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Synopsis Understanding recent population trends is critical to quantifying species vulnerability and implementing effective
management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 gener-
ations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime)
under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway
Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes
(contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome
sequencing). GONE and momi2 performed best overall, with >80% power to detect severe declines with large sample sizes.
Two-sample and serial sampling schemes could accurately reconstruct changes in population size, and serial sampling was par-
ticularly valuable for making accurate inferences when genotyping errors or minor allele frequency cutoffs distort the SFS or
under model mis-specification. However, sampling only contemporary individuals provided reliable inferences about contem-
porary size and size change using either site frequency or linkage-based methods, especially when large sample sizes or whole
genomes from contemporary populations were available. These findings provide a guide for researchers designing genomics
studies to evaluate recent demographic declines.

Introduction
Human impacts on wild populations have steadily in-
tensified over the course of the Holocene, and multi-
ple lines of evidence suggest the current era is heading
towards a mass extinction event (Ceballos et al. 2015).
For species of conservation concern, understanding re-
cent population trends (on the scale of the past several
decades or centuries) is critical to quantifying species
vulnerability and implementing effective management
strategies. Rapidly decreasing population sizes increase
the risk of local extirpation or complete extinction in
the near future (Caughley 1994). Populations with small
population sizes are also at risk of losing genetic diver-
sity and adaptive potential due to genetic drift (Franklin
1980, Lande and Barrowclough 1987) and can experi-
ence declining average fitness due to inbreeding depres-
sion (Hedrick and Kalinowski 2000, Keller and Waller
2002). Accurately estimating current and past popula-

tion size is therefore a priority for conservation biol-
ogists and managers. Unfortunately, baseline data on
census population sizes (Nc) over the past few centuries
are often missing or unreliable for species of conserva-
tion concern (Alagona et al. 2012, McClenachan et al.
2012).

Genomic methods offer a promising alternative to di-
rect census data for inferring effective population size
(Ne) over time. Ne determines the rate of inbreeding and
genetic drift over time, and although it is not directly
substitutable for Nc (usually, Ne is <Nc, sometimes by
several orders of magnitude), it is an important determi-
nant of the rate of evolutionary change (Waples 2022).
Changes in Ne leave an imprint on genomic diversity
within a population in two important ways. First, the
demographic history of a population influences the dis-
tribution of allele frequencies in that population, also
known as the site frequency spectrum (SFS). A popu-
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lation undergoing a demographic expansion, for exam-
ple, will contain more rare alleles relative to a popula-
tion with a constant size, while a population undergo-
ing a demographic decline will contain fewer rare alleles
(Griffiths and Tavaré 1998, Beichman et al. 2018). Be-
cause of this connection between the distribution of al-
lele frequencies and demographic history, the expected
SFS can be constructed for a given population history
using coalescent simulations in which the probability of
sampled individuals sharing a common ancestor is de-
termined by the population size over time (Excoffier et
al. 2013). Computationally efficient approximations of
coalescent expectations can be obtained using diffusion
models (Gutenkunst et al. 2009) or stochastic models
(Kamm et al. 2020) which use continuous time rather
than discrete generations, and population parameters
can be estimated based on the observed SFS using like-
lihood methods. The effect of demographic change on
the SFS accumulates over time and is dependent on both
the mutation rate and the coalescence rate. This means
that the signal of ancient demographic processes is eas-
ier to detect than the signal of recent change, especially
in large populations where coalescence is less frequent,
and larger sample sizes will be necessary to detect recent
changes (Beichman et al. 2018).

Importantly, SFS methods assume that the loci used
to construct the SFS are independent and unlinked.
Nonrandom associations between loci can occur for
multiple reasons, including physical linkage among loci
on the same chromosome and genetic drift in finite
populations (Hill 1981). The latter means that patterns
of linkage disequilibrium (LD) across loci will also be
shaped by demographic history. Multiple methods have
been developed to infer population size from patterns
of LD. For a sample of physically unlinked loci, LD
should be close to zero in an infinite population, and
the amount of “excess” LD can be used to estimate Ne
at a particular time point. This method is most accu-
rate when the population size is small and the sam-
ple size is large (close to the true Ne; Waples 2006).
For loci inherited on the same chromosome, the fre-
quency of recombination and thus the amount of LD
depends both on cumulative genetic drift and the fre-
quency of recombination between the two loci, mean-
ing that LD for loci with different linkage distances will
reflect population size at different points in that popula-
tion’s history. Recombination frequency will usually in-
crease with increasing physical distance on the chromo-
some, although recombination rate can vary through-
out the genome (Peñalba and Wolf 2020). Thus, the pat-
tern of LD across the genome, combined with a linkage
map of known recombination rates, can be used to infer
changes in Ne over time (Hayes et al. 2003). Recombina-
tion events are more frequent for loci with weaker phys-

ical linkage, and since recombination rates for weakly
linked loci can be much higher than mutation or coa-
lescence rates, LD data potentially contain more infor-
mation for inferring recent changes in population size
than SFS data alone (Hayes et al. 2003, Santiago et al.
2020). Critically, obtaining detailed linkage information
requires the existence of an accurate reference genome
for the organism of interest, which may not be available
in many cases.

One promising avenue for inferring recent changes
in Ne is by comparing genetic patterns in historical and
modern samples. Advances in obtaining genetic mate-
rial from museum specimens or other historical sam-
ples have made the acquisition of both baseline and con-
temporary genetic data (henceforth “temporal data”) a
possibility (Nielsen and Hansen 2008, Bi et al. 2013,
Habel et al. 2014, Diez-del-Molino et al. 2018, Oosting
et al. 2019). For example, temporal RADseq data from
salamanders has been used to accurately reconstruct
known recent declines and expansions (Nunziata et al.
2017). In widespread species, such as Atlantic salmon,
genomic signatures of population decline from tar-
geted sequencing of historical and contemporary sam-
ples have also been used to identify which populations
have recently declined and to infer the drivers of these
declines (Lehnert et al. 2019).

In addition to temporal sampling, the type of ge-
nomic data and the availability of reference genomes
can also influence the quality of inference for Ne. Con-
servation genomics practitioners often use techniques
that sample a moderate number of loci across the
genome, such as RADseq (Andrews et al. 2016) or tar-
geted sequencing (Meek and Larson 2019). Without a
reference genome, these data can provide information
on the SFS but are anonymous with regard to linkage
information. Whole-genome sequencing is now within
reach as well and can greatly increase the scope and
precision of inference possible from conservation ge-
nomic studies (Brandies et al. 2019). Chromosome-level
assemblies are the gold standard for providing linkage
information; however, draft genomes with incomplete
linkage information may be sufficient for making de-
mographic inferences with some methods (Patton et al.
2019).

While several recent studies have used simulations to
compare performance of methods for inferring recent
population history under a given sampling scheme for
either RADseq (Nunziata and Weisrock 2018) or whole-
genome data (Patton et al. 2019), the amount of pre-
cision gained by adding historical genomic data com-
pared to using only contemporary data remains un-
clear. The existing simulation studies have also exam-
ined performance under somewhat limited ranges of
past and present population sizes, timings of popula-
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Table 1 Characteristics of software used to infer recent declines in this study. SFS = site-frequency spectrum, LD = linkage disequilibrium,
WGS = whole-genome sequencing, RAD = restriction-associated DNA or similar reduced-representation data, VCF = variant call format
file.

Software
Inference
method Data type Temporal scheme Input format Additional inputs

momi2 SFS WGS or RAD Contemporary or temporal SFS/VCF∗ Mutation rate, generation time

Stairway Plot SFS WGS Contemporary only SFS/VCF∗ Mutation rate, generation time

NeEstimator LD RAD Temporal Genepop Chromosome locations (optional)

GONE LD WGS Contemporary only PLINK Recombination map (optional)

∗Note that the SFS-based methods accept an SFS for their input but that this SFS can be calculated from a standard VCF file.

tion decline, and generation times. Failure to account
for ancient population events, such as Pleistocene ex-
pansion or contraction, may also affect inferences made
under SFS methods (Momigliano et al. 2021, Hoey et al.
2022). The lingering uncertainty from all of these po-
tential sources can make it difficult for researchers to
make objective decisions regarding how to best spend
limited research funds to generate data that will yield
the highest-quality inferences regarding recent demo-
graphic history.

To help guide study design for researchers interested
in recent demographic inference using genomic data,
we compare here the performance of four inference
methods and three temporal sampling schemes across
simulated reduced-representation and whole-genome
datasets representing scenarios of recent population sta-
bility or decline. We aim to answer the following pri-
mary questions: (1) Which methods provide the most
accuracy and precision for identifying population de-
clines using contemporary data? (2) How do historical
genomic data alter the accuracy of demographic infer-
ence? By evaluating the accuracy of different study de-
signs and inference methods, we provide concrete rec-
ommendations for conservation biologists interested in
reconstructing the recent demographic history of a di-
verse array of potential study organisms.

Methods
Study outline

To evaluate different methods for estimating contem-
porary changes in population size, we simulated whole
genomes from populations with known histories rep-
resenting either stability or decline over the past 200
years. We then subsampled these genomes to generate
a number of reduced datasets incorporating a smaller
number of individuals and/or a random subset of loci
distributed throughout the genome. Finally, we ap-
plied four estimation methods that have been devel-
oped to infer recent declines. Each estimation method
can accommodate different data types and temporal
schemes and takes different inputs (Table 1). We com-

pared power to detect declines as well as the accuracy
and precision for each method.

Simulation scope and approach

We consider a single panmictic population of diploid,
dioecious organisms sampled at a contemporary time
point—or zero years before present (ybp)—and at sev-
eral time points in the recent past (t = 120, 90, 60, and
30 ybp) corresponding to samples that could be repre-
sented in natural history collections or genetic moni-
toring programs. We express time in years rather than
generations so that we can examine more complex de-
mographic scenarios, such as overlapping generations.
We do not consider “paleogenomes” from the more dis-
tant past in this paper.

We simulate data from this population in two distinct
stages (Fig. 1). The first stage uses demographically re-
alistic forward-time simulations to generate a set of re-
cent genealogies. The sex of each individual in the pop-
ulation was randomly determined (50/50 chance of be-
ing male or female, expected sex ratio = 0.5). Popula-
tion size in forward simulations was regulated by con-
trolling the number of offspring (NO) generated in each
time step. At each time step, NO offspring were gener-
ated by randomly selecting one male and one female
parent with replacement from all breeding-age individ-
uals for each offspring.

We considered two different life history patterns in
these simulations. The first pattern (G1) represented an
annual organism with a generation time of one year and
no overlapping generations (all individuals in the pop-
ulation can breed and all die upon reaching an age of
one year). The second (G2) pattern represented an or-
ganism with overlapping generations, with age at first
breeding equal to one year, an age-specific mortality
probability, and a maximum age equal to eight years.
The mortality probabilities and age at first breeding
were set such that the mean age of a breeding indi-
vidual (and thus the mean generation time) was ∼3
years and the expected number of breeding-age in-
dividuals (NB) was equal to NO in a stable popula-
tion. Since for each simulated situation the number
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Fig. 1. Simulation schemes. Parameters of interest are effective population sizes at three time points: contemporary effective population
size (Ne, C), historic effective population size (Ne, H), and ancient effective population size (Ne, A). Solid lines represent simulation scenarios
used for mean error calculations (constant size over recent time, a fast decline beginning 30 ybp, and a slow decline beginning 120 ybp).
Accuracy and bias were also assessed for three other recent decline scenarios (dotted lines) and two ancestral population size change
scenarios (dashed lines).

of offspring in a given time step equaled the number
of breeding age individuals, regardless of population
size, the distribution of reproductive success approxi-
mately followed a Poisson distribution as expected in an
ideal population with random mating, with each par-
ent contributing genes to a mean of two offspring and
the expected variance in offspring NO being approxi-
mately two. NO in each generation should therefore be
roughly equivalent to Ne for both life history patterns
(Hill 1972).

The forward simulations began 100 years before the
first historical sampling time point (i.e., 220 ybp). For
the baseline simulations, we set the initial population
size (Ne, H) to either 1,000 or 10,000. NO in each sub-
sequent generation either remained stable or began an
exponential decline (with λ = NO in the current year /
NO in the following year) at a time point directly after
one of the historical sampling points (Tdec = 120, 90, 60,
or 30 ybp), eventually reaching a contemporary effec-
tive population size (Ne, C) at the final time point (zero
ybp). For all declining populations we conducted a set
of simulations with λ = 0.99, resulting in Ne, C/Ne, H of
0.74, 0.55, 0.40, and 0.30, respectively for each decline
scenario. We also conducted one simulation with a re-
cent decline (Tdec = 30) with λ = 0.95 and Ne, C/Ne, H
= 0.21. This higher λ value was only paired with a re-

cent decline because rapid declines beginning earlier re-
sulted in extremely small population sizes.

We conducted five iterations of each forward de-
mographic simulation using SLiM v.3.3.2 (Haller and
Messer 2019) and recorded the full pedigree as well as
the number of breeders of each sex for each iteration.
We then simulated 25 “chromosomes” for each demo-
graphic iteration by conducting an independent sim-
ulation (with the pedigree fixed to the recorded pedi-
gree) of a single sequence of length 30 Mb and a per-
generation recombination rate of 10−8 per base per gen-
eration (or 1 centiMorgan (cM)/Mb, which is within the
range of recombination rates observed for plants and
animals; Stapley et al. 2017). To decrease the compu-
tational intensity of chromosome simulations, we did
not simulate mutations in SLiM, instead using tree se-
quence recording and coalescent simulations (see be-
low) for generating polymorphisms (Haller et al. 2019).
For tree sequence recording, we recorded 200 individ-
uals at each potential Tdec as well as all individuals at 0
ybp.

The second stage of simulations involved simulating
genetic data for these genealogies using reverse-time
coalescent methods. Simulations were performed us-
ing msprime v.0.7.4 (Kelleher and Lohse 2020) in the
python package pyslim v.0.501, and populations were
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projected backward for a number of generations suf-
ficient for all sampled individuals to reach a common
ancestor using a coalescent process (i.e. without incor-
porating the complex life history used in forward-time
simulations for G3). The effective population size at
the initiation of the simulation was set to the num-
ber of breeding-age individuals in the first genera-
tion of the forward-time simulation (Ne, H). Popula-
tions in the coalescent simulations either remained sta-
ble over time or experienced a 10-fold size change (rep-
resenting either an ancestral expansion or an ances-
tral bottleneck) at 10,000 generations before present,
and they remained at this ancestral population size
(Ne, A) for the remainder of the simulation (until all
loci reached coalescence). Ancestral bottlenecks and ex-
pansions were only simulated for populations with a
larger historic population size (Ne, H = 10,000), for the
G1 life history pattern, and for a restricted set of re-
cent demographic scenarios (constant population size,
a rapid decline starting 30 ybp, and a slow decline start-
ing 120 ybp). Eighteen demographic scenarios in to-
tal were simulated. We simulated data with a recom-
bination rate of 10−8 as used in the forward simu-
lations, and we added mutations to simulated chro-
mosomes using a per-generation, per-base mutation
rate of 10−8 (within the range of mutation rates ob-
served for plants and animals; Lynch 2007). From these
two simulation stages, we generated VCF files contain-
ing all variable sites for each simulated chromosome
from 200 randomly selected individuals at each time
point.

Sampling designs

We subsampled from these full datasets to represent re-
alistic constraints of study design choices. We generated
datasets with total sample sizes n of 20, 50, 100, and
200 individuals. Temporal sampling schemes can range
from a single comparison between a historic baseline
and a contemporary sample to a number of samples col-
lected over several time points, as in fisheries monitor-
ing (Hutchinson et al. 2003) and repeated museum col-
lections (Gauthier et al. 2020). As such, for each dataset
samples were either all collected from the contempo-
rary timepoint (n samples at 0 ybp; contemporary-only
dataset), split evenly between a contemporary and a
baseline timepoint (n/2 samples at 0 ybp and n/2 sam-
ples at 120 ybp; two-sample dataset), or split between
five serial timepoints (n/5 samples at 0, 30, 60, 90, and
120 ybp, respectively; serial dataset). For whole-genome
datasets we used the three smaller sample sizes (total
n = 20, 50, or 100). To create RADseq-like datasets,
we used the three larger sample sizes (total n = 50,
100, or 200) and applied an additional filter to keep
only SNPs found within a set of randomly placed 150bp
loci on each of the 25 chromosomes. For RADseq-like

datasets, we used either 400 RADseq loci per chromo-
some (10,000 total loci) or 2000 loci per chromosome
(50,000 total loci). We generated and conducted infer-
ence on 2430 simulated datasets in total.

Inference on simulated datasets

We applied four different inference methods to the sim-
ulated datasets. The methods chosen represent com-
monly used software packages that use either the SFS
or LD to infer current and past population sizes and
can incorporate either temporal data, whole-genome
data, or both. For conducting inference with tempo-
ral data using the SFS, we used the program momi2
(Kamm et al. 2020), a model-based method for demo-
graphic inference that can incorporate whole-genome
or RAD data. We used pyslim to compute allele counts
for each chromosome at each time point, and we com-
bined these counts into aggregate folded SFS for each
time point. momi2 assumes a branching tree-like pop-
ulation structure, and to accommodate sampling mul-
tiple time points from a single continuous population
in momi2, we specified that each SFS was sampled as
a “leaf” from a branch at its corresponding sampling
time, after which all lineages from that population were
shifted to a new branch from which the next sample
was taken. For whole genome data, the total number
of sites was set to the genome size (750Mb), while for
RADlike data the total number of sites was set to 150
times the number of loci (1.5 Mb or 6 Mb) to repre-
sent 150 bp RAD loci. For each simulated dataset we fit
four different demographic models: (1) a model with a
single constant population size parameter, Nconstant; (2)
a model with two population size parameters (size at 0
ybp, Ncontemp, and at 120 ybp, Nhistoric) and a time pa-
rameter specifying the time at which the population be-
gan an exponential size change (Trc); (3) a model with
an instantaneous ancient size change N̂ancient occurring
at Tac; and (4) a model including both the ancestral
and recent size changes. Potential ranges for Nconstant,
Ncontemp, Nhistoric, and Nancient were set to 10 – 500,000
individuals (the size change was not assumed to be a
decline). The range for Trc was set to 10–120 ybp and
the range for Tacwas set to 1,000–100,000 ybp. The rate
of exponential size change was fully determined by the
time of decline and the two population size parame-
ters. We did not constrain recent size changes to be de-
clined, and as such we evaluated whether momi2 in-
ferred the population to be either stable, declining, or
expanding. We fit all models to each simulated dataset
using the Truncated Newton (TNC) optimizer, and we
recorded all parameter estimates as well as the likeli-
hood and AIC for each model. We retained parame-
ter estimates for population size at 0 ybp N̂e, H and 120
ybp N̂e, C for the model with the lowest AIC for each
dataset.
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For conducting inference using the SFS with whole-
genome data, we used Stairway Plot 2 (Liu and Fu 2020).
We used the vcf2sfs script (https://github.com/shengli
n-liu/vcf2sfs) to compute the folded SFS input. We set
the total number of sites (including monomorphic sites)
to 750Mb, the number of random breakpoints for each
iteration to 7, 15, 22 , and 28, the mutation rate per gen-
eration to 1 × 10−8, and the generation time to 1 year,
and we used 67% of the sites for training. We retained
the most recent median estimate of population size as
N̂e, C. As the time bins for Stairway Plot estimates can
be somewhat irregularly spaced, we used the median
population size estimate for the time bin closest to 120
ybp that was closest to this time point a N̂e, H, and we
used the 2.5% and 97.5% estimates as confidence inter-
vals (CIs).

For conducting inference based on excess LD using
RAD-like data, we used NeEstimator2 (Do et al. 2014).
The LD method outperformed two other methods im-
plemented in NeEstimator in a previous study (Gilbert
and Whitlock 2015). We only used the two-sample
scheme for assessing performance of NeEstimator since
contemporary-only sampling does not allow for infer-
ence of historic size with this method. Before run-
ning, we converted vcf files to genepop files using the
vcf2genepop.pl script (https://github.com/z0on/2bRA
D_denovo/blob/master/vcf2genepop.pl). We used an
allele frequency cutoff of 0.05 and assumed random
mating. We used the point estimates and the jackknife
95% CIs for population size at 0 ybp and 120 ybp as N̂e, C
and N̂e, H, respectively.

For conducting inference using LD with whole-
genome data, we used GONE (Santiago et al. 2020). We
used plink (Purcell et al. 2007) to convert the vcf file to
ped/map format. We ran GONE using the default pa-
rameters (unknown phase, 1 cM/Mb, Haldane correc-
tion, 2000 generations, 400 bins, MAF = 0, allowing
SNPs with zeroes, using all chromosomes, 50,000 SNPs/
chromosome, hc = 0.05, 40 reps, and 20 threads). We
used the estimates for population size at 0 ybp and 120
ybp as N̂e, C and N̂e, H, respectively. After Santiago et al.
(2020), we performed resampling to estimate a CI for
N̂e, C and N̂e, H. Since some datasets contained a rela-
tively small number of SNPs) <300,000 SNPs compared
to the datasets in Santiago et al. (2020), we took a ran-
dom sample of 50,000 SNPs 40 times and re-ran the pro-
gram to generate 95% CIs.

Effects of genotyping errors and allele
frequency filters

Some demographic inference methods (including
momi2) assume no errors in genotyping and no fil-
tering of genotypes based on allele frequency. Since

these conditions are rarely met in practice for non-
model species, we performed additional inferences
using modified datasets to explore the effects of some
potential violations of these assumptions on inference
accuracy.

Genotyping errors are more likely to occur for his-
torical samples due to lower coverage and postmortem
DNA damage in older samples. For example, Bi et
al. (2013) found error rates that were almost five-fold
higher (0.19%) in historical samples compared to con-
temporary error rates (0.04%). Genotyping errors are
most likely to create singleton SNP genotypes that
would potentially impact SFS-based analyses. Minor
allele frequency filters are commonly applied to SNP
datasets; while this may improve inference for some ap-
plications, such as assessing population structure using
STRUCTURE-like methods (Linck and Battey 2019),
distorting the SFS by removing low-frequency alleles
could also negatively impact other analyses (Lou et al.
2021). To assess the potential effect of errors in histori-
cal genotypes, we added singletons to the SFS in momi2
at three different rates (1e−3, 1e−4, or 1e−5 singletons
per site) for RAD-like datasets and re-ran the momi2 in-
ferences. We also applied a minor allele frequency filter
of 0.01 to the data and re-ran momi2 inferences as well.

Evaluating methods

For datasets simulated with a recent decline, we consid-
ered the decline to be correctly inferred when a model
including a recent decline had the lowest AIC and N̂e, C
< N̂e, H (for momi2) or when the upper 95% CI for N̂e, C
was lower than the lower 95% CI for N̂e, H (for the other
methods). For datasets simulated with constant popula-
tion size, we considered the demographic history to be
correctly inferred when a model including a constant
recent population size had the lowest AIC and N̂e, C <

N̂e, H (for momi2), or when the 95% CIs for N̂e,C and
N̂e, H overlapped. Because StairwayPlot and NeEstima-
tor provide 95% CIs for the contemporary and historic
population sizes themselves, rather than the difference
in population sizes, this test for a decline is somewhat
overly conservative (Cumming and Finch 2005).

We evaluated and visualized error using two different
approaches. For each method, we calculated mean abso-
lute percentage error for N̂e, C and N̂e, H for each simu-
lated dataset i over n total datasets using the following
equation:

100
n

n∑

i = 1

∣∣in f erredi − simulatedi
∣∣

simulatedi
,

We calculated mean error on an aggregated subset of
scenarios, including three demographic scenarios (con-
stant population size, a rapid decline starting 30 ybp,

https://github.com/shenglin-liu/vcf2sfs
https://github.com/z0on/2bRAD_denovo/blob/master/vcf2genepop.pl
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and a slow decline starting 120 ybp), a generation time
of 1, and both initial population sizes. We calculated
mean error separately for the WGS and 50k RAD loci
datasets.

Since this metric uses absolute value and does not
convey potential directional biases, we also visualized
concordance between true and simulated values by plot-
ting the log10 ratio of the inferred to the simulated value
across all simulated demographic scenarios.

For two methods, we assessed alternate metrics of ac-
curacy. Since we fit multiple alternate models in momi2,
we evaluated how often the correct model (constant
population size for data generated under the constant
demographic model, or size change for data generated
under the size change model) had the best support (de-
fined as the model with the lowest AICc). Since NeEsti-
mator can return estimates of “infinity” in some situa-
tions, we also identified the proportion of simulations
for which this occurred for N̂e, H and N̂e, C. Due to a
large number of “infinite” estimates from NeEstimator
at n = 50 (Supplementary Fig. 1), we excluded this sam-
ple size from mean error calculations.

Results
Power to detect declines

Overall, momi2 and GONE exhibited the highest power
to correctly detect or reject recent declines. With large
sample sizes (n = 200) and RAD-like data, momi2 cor-
rectly identified declines for ≥80% of simulated datasets
and only performed poorly when declines were recent
(30 generation ago) and slow (λ = 0.99) (Fig. 2A).
momi2 did not perform as well using WGS data, al-
though it was still ≥80% accurate for detecting slow de-
clines ≥90 generations (Fig. 2B). Decreasing samples
sizes for momi2 generally decreased the power to detect
declines (Fig. 2, Supplementary Table 1, Supplementary
Table 2). GONE exhibited ≥90% accuracy for detecting
more severe declines (λ = 0.99 for 120 generations or
λ = 0.95 for 30 generations) with large samples sizes (n
= 100). Power to detect declines with GONE decreased
for lower sample sizes and for less severe declines (Fig.
2B). The other methods (Stairway Plot and NeEstima-
tor) generally had lower power compared to momi2 and
GONE for similar sample sizes (Fig. 2; Supplementary
Table 1, Supplementary Table 2).

Accuracy and bias for estimating Ne, H and Ne, C

Mean absolute error for estimating Ne, H was the low-
est for the SFS-based methods (momi2 and the Stair-
way Plot; Fig. 3A). Mean error for estimating Ne, H
was somewhat higher for GONE, an LD-based method,
than for the SFS-based methods, and the other LD-

based method (NeEstimator) displayed substantially
higher error for estimating Ne, H than any of the other
methods (Fig. 3A). Mean absolute error tended to be
substantially higher overall for estimating Ne, C (Fig. 3B)
than for Ne, H across methods. GONE tended to have
lower error for estimating Ne, C than SFS-based meth-
ods, while NeEstimator had comparable or higher error
compared to momi2.

Mean absolute error for estimating Ne, H did not
strongly depend on sample size for SFS-based meth-
ods (Fig. 3A). Mean error for estimating Ne, H decreased
with sample size for GONE and actually increased for
NeEstimator. For Ne, C, on the other hand, mean error
did tend to decrease with increasing sample sizes across
methods (Fig. 3B).

Whole-genome and RAD data performed compara-
bly for estimating Ne, H with SFS-based methods (Fig.
3A). There was no clear difference between the two data
types for estimating Ne, C as well, and the most accu-
rate estimates were produced by a WGS method (GONE
with sample sizes 50–100) and an SFS method (momi2
with sample size of 200).

In general, there were no strong directional biases
in estimating Ne, H except for NeEstimator with a sam-
ple size of 100, which produced downward-biased es-
timates (Supplementary Fig. 2a, Supplementary Fig. 3).
Estimates of Ne, C tended to be biased upward when us-
ing a serial sampling scheme in momi2, for the rapid de-
cline scenario in momi2, and for some scenarios for the
Stairway Plot, but were otherwise fairly unbiased (Sup-
plementary Fig. 2b, Supplementary Fig. 4).

Generation time and accuracy

Accuracy of inferences for Ne, H based on simulations
conducted using a generation time of three exhibited
similar accuracy for momi2 and GONE overall com-
pared to simulations conducted using a generation time
of one (Fig. 4, Supplementary Fig. 6). For the Stairway
Plot; however, Ne, H estimates for the longer generation
time were less accurate and were biased upward. Es-
timates for Ne, C were biased slightly lower for a gen-
eration time of three but were otherwise fairly accu-
rate for GONE between the two generation times. How-
ever, increasing generation time greatly reduced accu-
racy for the Stairway Plot and for momi2 when using
contemporary-only data (Fig. 4; Supplementary Fig. 7).

Effects of ancestral expansions and bottlenecks
on accuracy and model selection

Ancestral bottlenecks or expansions did not seem to
strongly affect inferences of either Ne, H or Ne, C made
with GONE (Fig. 5). For the SFS-based methods, an-
cestral bottlenecks did not affect estimates of Ne, H, but
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Fig. 2. Power for detecting the correct demographic scenario for (A) RAD data and (B) WGS data. Results are shown for the largest
sample size for each data type (RAD n = 200, WGS n = 100).

ancestral expansions resulted in an upward bias for es-
timates of Ne, H for the Stairway Plot and in some itera-
tions for momi2. Estimates of Ne, C made using whole-
genome data with momi2 were somewhat more accu-
rate when an ancestral bottleneck had occurred com-
pared to the constant ancestral size scenario or an-

cestral expansion scenarios. For RAD data, accuracy
for Ne, C was the highest for the constant size scenario
and the lowest when an ancestral expansion had oc-
curred. Model selection in momi2 using RAD data was
most accurate for the ancestral bottleneck scenario and
least accurate for the expansion scenario (Supplemen-
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Fig. 3. Mean absolute percentage error for estimating (A) historic effective population size (Ne, H) and (B) contemporary effective
population size (Ne, C). Error bars show 10%–90% quantiles for each.

Fig. 4. Relationship between generation time and accuracy and precision. Results are shown as box-and_whisker plots for the largest
sample size for each data type and for inferences made using contemporary-only data. Results for Ne, H are shown in black and results for
Ne, C are shown in white. Ratio of estimated to true Ne is plotted on a log10 scale. Perfect agreement between simulated and estimated
values is shown as a 1:1 dotted line.

tary Fig. 8). For WGS data, momi2 again often selected
the wrong model for the constant-size scenario with an-
cestral expansions or bottlenecks (Supplementary Fig.
8).

To explore the effects of model misspecification, we
also used momi2 to fit models without ancestral size

changes to data that did have these changes. In these
cases, estimates of Ne, H were consistently biased either
low (for the ancestral bottleneck scenario) or high (for
the ancestral expansion scenario; Supplementary Fig.
9). For Ne, C, accuracy was also reduced somewhat (par-
ticularly for the two-sample scenario) and resulted in
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Fig. 5. Effects of ancestral expansions and bottlenecks on accuracy and precision. Results are shown for the largest sample size for each
data type and for inferences made using contemporary-only data. Results for Ne, H are shown in black and results for Ne, C are shown in
white. Ratio of estimated to true Ne is plotted on a log10 scale. Perfect agreement between simulated and estimated values is shown as a
1:1 dotted line. Model selection results for these scenarios are shown in Supplementary Fig. 7.

a slight upward bias for the ancestral bottleneck sce-
nario. In the case of the ancestral expansion scenario,
model mis-specification did not affect inferences for se-
rial sampling but did result in biases for the other sce-
narios, particularly the two-sample scenario (Supple-
mentary Fig. 9).

Effect of minor allele filtering and singleton
errors on momi2

When using two-sample data in momi2, minor allele
filtering introduced small upward biases in estimated
Ne, H, but a strong downward bias for Ne, C (Fig. 6).
Adding singleton errors also introduced a small up-
ward bias in Ne, H but had a much larger effect on Ne, C,
driving a strong downward bias at higher error rates
(Fig. 6). Adding singleton errors to the contemporary-
only dataset at the same rate as the two-sample dataset
caused an extremely strong upward bias in estimates of
both Ne, H and Ne, C (Supplementary Fig. 10).

Performance of temporal sampling relative to
contemporary-only sampling

Two-sample and serial sampling schemes did not show
a consistent benefit over contemporary-only sampling
in momi2, although these schemes did outperform
contemporary-only sampling in certain cases. When
using WGS data, serial and two-sample schemes per-
formed better at identifying more recent slow de-
clines than contemporary-only data (Fig. 2B). The
two-sample scheme also performed better than the
contemporary-only scheme when the generation time
was 3 years (Supplementary Fig. 6). Finally, the bias pro-
duced by minor allele filtering was less pronounced for
two-sample data and absent for serially sampled data
(Supplementary Fig. 11).

Discussion
Researchers interested in estimating population size
change over recent time scales now have a larger se-
lection of methodological tools and types of data avail-
able to them than ever before. Combined with lim-
ited resources, this can lead to difficult choices between
generating more data from many contemporary indi-
viduals, obtaining historical and modern genomic data
to provide a temporal comparison from fewer indi-
viduals, or generating whole-genome data and, poten-
tially, a reference genome for their species of interest.
While the suite of tools available is constantly expand-
ing, the simulation-based analyses presented here pro-
vides guidance for such researchers regarding how cer-
tain types of data and analyses perform relative to oth-
ers, and which analyses may be most robust to potential
confounding factors.

Inferring recent versus historical population
sizes

Inferring historical changes in population size using
modern methodologies has generally been considered
an easier task than inferring recent changes, with the
former possible based on a single whole genome (Li
and Durbin 2011) or a reduced-representation data
from a small number (>10) of individuals (Beichman
et al. 2018). Our results supported this generalization
for SFS-based methods. Inference using momi2 and
the Stairway Plot both resulted in extremely low er-
ror rates regardless of sample size or data type (whole
genome versus reduced representation), though with
some caveats that incorrect model specification intro-
duces biases with momi2. Among the linkage-based
methods, GONE performed somewhat worse than ei-
ther SFS-based method for inferring historic size, al-
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Fig. 6. Effect of minor allele filtering and singleton errors on accuracy and precision for momi2 using two temporal samples. Results for
Ne, H are shown in black and results for Ne, C are shown in white. Ratio of estimated to true Ne is plotted on a log10 scale. Perfect
agreement between simulated and estimated values is shown as a 1:1 dotted line.

though performance improved at higher sample sizes
and error was still fairly low (usually <25%).

In contrast to inference of historical population dy-
namics, Beichman et al. (2018) recommended avoiding
inference regarding recent demographic events (within
the last hundred generations) using whole-genome data
for fewer than 10 individuals or reduced-representation
data for fewer than 100 individuals. The greater dif-
ficulty involved in inferring contemporary population
size was reflected in generally much higher error rates
for recent population sizes compared to historical sizes
for most methods. In line with Beichman et al.’s
recommendations, we observed the lowest error rates
for the whole-genome data linkage method GONE, par-
ticularly when sample sizes were >25, and for momi2
and NeEstimator when using sample sizes >100. The
Stairway Plot generally performed worse than momi2
for inferring recent size except when sample sizes were
large (100). However, the Stairway Plot did outperform
a number of other whole genome methods and accu-
rately reconstructed an ∼100-fold decline over the past
100 years in Tasmanian devils (Patton et al. 2019).

The utility of temporal versus contemporary
data

Temporal sampling schemes contain specific informa-
tion that contemporary-only schemes lack, in the form
of both direct information on the genetic composition
of past populations (which is leveraged by methods
that provide point estimates of population size, such
as the LD method implemented in NeEstimator) as
well as information on the magnitude of genetic drift

over time (used by the Jorde–Ryman method, Jorde
and Ryman 2007). Our results; however, demonstrate
that contemporary-only samples contain a substantial
amount of information on changes in size over time as
well, and it may not be necessary or sufficient to incor-
porate temporal data in order to accurately infer popu-
lation sizes. This may be somewhat counterintuitive, as
temporal data have been used extensively in the past for
inferring population size changes (e.g., Ramakrishnan
et al. 2005, Skoglund et al. 2014, Nunziata et al. 2017).
Critically, however, when testing a method that can
incorporate either contemporary or temporal schemes
(momi2), we found that temporal data did not perform
noticeably better compared to contemporary-only data
when keeping the total number of samples constant and
assuming the model was appropriately specified. A pos-
sible explanation of this pattern is that the additional in-
formation on rare alleles gained from sequencing twice
the number of individuals in a contemporary-only sam-
ple. These alleles can be particularly informative for in-
ferring recent changes in population size; rare alleles
will be lost quickly in a bottleneck (Allendorf 1986).

NeEstimator using temporal data performed no-
ticeably worse than other methods, and performance
did not seem to be increased by increasing sample
size. In contrast to our results, Nunziata and Weisrock
(2018)found NeEstimator to be more accurate for de-
tecting recent size changes, although they only assessed
scenarios where the starting population size was on the
smaller end of the range used here. The performance
of this method is dependent on population size, and as
most of our scenarios involved population declines the
higher historic population sizes may have affected both.
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NeEstimator in particular requires a small but substan-
tial proportion of the population to be sampled (∼1%;
Marandel et al. 2019), and in cases where the popula-
tion size is on the order of 10,000, our simulated datasets
would not have had sufficient numbers of individuals.
Sufficient historic sample sizes may be possible to ob-
tain sometimes, but in many cases would be difficult
to obtain for many species. It may, thus, be difficult to
use NeEstimator to accurately infer historic population
sizes for most populations, unless they were historically
very small and isolated.

Confounding factors

Both MAF filtering and the presence of singletons asso-
ciated with sequencing error can cause extreme biases
in estimates of contemporary population size for SFS-
based methods. The loss of rare alleles is characteristic
of a bottleneck (Allendorf 1986, Garza and Williamson
2001), and the application of a minor allele filter can cre-
ate the illusion of a severe, recent bottleneck. An excess
of rare alleles, on the other hand, is characteristic of a
recent expansion (Keinan and Clark 2012), and the in-
troduction of singleton errors could therefore lead to er-
roneous inference of an expansion. Interestingly, tem-
poral sampling did seem to reduce the bias associated
with minor allele filtering in our analyses, possibly be-
cause temporal data contain more explicit information
on drift. Another explanation for this observation may
be that, with smaller sample sizes per time point, apply-
ing a dataset-wide MAF cutoff will be less likely to re-
move truly rare alleles as the observed population allele
frequencies are more affected by sampling variation and
smaller sample sizes at each time point. We note that al-
though we did not consider other sequencing artifacts
that can have a substantial effect on the SFS (i.e. allelic
dropout for RAD data; Heller et al. 2021), researchers
should be aware of these as additional confounding fac-
tors in demographic inference. We also did not examine
the effects of singletons on WGS methods. Singletons
can be masked in Stairway Plot 2 (Liu and Fu 2020) and
for GONE MAF has little effect on estimated popula-
tion size (Novo et al. 2022), and as such these methods
should be less sensitive to singletons and minor allele
filtering, respectively. However, future work examining
the effect of genotyping error could be worthwhile, es-
pecially since WGS studies in non-model species of-
ten use low-coverage WGS for which accurate genotype
calling is difficult (Lou et al. 2021).

Historic population sizes are rarely stable over deeper
time scales, and as such it is important for demographic
inference methods to be robust to these more ancient
changes. We simulated a 10-fold expansion or decline
similar to a demographic change experienced by many

organisms at the time of the last glacial maximum
(Hewitt 2004). Encouragingly, the methods we exam-
ined seemed to be fairly robust to more ancient changes
when inferring recent or historic sizes. Demographic
reconstruction methods such as the Stairway Plot or
GONE possess a built-in ability to infer these changes
as they attempt to infer the entire demographic history
of the population. Care must be taken with methods in
which the user specifies the demographic model to fit,
such as momi2, since these methods will only include
ancient declines if the user includes them in the set of
models to assess. If they are not included, then infer-
ences of historic and recent size may be severely biased,
as seen in our results. We also note that while we did
not include recent population expansion in our set sim-
ulated scenarios, the signatures of expansion and de-
cline are opposite (Beichman et al. 2018), and power to
distinguish expanding populations from declining pop-
ulations should be at least as high as power to distin-
guish expanding populations from stable populations.
Accurately detecting recent expansions (in, e.g., inva-
sive species) is also highly relevant to conservation and
would be a worthwhile avenue for future research.

The genetic signal of demographic change accumu-
lates on the scale of generations, and as such longer gen-
eration times (and therefore fewer generations elapsed)
could severely reduce accuracy for inferring recent
change. We did find lower accuracy for SFS-based
methods when we increased generation time to 3 years.
Organisms of conservation concern may have much
longer generation times, and care should be taken to
consider the number of generations since suspected de-
clines. Nunziata and Weisrock (2018) found that de-
clines were detectable when 10–20 generations had
elapsed since the start of a decline. GONE seemed to
perform fairly well even when only 10 generations had
elapsed since the start of a decline, suggesting that us-
ing this method with whole genome data may be the
best for inferring recent declines when generation times
are longer. Before choosing a data type and method, re-
searchers should consider the generation time of their
study organisms and the number of generations that
have elapsed since suspected changes in population size.
If generation time is unknown (as it may be for some
non-model species), researchers can attempt to esti-
mate generation time for closely related species. Since
the timing of estimated declines is scaled to generation
time, uncertainty in generation time will mainly result
in uncertainty in the timing of the change rather than
the magnitude of change.

A number of factors that we did not examine here
could potentially confound the inference of population
size. We considered only a single panmictic population
for simplicity. Inferring population size is less straight-
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forward in structured populations and populations re-
ceiving migration (Neel et al. 2013, Orozco-terWengel
2016, Mazet et al. 2016). Model-based analyses can po-
tentially include migration and population structure in
their framework, although it would be important to
sample all populations in that case. GONE seems to be
robust to high levels of gene flow (in which case it infers
a metapopulation-level estimate of size), but low levels
of migration can distort estimates (Santiago et al. 2020).
Researchers should be aware of any potential popula-
tion structure when applying these methods.

The time scale on which whole genome data are in-
formative for inferring recent change will depend on
the frequency of recombination—specifically, recent re-
combination events are more likely to occur between al-
leles that are less tightly linked (McVean 2002). As such,
long-range linkage data are necessary for inferring re-
cent demography. While a reference genome is needed
for providing the linkage information, our investiga-
tions suggest that the reference genome used does not
need to be chromosome-scale. Specifically, reducing the
size of known linkage groups to 5 cMs did not seem
to meaningly affect inference with GONE, suggesting
that even when using an incomplete draft genome, this
method can provide reliable inference (Supplementary
Fig. 12). Recombination rate variation could also poten-
tially influence inferences of population size made using
GONE. While recombination rate was fully determined
by physical distance for our simulated datasets, recom-
bination rate can vary substantially across the genome
in real populations (Peñalba and Wolf 2020). When it
is possible to construct accurate linkage maps, incorpo-
rating these maps in GONE and similar analyses would
improve inference of recent population size.

In a recent review, Marchi et al. (2021) noted that
whole genome data may not always be ideal for demo-
graphic inferences compared to reduced-representation
data, since patterns of variation in whole genome data
will be more influenced by non-stationary processes
such as variation in recombination rates and selec-
tion across the genome that are difficult to model. It
will be important to detect and account for these pro-
cesses whenever possible while using whole genome
data. GONE seems to be robust to selection (Novo
et al. 2022) and can incorporate observed recombina-
tion rates across the genome rather than use a uniform
rate (Santiago et al. 2020), meaning that this method
could potentially surmount these obstacles presented by
genome-scale data.

Recommendations and future directions

Based on our results, we recommend different meth-
ods for inferring recent changes in population size de-

pending on the samples and resources available. When
contemporary whole-genome sequencing data can be
collected from at least 50 samples and a reasonably
complete draft genome is available, we recommend the
linkage-based methods implemented in GONE. These
methods appear powerful and accurate across a wide-
range of demographic scenarios. In contrast, we recom-
mend the SFS-based momi2 when linkage information
and whole-genome data are not available. In particular,
we recommend serial sampling with momi2 to help re-
duce the impacts of model misspecification or genotyp-
ing error, both of which are difficult to fully avoid. Care
must be taken; however, to ensure that the SFS used
for inference with momi2 accurately represents the full
SFS (including rare alleles) in the population of interest.
While NeEstimator performed relatively poorly in our
tests, it could be useful when historical and contempo-
rary samples are available and when an appreciable frac-
tion of the population (1%) has been sampled at each
time point.

There are currently gaps in methods that can in-
corporate whole-genome data with historical samples
and in methods that can combine SFS and linkage in-
formation. ABC and machine learning methods could
bridge this gap (Beichman et al. 2018, Schrider and Kern
2018, Sanchez et al. 2021), and they represent promis-
ing approaches for integrating multiple data types. Mov-
ing forward, it will be important to evaluate these new
methods under a wide-range of scenarios and data types
to determine how useful they are for inferring recent
size changes.
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