discussion

Although the uniform first-occurrence distribution between con-
secutive minimizers simplifies formulas in Section 2, it is inessential

to the heuristic there (J.Shaw and Y.W.Yu, personal communica-
tion). Our results therefore suggest the existence of a simple general
formula for interconversion of first-occurrence distributions and

a-run probabilities. Presently, the interconversion requires compli-
cated recursive methods (Dutta et al., 2022). The results presented

may therefore be useful in accelerating the current interest and pro-
gress in understanding k-mer sketches (Belbasi et al., 2022).
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