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Abstract

We employ a recently developed complexity-reduction quantum mechanical (QM-CR) approach, based on complexity reduction of
density functional theory calculations, to characterize the interactions of the SARS-CoV-2 spike receptor binding domain (RBD) with
ACE2 host receptors and antibodies. QM-CR operates via ab initio identification of individual amino acid residue’s contributions to
chemical binding and leads to the identification of the impact of point mutations. Here, we especially focus on the E484K mutation
of the viral spike protein. We find that spike residue 484 hinders the spike’s binding to the human ACE2 receptor (hACE2). In contrast,
the same residue is beneficial in binding to the bat receptor Rhinolophus macrotis ACE2 (macACE2). In agreement with empirical evi-
dence, QM-CR shows that the E484K mutation allows the spike to evade categories of neutralizing antibodies like C121 and C144. The
simulation also shows how the Delta variant spike binds more strongly to hACE2 compared to the original Wuhan strain, and predicts
that a E484K mutation can further improve its binding. Broad agreement between the QM-CR predictions and experimental evidence
supports the notion that ab initio modeling has now reached the maturity required to handle large intermolecular interactions central
to biological processes.

Significance Statement:

The threat of emerging pathogens, exemplified by the rapid spread of SARS-CoV-2, has motivated investigations into how
pathogens may evolve. In surveying possible evolutionary trajectories, wet-bench screens can only sample a small fraction of
possibilities because of practical limitations. Mechanistic modeling can partially overcome these limitations by offering: (1) the
flexibility of in silico sampling and (2) insights about underlying interaction mechanisms. Here, we employ a complexity reduc-
tion quantum mechanical (QM-CR) approach to describes the intermolecular interactions at the amino acid level. Through this
approach, we uncover residues critical to spike–receptor and spike–antibody interactions. We find broad agreement between the
QM-CR predictions and experimental evidence, showcasing the ability of ab initio modeling to capture biologically relevant inter-
molecular interactions.

Introduction
Since SARS-CoV-2 infected the human host, several variants have
arisen (1) with distinct changes in the viral spike protein, particu-
larly in the receptor binding domain (RBD). Two trends have been
prevalent in the spike evolution: (i) selection toward improved
binding to host cells (2) and (ii) selection toward evasion of neu-
tralizing antibodies (nAbs) (3–6). Anticipating the evolutionary tra-
jectory of viruses is a long-established relevant topic in the scien-
tific community (7). Presently, the main approach in this direction
is high-throughput in vitro screening of mutants [e.g. (8, 9)]; how-

ever, such an approach does not directly identify the mechanisms
that make a given mutation more, or less, beneficial. In this work,
we show how the recent developments in ab initio modeling can
complement experimental results and offer detailed mechanistic
insights.

Traditionally, full quantum mechanical (QM) models of inter-
molecular interactions are only employed for small molecules of
about a hundred atoms (10, 11); larger molecules have proven
computationally challenging for full QM investigations. Neverthe-
less, in silico approaches alternative to full QM have been suc-
cessful. Molecular docking (12–14), relying on geometrical con-
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straints to assess intermolecular interactions, has been used to
survey small-molecule candidates in drug discovery (15). Force-
fields (FFs) have also been successful (16, 17), whenever previ-
ous adequate parameterization is available (18). Hybrid quan-
tum mechanics/molecular mechanics (QM/MM) methods are
also common in describing enzyme–substrate systems (19), and
have been successfully applied to SARS-CoV-2 (20–30). QM/MM
uses QM simulations for a small portion of the system (tens
of atoms) (31), leaving the remaining regions to be modeled
with a less computationally demanding MM simulation, driven
by FFs.

To mechanistically characterize SARS-CoV-2 spike–receptor
and spike–nAb interactions, we apply a recently developed ap-
proach for large-scale electronic structure calculations: com-
plexity reduction in density functional theory (DFT) calculations
(32, 33), hereafter called QM-CR. QM-CR differs from previous
approaches in requiring no targeted parameterization or prior
knowledge about the nature or sites of interactions, and it is
based on full QM calculations on the entire system. QM-CR lever-
ages recent progress in computational chemistry (34) to han-
dle tens of thousands of atoms in a single simulation. This en-
ables us to capture and investigate biological processes involv-
ing several hundreds of amino acids, including the SARS-CoV-
2 spike interactions. Recent efforts on SARS-CoV-2 have gener-
ated structural and biochemical data that can be used to val-
idate QM-CR predictions. In particular, the high level of de-
tail from recent contributions gives us new insight to comple-
ment experimental data or analysis based on regression models
(35–38).

Importantly, QM-CR can reveal the mechanisms behind
intermolecular binding by decomposing interactions into
chemical/short-ranged (which imply a shared electron) ver-
sus electrostatic/long-ranged (which do not involve shared
electrons). We define as “hotspots” amino acids with a significant
chemical contribution to the intermolecular interactions. To
further investigate the contribution of individual amino acids,
single point mutations can be introduced into a protein’s (e.g.
the spike) primary structure. We employ the BigDFT computer
program (39), based on an ab initio DFT approach on a set of
fully atomistic 3D structural models, to simulate intermolecular
interactions of interest with a computational cost manageable
on modern supercomputers.

In this work, we focus our analysis on the E484K mutation for
three main reasons. First, our analysis identifies residue E484 as
the main interface weak link in the interaction of the SARS-CoV-2
Wuhan strain with the human receptor ACE2 (hACE2); conversely,
the same residue is beneficial to binding the bat Rhinolophus macro-
tis’ ACE2 (macACE2). Second, we show that an E484K mutation
alone can disrupt the neutralizing effect of specific antibodies. In
addition, we also highlight the strong modular character of the
E484K mutation and show that, if imposed on existing SARS-CoV-
2 variants such as Delta, it can enhance binding to hACE2, po-
tentially identifying future viral evolutionary trajectories. Finally,
we argue that ab initio models are now at the point of providing
mechanistic insights on molecular interactions central to biolog-
ical processes.

Results
We focus our analysis on the impact of the E484K mutation on
antibody evasion and cellular receptor binding. Prior experimen-
tal and computational data have shown that spike variants with
the E484K mutation in the RBD can evade antibodies C144 and

C121 (38, 40). E484K is also a typical signature mutation of the
RBD of the Gamma and Beta variants. We test our QM model as
an agnostic predictor to explain the interaction of the viral spike
(the original Wuhan version or the E484K-mutated one) with host
receptors and nAbs.

QM-CR underscores hotspots of spike–hACE2
interactions
We examine the interaction between the Wuhan-type (WT) spike
RBD and hACE2 as its native substrate. In this analysis, we calcu-
late the overall effect of each amino acid residue on its respective
interactor, either on the spike side or on the hACE2 side; the con-
tribution to the binding energy can either be attractive/stabilizing
or be repulsive/de-stabilizing (Fig. 1).

We use the Fragment Bond Order (FBO) (32), calculated using
the electronic structure of the system in proximity of a given
residue, as a measure of the strength of the interaction in the
proximity of the interface between the two interacting molecules
(Table 1). In Fig. 1, we have highlighted residues with large FBO
as well as those close to the geometric interface. Residues with
both large FBO and interface proximity are determined as ma-
jor contributors to the intermolecular interactions. This analy-
sis reveals the contribution of each residue to the overall binding
performance, highlighting which amino acids facilitate or hinder
binding, and how. In the following sections, we use FBO to draw an
interaction network of the interface to detail the chemical inter-
actions among residues and their stabilizing or destabilizing role.
Details of the procedure are provided in the Supplementary Mate-
rial (“Details of the fragmentation procedure”). As an alternative
visualization, the contribution of each amino acid residue to the
binding can also be highlighted over the 3D physical arrangement
of the two molecules (Fig. S1).

QM-CR identifies the spike E484 residue as the
weak link in the binding to the host receptor
hACE2
FBO values pinpoint the hotspots of the RBD-hACE2 system
(Fig. 2). On the hACE2 side (Fig. 2a), Q24, T27, D30, K31, H34, E35,
E37, D38, Y41, Q42, Y83, and K353 stand out, in agreement with
known data (41). On the spike side (Fig. 2b), a more diverse lay-
out emerges, on and off the interface, with several residues dis-
playing repulsion. However, residue E484 shows the unique trait of
being simultaneously repulsive and at the interface with hACE2,
via a short-range interaction with the K31 residue (Fig. 2c). Since
the chemical interaction is intrinsically attractive, the overall re-
pulsive interaction indicates that another residue in the vicin-
ity cancels the chemical attraction with an electrostatic repul-
sion. Overall, in the WT structure, E484 destabilizes the binding
to hACE2. From this analysis, we conclude that the Wuhan spike
RBD harbors a suboptimal residue at the 484 position for hACE2
binding.

To further investigate the impact of E484, we tested the model
on the available 3D crystal structure of the human homologous
ACE2 receptor in R. macrotis, a host species with a more adapted
SARS-CoV-2 interaction (41). In this simulation (Fig. 3a-b, second
rows), the E484 residue is instrumental to the binding by being
strongly attractive to the R. macrotis ACE2 (macACE2). Notably, in
both hACE2 and macACE2, the interactor with E484 is the ACE2
residue K31. This means that the macACE2 sequence has residues,
proximal to the K31 hotspot, that exert an attractive electrostatic
force on E484. A closer inspection of the two sequences reveals
that this attractive force comes from the K35 residue, which in
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Fig. 1. Mechanistic characterization of the binding between Wuhan strain’s spike and hACE2. Data are plotted on the sequence of hACE2 (a) and the
spike RBD (b). Letters represent single amino acid residues; yellow bars indicate interface residues, identified with the FBO threshold. “FBO” is the
Fragment Bond Order values, and “Distance” is the distance of a residue to the nearest atom of its ligand. “Interaction” is the chemical/electrostatic
force shown as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.

Table 1. Prospectus of the main concepts and quantities constituting the model.

Electron density The distribution of electrons in a given molecular system. The electron density determines the nature and strength of
the chemical bonds between interacting molecules. Such an “electron cloud" is the main emerging property of the
underlying atomic structure in defining the chemical characteristics of a molecule.

Fragment The modular elements into which the electron cloud can be partitioned, for example, an amino acid. The model
partitions the electron cloud into physically consistent regions and/or verifies the consistency of a pre-defined
partitioning; every such region is defined as a fragment.

FBO The descriptor of the inter-fragment interactions. FBO is the main quantity used in the model to represent the
connection pattern of the fragments of interacting molecules.

Fragment
interactions

From the results of the model and the features of the fragments it is then possible to calculate the interaction strength
between any two fragments. Such interaction has both a chemical/short-range term that is always attractive, and an
electrostatic/long-range term that can be attractive or repulsive.

Final output At the end of the simulation, BigDFT provides a simple representation of the strength of interaction between
fragments of the two molecules. The model can describe the energy and nature of the acting chemical bonds. This
enables a mechanistic explanation and/or prediction of how specific amino acid substitutions or deletions, in spikes or
nAbs, impact the interactions with their hACE2 substrate or the viral spike, respectively.

Hardware
requirements

The model requires massively parallel calculations via high performance computing. On a modern supercomputer,
hundreds of simulations can be performed in a time frame of one hour.

All the elements here discussed are general and therefore applicable, without previous parameterization, to any given set of atoms for which atomistic structural
representations are available.

hACE2 is replaced by glutamic acid. Thus, the model highlights a
stark contrast between human and bat receptors.

We further confirmed the role of E484 by introducing the E484K
mutation into the viral spike and then assessing the interaction
with hACE2 (Fig. 2). The E484K mutation improves the spike–

hACE2 binding energy by about 32% (Fig. 2b, histogram), switch-
ing the main hACE2 interacting residue from K31 to E35. Such
an interaction, driven by electrostatics, represents a net improve-
ment of the Wuhan-hACE2 network. Conversely, the same mu-
tation does not affect the spike binding energy to macACE2 in
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Fig. 2. Data are plotted on hACE2 (a) and on the Wuhan spike (b) primary structure bound to the Wuhan spike (WT) and the mutated one (E484K).
Amino acids are represented by the corresponding letters and numbered on the histogram’s horizontal axis. Interface residues are highlighted by
yellow bars and their overall effect on the other molecule is indicated by red (repulsive) or blue (attractive) tiles. Histograms underneath the
sequences show the relative change in binding energy of the E484K mutated variant relative to the Wuhan strain, with positive and negative values
indicating weaker and stronger binding, respectively. Bottom right histograms represent the overall binding energy of hACE2 with the Wuhan spike
versus the mutated one, partitioned into chemical and electrostatic contributions. Interaction networks (Wuhan spike-hACE2 to the left, and mutated
spike-hACE2 to the right), including FBO-interface residues and their coordinated interactors are shown (c). Squares depict spike residues and circles
depict hACE2 residues, with red color for repulsive and blue color for attractive energy. Yellow outlines highlight interface residues. Bonds are purple
when intermolecular or black when intramolecular.



Zaccaria et al. | 5

20 25 30 35 40

macACE2
T T E D E A K K F L D K F N S K A E D L S Y E S S

hACE2
T I E E Q A K T F L D K F N H E A E D L F Y Q S S

(a) ACE2 @ RBD WT

75 80 85

E Q S K L A KN Y P L E E I Q

E Q S T L A QM Y P L Q E I Q

325 330 335 340 345 350 355

M T E G FWN K SM L T E P GDG R K V V C H P T AWD L G K GD F R I K

M T QG FWE N SM L T D P G N V Q K A V C H P T AWD L G K GD F R I L

400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475

macACE2
F V I R G D E V R Q I A P GQ T G K I A D Y N Y K L P D D F T G C V I AWN S N N L D S K V GG N Y N Y L Y R L F R K S N L K P F E R D I S T E I Y Q A G S T P

hACE2
F V I R G D E V R Q I A P GQ T G K I A D Y N Y K L P D D F T G C V I AWN S N N L D S K V GG N Y N Y L Y R L F R K S N L K P F E R D I S T E I Y Q A G S T P

(b) RBD WT @ ACE2

480 485 490 495 500 505 510 515 520 525

macACE2
C N G V E G F N C Y F P L Q S Y G F Q P T N G V G Y Q P Y R V V V L S F E L L H A P A T V C

hACE2
C N G V E G F N C Y F P L Q S Y G F Q P T N G V G Y Q P Y R V V V L S F E L L H A P A T V C

(c)

Fig. 3. Mechanistic characterization of the Wuhan spike binding to the human ACE2 (hACE2) and R. macrotis ACE2 (macACE2). Data are plotted on the
ACE2 primary structure (a), and on the Wuhan spike RBD (b), when binding to the human (hACE2) and the bat (macACE2) receptor. Amino acid
residues are labeled with letters and numbered. Interface residues are highlighted with a yellow bar, red tiles are repulsive residues, and blue tiles are
attractive residues; see the rest of the figure for energy scales. The interaction networks (c) represent the hACE2-spike system on the left, and
macACE2-spike on the right; circles are ACE2 residues, squares are spike residues. Interface residues are highlighted with a yellow bar, red tiles are
repulsive residues, and blue tiles are attractive residues. Bonds are purple when intermolecular or black when intramolecular, and their thickness
represents the strength of the FBO between residues.

the same position, where the bat receptor hosts a lysine. In other
terms, for macACE2, K484 clearly does not engage K35, and would
actually disappear from the interface (Fig. S2). The resulting inter-
action network is rearranged, and the interface binding energy is
not improved by the mutation. Therefore, the model shows a more
functional interaction between macACE2 and Wuhan RBD, possi-
bly the result of a longer adaptation by SARS-CoV-2 to R. macrotis,
compared to the human receptor. In the hACE2 interaction, the
E484 spike residue belongs to a suboptimal sector of the chemical
interface, suggesting that other RBD adaptations in this sector are
likely to improve the binding.

QM-CR shows how nAb C121 loses binding to the
E484K mutated spike
We identify the hotspots between the Wuhan spike RBD and C121
nAbs (Fig. 4 and Fig. S1) (see results for C144 nAb in Fig. S3).
Residue E484 is the main spike interactor with C121 nAb. Other
relevant sites are residues K444, Y449, F486, Y489, and Q493. On
the C121 side, residues Y33, S55, and S75 are pivotal for the Wuhan
spike binding. The model estimates that among all the residues
contributing to the interaction, the individual contribution of E484
amounts to around 50% of the total. The interaction network
(Fig. 4c) shows E484’s binding to residues Y33 and S55 of C121.
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Once the E484K mutation is imposed, we observe a rearrangement
of the interaction network, and a substantially lower binding en-
ergy between the spike and the antibody. Specifically, E484K re-
duces the connectivity at the 484 residue in the interaction net-
work and modifies the interactions on the C121 side toward de-
creased stability. Only the S52 residue is stabilized by the muta-
tion, but not to the point of compensating for the loss of attrac-
tion at other residues. Overall, once the mutation is applied, we
observe a substantial decrease of about 25% of the total binding
energy, largely because of reduced short-range interactions. The
model concludes, with no a priori information other than the ex-
perimental crystal structure, that the E484 residue is the essen-
tial actor in the binding by nAb C121, and that a targeted point
mutation will substantially affect said binding. The analysis of
C144 nAb shows comparable results. Moreover, C144 undergoes a
substantial rearrangement of its interaction network in response
to the mutation, arguably a consequence of the original higher
connectivity of the residue E484 in the binding, compared to the
C121 case: five C144 residues are involved (Y51, S52, G53, G54, and
S55) compared to two C121 residues (Y33 and S55) (Fig. S3). In-
terestingly, the importance of E484 also appeared in previous a
work in which E484 mutants arise under the selective pressure of
nAbs (42).

QM-CR predicts that the E484K mutation
strengthens the binding of the Delta spike to
hACE2
Starting from the Wuhan strain crystal structure, we generate
a virtual crystal structure to represent Delta (B.1.617.2) in con-
junction with hACE2 by substituting its characterizing RBD muta-
tions (L452R and T478K) into the Wuhan spike crystal structure.
Such residue mutations belong to an off-interface sector of the
RBD (see Fig. 1). Our simulations identify the same FBO interface
residues found for the Wuhan strain. However, differently from
the other tested interaction networks, a substantial contribution
to the overall binding energy of Delta to hACE2 comes from off-
interface residues via their long-range electrostatic effect on their
counterparts, highlighting the relevance of including residues be-
yond the interface region in the analysis of binding.

Furthermore, when testing the binding of the Delta–hACE2 sys-
tem after introducing the E484K mutation, the simulation shows
that E484K is compatible with the Delta variant and further
strengthens the overall binding to hACE2. This in silico-generated
variant, solely based on theoretical grounds, displays a stronger
binding to hACE2 than either E484K or Delta variants individually
(Fig. 5).

Discussion
Recently developed complexity reduction tools in DFT calcula-
tions have allowed full QM simulations of systems with several
thousands of atoms. These advances have bridged the gap that
had so far hindered full QM ab initio modeling of larger molecules
that are often of interest in biology. A computational approach
that can capture biologically relevant intermolecular interactions,
such as protein–protein interactions, has untapped potential for
better mechanistic understanding of biological phenomena at a
molecular level.

In this work, we use the BigDFT code to implement an ab initio
QM simulation of the electronic properties of a given set of atoms
as large as a full protein–protein system. Through this model,
we decompose the interaction between two biological macro-
molecules, spike RBD and receptor/antibody, into the individual

energetic contributions of each of the amino acid residues in-
volved. Additionally, the model characterizes the nature of these
contributions into two main categories: (1) short-range/chemical
and (2) long-range/electrostatic. Ultimately, we infer a network
of interactions with amino acid residues of the two interacting
molecules as nodes, and the inter-residue binding strength as
edges. This interaction network is based on the electronic struc-
ture of the protein–protein system.

We focus on the viral spike interaction with ACE2 as its natu-
ral receptor, and with nAbs C121 and C144. We demonstrate that
a QM model, assessing the interactions among the residues of
an intermolecular biological system, enables mechanistic insight
into how SARS-CoV-2 interacts with its host. The QM-CR model
identifies the E484 residue as the only interface element hinder-
ing the binding between the Wuhan strain and hACE2, making
it the most evident weak link of the Wuhan spike binding to the
human host. The E484K mutation is shown by the model as a di-
rect solution to this hindrance by improving binding to hACE2 and
presumably constituting an evolutionary advantage, as supported
by its emergence among several successful variants. Interestingly,
QM-CR also shows that the E484 residue stabilizes the interac-
tion between the Wuhan viral spike and the bat receptor macACE2
from R. macrotis. We interpret this as an indication that the Wuhan
strain is better adapted to a bat-like ACE2, and the rise of changes
at E484 constitutes an adaptation specific to the human host.

In agreement with known data, QM-CR predicts loss of inter-
action between the SARS-CoV-2 spike and nAbs C121 and C144
once the E484K mutation is imposed on the spike of the Wuhan
strain. The RBD residue E484 emerges as the main and fundamen-
tal spike fragment enabling the binding event, and therefore neu-
tralization. These data suggest that nAbs challenging the spike
at E484—the very residue that most hinders hACE2 interaction—
provide an ulterior selective pressure for the virus to find alterna-
tives to the original phenotype at this position.

By analyzing the competition between short- and long-range
interaction contributions, we have shown that, compared to the
Wuhan strain, the charge-shift E484K mutation substantially in-
creased (by about 30%) the binding energy to hACE2. On the RBD
side, the model also highlights how the effect of E484K is focused
on the 484 position, with limited off-target repercussions for the
spike’s binding (Fig. 2). We argue that this trait qualifies the E484K
mutation as highly “RBD-modular" and readily achievable in an al-
ready well-adapted spike structure. The contribution of E484K to
the binding is largely long-range/electrostatic, therefore less de-
pendent on a specific steric conformation. Our simulations are
motivated by the available empirical data in identifying the E484K
mutation as a particularly likely evolutionary outcome, based on
increased SARS-CoV-2 infectivity and antibody evasion. We thus
examined the potential impact of the E484K mutation on spike–
hACE2 binding in the background of the Delta variant. Our model
suggests that E484K affects spike–hACE2 and spike–nAb binding
in a modular fashion. Thus, if acquired by the Delta strain, E484K
further increases binding, possibly contributing to increased in-
fectivity. We acknowledge that infectivity is a multifactor process,
of which receptor binding is only one among multiple actors.

Our investigation is focused on characterizing individual amino
acid contributions to the different performances of alternative
spike structures in binding hACE2, especially to assess the hypo-
thetical relevance of present and future single point mutations
imposed on available crystal structures. Binding to ACE2 is the
first step for SARS-CoV-2 infection, and is therefore central to the
overall fitness of a given viral variant. In the context of viral evo-
lution toward improved human ACE2 binding, we intend to iden-
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Fig. 4. Mechanistic characterization of C121 binding to the Wuhan strain spike protein and energetic changes as a result of the E484K spike mutation.
Data are plotted on the spike primary structure (a) and on C121’s Heavy-Chain (b) considering the different bindings via the Wuhan spike (WT) and the
mutated one (E484K). Amino acids are represented by letters and numbered on the histogram’s horizontal axis. Histograms underneath the sequences
represent the relative change in binding energy of the second row relative to the first one (Wuhan strain). The bottom right histograms represent the
overall binding energy of C121 with the Wuhan spike (left) and the mutated one (right) and its characterization as chemical or electrostatic. The row
above each sequence shows the chemical or electrostatic forces as attractive (blue) or repulsive (red), with darker colors indicating stronger effects.
Interaction networks with C121 nAbs are shown (c). Network nodes are represented in red (repulsive) or blue (attractive) based on their effect on their
counterparts. Residues at the binding interface are highlighted by a yellow outline. Bonds are plotted as purple when intermolecular or black when
intramolecular and their thickness is related to the strength of the FBO between residues.
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Fig. 5. Mechanistic characterization of spike–hACE2 binding suggests that Delta + E484K spike has stronger hACE2 binding than the Delta variant. (a)
Data are plotted on hACE2 primary structure bound to the Wuhan spike (WT), Delta spike (δ) and Delta + 484 K spike (δ + 484 K). Amino acids are
represented by the corresponding letters and numbered on the histogram’s horizontal axis. Interface residues are highlighted by yellow bars and their
overall effect on the other molecule is indicated by red (repulsive) or blue (attractive) squares (energy scale is identical to the one employed in the
other figures). Histograms underneath the sequences show the relative change in binding energy (green: Delta compared to Wuhan; red:
Delta + E484K compared to Delta). (b) Data are plotted on the viral spike primary structure bound to the Wuhan spike (WT), Delta spike (δ), and
Delta + 484 K spike (δ + 484 K). Amino acids are represented by the corresponding letters and numbered on the histogram’s horizontal axis. Interface
residues are highlighted by yellow bars and their overall effect on the other molecule is indicated by red (repulsive) or blue (attractive) squares (energy
scale is identical to the one employed in the other figures). Histograms underneath the sequences show the relative change in binding energy (green:
Delta compared to Wuhan; red: Delta + E484K compared to Delta). Bar plots on the bottom right represent the overall binding energy of hACE2 with
the Wuhan, Delta, and Delta + E484K strains, partitioned into chemical or electrostatic contributions.
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tify the structural traits that represent the objects of selection;
when compared to the closest experimental dataset available (9),
the quantities we compute provide QM simulations, which largely
align with empirical results (Fig. S6) (43, 44).

The QM-CR approach is performed on all-atom in silico struc-
tures as inputs. In this context, we have applied the QM-CR
method to crystal structures available in the PDB database, as well
as variations of them, whenever crystalized structures are un-
available. Our analysis does not take into account conformational
changes (which recent work has shown take place on the order
of microseconds for spike–hACE2 interactions (45, 46)), conforma-
tional changes would require applying QM-CR to a population of
structures coming from, for instance, subsampled Molecular Dy-
namics (MD) trajectories (47). Furthermore, due to the nature of
the QM-CR analysis and the use of a single frame, interaction en-
ergies do not account for entropic effects or rearrangement (elec-
tronic or nuclear) after disassociation. Interactions have also been
partitioned into per-amino-acid contributions, which introduces
some error terms; however, this can be controlled using measures
provided by the QM-CR methodology (see Supplementary Mate-
rial, “Details of fragmentation procedure”). For this study, i.e. the
case of E484K, the model’s predictions align with available em-
pirical data even when using the initial virtual crystal structures.
In this specific case, this may be due to the long-range impact of
E484K as a charge-shift mutation. Moreover, in the vicinity of the
interface, the QM-CR approach produces an interaction network,
which at the very least encodes the first-order effects that a mu-
tation can induce in the chemical bonds of the interface.

The crystal structures employed for the Delta spike variant are
not associated to an experimental result. They are virtual approx-
imations, obtained via local energy minimization. The approxi-
mation assumes that no major structural changes from the ref-
erence Wuhan spike occur when single point mutations are in-
troduced. In the Supplementary Material (Fig. S4), we show evi-
dence that such an approximation is reasonable, at least for the
combination of mutations characterizing the Beta variant RBD:
E484K, N501Y, and K417N. We employ a well-established DFT ap-
proximation, PBE + D3, which provides reliable information on
coarse-grained quantities and trends (32, 48), and simulates struc-
tures in their relaxed positions (49). Overall, we deem our method
to be a balanced compromise between accuracy and modeling
complexity.

The maturity of large-scale QM calculations represents a
unique opportunity to employ full QM approaches to uncover the
interaction mechanisms. Such mechanisms are presently inac-
cessible to other, more conventional computational approaches.
We also show that an ab initio modeling in QM-CR provides in-
sights useful for comparison with experimental data, supporting
its capability to offer predictive power for intermolecular interac-
tions of biological relevance. Finally, we argue that QM-CR can be
correlated to high throughput calculations of libraries of mutated
structures aimed at identifying potential antibody escape routes
for SARS-CoV-2 and, being unbiased and agnostic, can be readily
applied to other biological systems.

Methods
Computational approach
We perform a full QM model, as implemented in the BigDFT com-
puter program suite (50). The approach employs the formalism of
Daubechies wavelets to express the electronic structure of the as-
semblies in the framework of the Kohn–Sham (KS) formalism of
DFT (39). The electronic structure is expressed, by both the den-
sity matrix and the Hamiltonian operator, in an underlying basis

set of support functions—a set of localized functions adapted to
the chemical environment of the system. Such functions are ex-
pressed in Daubechies wavelets, typically using one to four sup-
port functions per atom as the basis set. The electronic density
matrices, as well as the Hamiltonian expressed in the BigDFT basis
set, are analyzed to provide quantum observables of the systems.
The code provides efficient and accurate QM results for full sys-
tems of large sizes, delivering excellent performance on massively
parallel supercomputers. In the present study, we employ the PBE
approximation corrected by dispersion D3 correction terms (51)
and Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (52).
The CheSS library (53) has been employed to calculate the sys-
tem’s density matrix. A comparison of the inclusion of an implicit
solvent, with respect to gas phase calculations shows that inter-
action energies at interface residues are only marginally affected
by the presence of the solvent (Fig. S5).

Each calculation includes approximately 12,000 atoms and
requires about 2 h of wall time on 32 compute nodes of the
IRENE-Rome supercomputer, at the TGCC supercomputing cen-
ter in Saclay (Paris, France). A similar approach has been previ-
ously used, in conjunction with the other atomistic techniques
described in the introduction, to investigate the interaction pat-
terns of the SARS-CoV-2 main protease with natural peptidic sub-
strates, and to design peptide inhibitors tested in vitro (47).

Procedure
Starting from a representative 3D model of the molecules as our
input, we calculate the system’s electronic structure, from which
we extract various quantities. We draw a contact network to iden-
tify relevant chemical interactions among the spike RBD and the
various interactors considered in this study. The strength of the
inter-residue interaction is quantified by the FBO (54), calculated
using the electronic structure of the system in proximity of a given
residue. Such an approach has been previously described in detail
(39, 55) and is summarized in Table 1.

We use the FBO to identify the interface residues, defined as
the amino acids of the counter-ligand that have a non-negligible
value, above a set threshold of the FBO, with the ligand. In contrast
to a simple geometrical indicator like the RBD-ligand distance,
the FBO provides a metric that enables a nonempirical identifi-
cation of steric hotspot interactions. We here identify as chemical
hotspot interface residues the amino acids, which exhibit a FBO
value with the ligand larger than 7 × 10–3. Such a threshold is ob-
tained by comparing the hydrogen bonding interaction network of
the SARS-CoV-2 main protease to its natural peptidic substrates,
derived from traditional FF analysis and the equivalent FBO net-
work (47).

Once the chemical connection among amino acids is identified,
we assign to each residue its contribution to the binding interac-
tion between the two subsystems. We calculate these interaction
terms from the output of the DFT code and interpret them as two
parts. First, a long-range electrostatic attraction/repulsion term,
defined from the electron distributions of each of the fragments
(even when far apart, two fragments may still interact). The re-
maining term, which can only be attractive, is provided by the
chemical binding between the fragments, and is nonzero only if
the electronic clouds of the fragments superimpose (short-range).
This term is correlated with the FBO strength, and we identify it
as the chemical interaction.

By including long-range electrostatic terms, the decomposition
enables us to single out relevant residues not necessarily resid-
ing at the interface. In this way, the model provides an ab initio
representation of the RBD-ligand interactions as the final output.
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Crystal structures and generation of mutant
virtual structures
Crystallographic structures are obtained from the RCSB database
(56) using PDB entries 6M0J (hACE2), 7K8X (nAb C121), 7K90 (nAb
C144), and 7C8J (macACE2). Protonation of histidines and other
titratable residues is assigned a pH of 7, based on the PDBFixer
tool in OpenMM (57, 58).

Virtual structures are generated by imposing point mutations
on the original structure. Structure relaxations are performed
by optimizing the crystal geometry with the OpenMM package
using the AMBER FF14SB force field (59). While such optimized
structures do not represent the full panorama of conformations
that might exist at a finite temperature, the resulting structures
are interpreted as one plausible representative among the pos-
sible conformations of the system. To further verify this state-
ment, we compared the difference in the interaction pattern ob-
tained from the experimental crystal structure of the Beta vari-
ant in conjunction with hACE2 (PDB 7VX4) to the same quantity
from the combined action of each point mutation characteriz-
ing the Beta RBD (E484K, N501Y, and K417N), applied on virtual
crystals derived from WT-RBD (6M0J). We verify (see Supplemen-
tary Information) that the interaction difference on the RBD of
the two real crystals corresponds to the overall sum of the con-
tributions of each of the point mutations. This fact, on the one
hand, confirms the modular impact of each point mutation to
the overall binding, on the other hand, suggests that the impact
due to conformational rearrangements is of higher order, for this
variant.
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