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Abstract

Diversifying science, technology, engineering, and mathematics (STEM) requires a critical examination of institutional structures at
every educational level. In higher education, performance in core introductory courses required for STEM degrees is strongly asso-
ciated with degree completion. Leveraging a multi-institutional database, we examine nearly 110,000 student records from six large,
public, research-intensive universities in order to assess whether these introductory courses disproportionately weed out underrep-
resented minority (URM) students. We find that the association between low performance in an introductory STEM class and failure
to obtain a STEM degree is stronger for URM students than for other students, even after controlling for academic preparation in high
school and intent to obtain a STEM degree. To facilitate interpretation of our multivariate logistic regression model, and to highlight
the dire situation in higher education, we also calculate predicted probabilities of STEM degree attainment for students of various
demographics. The probability of obtaining a STEM degree for a STEM-intending white male student with average academic prepa-
ration who receives grades of C or better in all introductory courses is 48%. In contrast, for an otherwise similar URM female student,
the probability is merely 35%. If these students receive less than a C in even one introductory STEM course, the probabilities drop to
33% and 21%, respectively.
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Significance Statement:

Students interested in science, technology, engineering, and mathematics (STEM) typically take introductory courses such as cal-
culus or general chemistry during their first term as undergraduates. Such courses are often perceived as “weeding-out” students,
and indeed, previous research has established an association between receiving low grades in these courses and a decreased
probability of obtaining a STEM degree. We provide evidence that these courses may disproportionately drive underrepresented
minority students out of STEM, even after controlling for academic preparation in high school and intent to study STEM. Thus,
introductory STEM courses are institutional structures that may exacerbate disparities in STEM education and, as such, equity
issues must be central in efforts to redesign and rebuild them.

Introduction
Science, technology, engineering, and mathematics (STEM) re-
quires equity, diversity, and inclusion. When these are lacking,
public health is hurt (1), scientific innovation and creativity are
reduced (2, 3), and economic growth is hampered (4). Moreover,
some feel an ethical imperative for STEM pathways to be acces-
sible to all identity groups. Unfortunately, we are faced with the
stubborn persistence of STEM disparities (5) that urgently require
solutions.

Disparities in STEM education are well-documented. In 2018,
women earned 58% of all bachelor’s degrees, but only 36% of
STEM bachelor’s degrees (6). In 2017, Black, Hispanic, and In-
digenous individuals comprised 30% of the US population, 34%
of STEM-intending incoming college students, and yet merely
18% of undergraduate STEM degree recipients (7). These alarming

figures suggest that colleges and universities are exacerbating dis-
parities, consistent with the fact that Black and Hispanic students
are more likely than their white peers to switch out of a STEM ma-
jor (8).

We approach our present study through the lens of institu-
tional transformation. A first step in transforming an institu-
tion through an equity lens is to identify structures that may in-
hibit diversity. A next step is to quantitatively analyze whether
those structures in fact disproportionately impact marginalized
students. In the context of STEM education, introductory STEM
courses perceived as “gatekeeper” or “weed-out” courses can be
flagged as a potential source of inequity. Student performance
in such courses is associated with STEM degree attainment (9).
However, there is a reason to believe this association is not neu-
tral with respect to gender and race. That is to say, introductory
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STEM courses might have a greater negative impact on gender
and racial/ethnic minorities (10–13). Our study contributes to the
aforementioned next step by providing a quantitative analysis of
introductory courses and STEM pathways.

Research questions
Our work asks: within the framework of a large, multi-
institutional database, to what extent do a student’s
race/ethnicity, their sex, and their number of Ds, Fs, and/or
course withdrawals (hereafter, DFWs) for first term STEM classes
impact STEM graduation? Two key aspects of our research
question are that (1) it addresses intersecting identity categories
and (2) it investigates disparate impact of systems based on
those categories. As a secondary research goal, we explore the
impact of using a three-level versus a five-level coding scheme
for race/ethnicity, which addresses the importance of the ways
that race is discussed and categorized in education.

As noted above, associations between STEM degree comple-
tion and sex, race/ethnicity, and academic performance have been
established, but ours is the first study to draw out interactions
that indicates a disproportionate negative effect of introductory
courses on minoritized students. To facilitate interpretation of our
logistic model, we also will calculate predicted probabilities of
STEM degree attainment for students from various demographic
categories. The results are a sobering reminder of the progress
that must be made with equity, diversity, and inclusion in STEM.

Methodology
Quantitative studies involving race/ethnicity within a single insti-
tution are often challenging because data on minoritized groups
is, by definition, limited. For example, suppose a university has a
small numbers of records about degree attainment of Black, Na-
tive American, and Latinx women. As a result, statistical models
involving those groups tend to be unstable. When we consider not
just racial/ethnic identity, but its intersection with gender, mod-
eling becomes nearly impossible. The already small counts for
racial/ethnic groups are divided into even smaller counts. To nav-
igate this challenge, we draw from a multi-institutional sample
that is large enough to enable rich, meaningful statistical mod-
eling, and yet is reasonably homogeneous in the sense that the
institutions we select are large, public, research-intensive univer-
sities. Specifically, we draw from the Multiple Institution Database
for Investigating Engineering Longitudinal Development (MID-
FIELD) (14), restricting attention to the six large, public, research-
intensive institutions who have data in our selected time frame.
The large sample we study is, as we later describe, an order of
magnitude larger than those used in previous studies. We are in-
terested in the six institutions for several reasons. First, they serve
large numbers of students. Second, they may be more likely to
have resources for the institutional changes necessary to mitigate
disparities. Finally, research institutions have power and position-
ality within higher education that may enable them to dissemi-
nate models of success to other institutions.

Modeling
We use a multiple logistic regression framework to model stu-
dents’ attainment of a STEM degree. Our usage of MIDFIELD data
allows us to capitalize on larger sample sizes than if we were to
work with a single school’s data. However, this large sample size
(N = 109,070) comes with several hazards, including a risk of over-
fitting and the possibility of artificially small P-values and narrow

confidence intervals. To address the first hazard, we use a 80%
training/20% testing split of the data set, stratified along sex, race,
and institution (15). To address the second hazard, we use tech-
niques for combating the multiple comparison/simultaneous in-
ference problem (16).

We proceed with model construction as follows. We require
each model to contain three specific covariates (high school GPA,
ACT composite score, and STEM degree intent, all discussed in
more detail below) as well as university attended, which we treat
as a nuisance variable. We use step-wise fitting of the testing data
to drive the inclusion of other terms from a candidate pool (also
described further below), using Akaike information criterion (AIC)
for selection.

In addition to presenting estimates for model coefficients, and
in order to make the models more easily interpretable, we re-
port estimates of STEM degree attainment probability for STEM-
intending students. More specifically, we assume the average val-
ues of high school GPA and ACT composite for STEM intending
students (3.57 and 26, respectively) and we calculate STEM degree
attainment probability as a function of race, sex, and number of
STEM DFWs received. Finally, we take a weighted average of the
probabilities across the six institutions in order to arrive at a final
estimate. All statistical analysis was completed using R, version
4.2.0 (17).

Statistical significance
For each coefficient we calculate, we report the SE and the un-
adjusted P-value and, in some cases, 95% CIs. To guard against
Type I errors (false discoveries) associated both with the num-
ber of tests and large sample sizes, we construct separate testing
families for each model’s coefficients. We make use of the False
Coverage-Statement Rate method for selective interval construc-
tion (18) at 5%. This method strikes a balance between frequen-
tist and Bayesian approaches while directly dealing with the se-
lection of important terms in fitting a regression model. For the
probability profiles, we use a more conservative approach for CI
construction, namely, Šidák’s method, to control the family-wise
Type I error rate at 5%.

Data context
As mentioned, we make use of MIDFIELD (14). Comprising 20 col-
leges and universities with engineering programs from across the
United States, the database holds all student records (not just en-
gineering students) who attended each school as reported by its
registrar. The records span 30 y, from 1988 to 2018. While there
are more than 1.7 million student records in MIDFIELD, we re-
strict our attention to students who began college between 2005
and 2012, inclusive. The 2012 limit guarantees that we can study
a 6-y time horizon after each student began college. The start-
ing point of 2005 provides more consistency in ACT and SAT score
data, since we avoid years in which there were significant changes
in how these scores are calculated. Finally, this time frame situ-
ates our data after (9), while overlapping with the Mathematical
Association of America’s national calculus student study (10) and
many of the studies reported in ref. (12).

During our time frame, there are 12 participating schools who
provided student information. However, we remove two schools
whose student demographics contained in MIDFIELD differ sub-
stantially from their publicly reported ones. We remove a third
school for which there were only 27 students who had complete
records for the terms we use in our models (the other schools had
counts in the thousands). Finally, to make a more homogeneous
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sample, we removed another three schools which are not R1/R2
universities in the Carnegie classification system, leaving us with
six schools of similar type: large, public, and research-intensive.

Model terms
Our final data set consists of N = 109,070 students with complete
information on our model variables. We use stratified sampling
along university attended, sex, and race to form the training set
(N = 87,231) and testing set (N = 21,839).

STEM degrees
Our dichotomous model response variable is the attainment of
at least one undergraduate STEM degree. For this, we must spec-
ify which fields are in STEM. The Congressional Research Service
states that “the lack of a common definition for STEM has con-
tributed to confusion, and even contradictory findings” (19). One
commonly used definition of STEM comes from the National Sci-
ence Foundation (NSF) and includes physical sciences, life sci-
ences, mathematical and computational sciences, engineering,
as well as certain social science fields (such as political science,
economics, and psychology). As our central research question
involves the role of first term physical, life, and mathematical
courses required of most science and engineering majors, we use
a narrower definition of STEM. In particular, we do not include
social science fields. MIDFIELD contains Classification of Instruc-
tional Program (CIP6) codes for all students’ majors (intended and
declared) as well as degrees earned. Based upon the CIP6 code, we
coded students dichotomously as earning either at least one or
zero undergraduate degrees in a STEM field. In our sample, we find
the STEM degree attainment rate to be 15.5% (N = 16,958) across
all students.

Covariates
Our first covariate deals with students’ intent on obtaining a STEM
degree. We used the aforementioned CIP6 classification scheme
for the program each student was reported as being in during
their first term. Given our interest in STEM-intending students, we
used a reverse coding scheme. The reference class represents stu-
dents who intended to get a STEM degree. Approximately 68% (N
= 74,303) did not intend to pursue a STEM degree at matriculation
while almost 32% (N = 34,767) did. Nearly 6% of the total students
(N = 6,455) switched into STEM programs and a little over 15% of
students (N = 16,993) switched out of STEM programs.

We control for past academic preparation via each student’s
high school GPA (20) and ACT composite test score (standardiz-
ing both before use in models). GPA varies from 1.0 to 5.0, with
sample arithmetic mean of 3.42 (SD of 0.56) and sample median
of 3.49 (median absolute deviation 0.52). In the event that a stu-
dent did not have an ACT composite score, we generate one using
that student’s SAT scores and a concordance table (21). Students
missing both ACT and SAT scores were removed from the sample
at an early stage. ACT composite score varies from 3 to 36, with
sample arithmetic mean of 24.52 (SD of 4.02) and sample median
of 25 (median absolute deviation of 4.45). This makes the refer-
ence class have a high school GPA of 3.42 and an ACT composite
of 24.52.

University attended
As previously discussed, we use a fairly homogeneous group of
six universities that are all public, 4-y schools classified as either
R1 or R2 by the Carnegie classification system (none are minority
serving institutions). Incorporating individual university effects in

Table 1. Core STEM DFWs in first term data from MIDFIELD (14).

Zero DFWs 77,996 (71.51%)
One DFW 21,762 (19.95%)
Two DFWs 7,018 (6.43%)
Three or more DFWs 2,294 (2.10%)

our models creates a tension. One appeal of using a large database
such as MIDFIELD is to allow for analysis of intersecting identity
categories that may not be possible at a single university due to
small sample sizes. As we discussed earlier, there may only be a
handful of students in the data having certain combinations of
sex and race/ethnicity. Fragmenting the data further by incorpo-
rating a university effect works against the appeal of a large data
set, especially when using a training/testing split. The small cell
sizes can lead to an increase in the size of SEs for some terms.

To strike a balance between inclusion of university effects and
over-fragmentation of data, we treat the university attended as a
nuisance attribute. In particular, we treat the six universities as
having fixed effects and as not central to our core research ques-
tions. To state in an equivalent way, we are using university at-
tended as a blocking attribute in an ANOVA. As such, we will not
construct CIs for these effects.

To choose the reference level for the university-attended vari-
able, we look at university level measures for the six schools,
namely, the means of high school GPA, ACT composite, and DFW
count, the proportion of students intended to get a STEM degree,
and the proportion of students graduating with at least one STEM
degree. We also include the proportions of sexes and races. Us-
ing this data, we look at both one- and two-cluster classifications
along these dimensions. University D is the closest to the centroid
for a two-cluster solution and, by just a slim margin, the second
closest in a one-cluster solution. Thus, we use University D as the
reference class for this variable.

DFW count
In many studies of higher education, the terminology of “intro-
ductory STEM courses,” is used to encapsulate a small set of key
courses such as Calculus I. However, those key courses are not
necessarily students’ first contact on campus with STEM disci-
plines. In our own study, when we speak of introductory STEM
courses, we have in mind a broader definition, namely, the STEM
courses that a student first took at their university. While MID-
FIELD contains each student’s grades for all courses, we restrict
attention to course outcomes in any core STEM fields (mathe-
matics/statistics, chemistry, biology, physics, computer science,
and related technology fields) during each student’s first term
(semester or quarter). We then tabulate the number of DFWs re-
ceived by each student. We restrict attention to students who took
at least one STEM course during their first term. Among these, ap-
proximately 72% of students have no DFWs, about 20% have one,
and remaining 8% have two or more; see Table 1. Hereafter, we
refer to this metric as the DFW count.

Demographics
MIDFIELD reports sex and racial/ethnic identity for each student.
Table 2 breaks down our sample by these characteristics for each
university. Within each cell, the upper values reflect the number of
females while the lower values are those for males. The subtotal
column gives the marginal breakdown for sex at each university.
The reference class for sex is male in our models.
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Table 2. University-level breakdown of race/ethnicity, stratified by sex of N = 109,070 university students who matriculated from 2005
to 2012. Data come from MIDFIELD (14).

Female White Asian Black Hispanic/Latinx Native American Subtotal Total
Male

University A 13,217 (12.12%) 704 (0.65%) 675 (0.62%) 555 (0.51%) 74 (0.07%) 15,225 (13.96%) 36,043
17,925 (16.43%) 1,351 (1.24%) 691 (0.63%) 761 (0.70%) 90 (0.08%) 20,818 (19.09%) (33.05%)

University B 7,712 (7.07%) 160 (0.15%) 171 (0.16%) 757 (0.69%) 69 (0.06%) 8,869 (8.13%) 16,025
6,266 (5.74%) 160 (0.15%) 119 (0.11%) 551 (0.51%) 60 (0.06%) 7,156 (6.56%) (14.69%)

University C 3,292 (3.02%) 232 (0.21%) 346 (0.32%) 175 (0.16%) 30 (0.03%) 4,075 (3.74%) 6,775
2,271 (2.08%) 151 (0.14%) 169 (0.15%) 101 (0.09%) 8 (0.01%) 2,700 (2.48%) (6.21%)

University D 7,459 (6.84%) 588 (0.54%) 151 (0.14%) 915 (0.84%) 75 (0.07%) 9,188 (8.42%) 19,860
10,438 (9.57%) 614 (0.56%) 182 (0.17%) 1,012 (0.93%) 71 (0.07%) 10,672 (9.78%) (18.21%)

University E 7,739 (7.10%) 563 (0.52%) 2,009 (1.84%) 666 (0.61%) 60 (0.06%) 11,037 (10.12%) 21,709
8,242 (7.56%) 614 (0.56%) 1,153 (1.06%) 597 (0.55%) 66 (0.06%) 10,672 (9.78%) (19.90%)

University F 2,449 (2.26%) 205 (0.19%) 261 (0.24%) 419 (0.38%) 172 (0.16%) 3,506 (3.21%) 6,868
2,487 (2.28%) 223 (0.20%) 151 (0.14%) 354 (0.32%) 147 (0.13%) 3,362 (3.08%) (6.30%)

Subtotal 41,868 (38.39%) 2,452 (2.25%) 3,613 (3.31%) 3,487 (3.20%) 480 (0.44%) 51,900 (47.58%)
47,629 (43.67%) 3,258 (2.99%) 2,465 (2.26%) 3,376 (3.10%) 442 (0.41%) 57,170 (52.52%)

Total 89,497 (82.05%) 5,710 (5.24%) 6,078 (5.57%) 6,863 (6.29%) 922 (0.85%) 109,070 (100%)

Given the racial demographics in US higher education as a
whole, it is unsurprising that the sample is primarily white. As
we have mentioned, we use two classifications of race/ethnicity;
the five original levels shown here and a three-level recoding of
race/ethnicity as white, Asian, or underrepresented minority in
STEM (URM). The URM group includes Black, Hispanic/Latinx, and
Native American students. This recoding is consistent with the
NSF’s terminology (22), but it is important to acknowledge that
Asian students’ representation in STEM does not negate marginal-
ization and oppression, including harmful stereotypes such as the
model minority myth. The reference class for race/ethnicity is
white.

Results
First, we present estimates from the two logistic regression mod-
els, and second, we report probabilities of STEM degree attain-
ment. As a reminder, the reference class for all of our models is a
white, male student, who attended University D intending to get a
STEM degree, who has average high school GPA and ACT compos-
ite score, and who received no DFWs in their first undergraduate
academic term.

Model I: three-level race/ethnicity
In our first model, we use the a three-level coding of race/ethnicity.
We opted to use the three-level coding of race/ethnicity given
the aforementioned concerns about small number of observa-
tions (see Table 2). The model contains our covariates (GPA, ACT,
STEM degree intent), university attended, and main effects for
DFW count, sex, and three-level race. There are also two-way in-
teractions for sex and race, sex and DFW count, and race and DFW
count. The three-way interaction of race, sex, and DWF count was
excluded through the step-wise regression process.

For these model terms, we do not observe any significant mul-
ticollinearity, with the largest squared generalized variance in-
flation factor (GVIF) being approximately 2.08 for the three-level
race/ethnicity term. There are some potential outliers in the test-
ing data set, which is to be expected with a data set of this size (N
= 87,231). We opt to accept them as legitimate.

To assess the fit of this model, we use two approaches: sep-
aration plots (23) and Receiver Operating Characteristic (ROC)

curves (24) (see Fig. 1). In the separation plot, observations in the
training data set are placed from left to right in order of the prob-
abilities predicted from the model. Cases of STEM degree attain-
ment are colored red and cases without STEM degree attainment
are colored tan. The vertical axis represents probability, ranging
from zero to one. The black curve visualizes the actual probabil-
ities predicted by the model. Finally, the black triangle along the
bottom indicates where separation would occur given a perfect
model. The model does a fairly good job at sorting the training set
with a majority of cases with STEM degrees occurring at or to the
right of the triangle. The ROC plot highlights the performance of
the model given both the training data and the testing data. The
grey diagonal line represents the ROC curve for a model of fair coin
flip. Not only do we have consistent model performance between
the training and testing data sets (virtually indistinguishable), the
model does a much better job than a coin flip. The Area-Under-
the-Curve (AUC) values are 0.87 (to two decimal places) for both
the training and testing sets. This places our model in the category
of “convincing evidence” of classification accuracy (24).

From Table 3, we can see the odds ratios (exponentiated co-
efficients) and the intercept (odds of the reference class) for all
model terms, as well as their P-values and 95% adjusted CIs. Of
these terms, we only view the coefficients for main effect for Asian
and the interaction term of Asian and DFW count to be statis-
tically indistinguishable from unity. The False-Coverage Rate ad-
justed CIs are suggestive of a slightly reduced model (omitting the
interaction of sex and DFW count and the interaction of sex and
race) and give a sense of measurement error for the selected co-
efficients. For the case of no DFW’s, and holding all other aspects
constant except for gender and race/ethnicity, a white female, an
Asian female, and a URM female have probabilities of STEM de-
gree attainment that are only 0.658, 0.803, and 0.492 times as large
as for a white male. Restated, it is 1.52, 1.25, and 2.03 times less
probable (respectively) for these female students to get a STEM
degree as compared to a white male student, which is consistent
with ref. (10). For male and female URM students, respectively, the
probability of obtaining a STEM degree is 0.636 and 0.748 times
that of a white counterpart (again, holding all other aspects con-
stant). For the interaction of sex and DFW count, the odds ratio of
1.084 suggests that the separate effects of being female and hav-
ing nonzero DFWs result in an over-penalty, which this interaction
term corrects for. However, for the interaction of URM and DFWs,
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Fig. 1. Separation plot (23) (A) for assessment of fit for the first logistic model; ROC curves and AUC values (24) (B).

Table 3. Coefficients for logistic regression model of STEM degree attainment using the three-level student race/ethnicity variable.

Term Estimate P-value 95% Adj.
(SE) CI

Intercept 3.172 (0.031) <0.001 (2.998, 3.355)
HS GPA 1.078 (0.015) <0.001 (1.048, 1.109)
ACT 0.917 (0.012) <0.001 (0.896, 0.938)
No STEM intent 0.052 (0.027) <0.001 (0.050, 0.055)
DFW count 0.472 (0.028) <0.001 (0.448, 0.496)
Female 0.658 (0.027) <0.001 (0.626, 0.691)
Asian 1.026 (0.065) 0.692
URM 0.636 (0.057) <0.001 (0.574, 0.706)
Female and Asian 1.190 (0.095) 0.068
Female and URM 1.177 (0.076) 0.032
Female and DFWs 1.084 (0.043) 0.063
Asian and DFWs 1.030 (0.079) 0.709
URM and DFWs 0.870 (0.065) 0.033 (0.773, 0.979)
University A 0.122 (0.033) <0.001
University B 0.476 (0.036) <0.001
University C 1.283 (0.046) <0.001
University E 0.193 (0.042) <0.001
University F 0.467 (0.048) <0.001

the estimate of 0.870 suggests that there is a differential impact
of DFWs for these students.

Second model: five-level race/ethnicity
Our second model allows us to explore our secondary research
question centering on the impact of using a three-level or five-
level coding scheme for race/ethnicity. It is identical to the first
model except we change how the race/ethnicity term is coded.

In the second model, we still do not have any significant mul-
ticollinearity; the five-level race/ethnicity term still has the the

largest squared GVIF (approximately 2.22). As with the first model,
we see some potential outliers but retain them in our data.

The difference between the first and second models is es-
sentially indistinguishable for both the separation plots and the
ROC curves (see Figs. 1 and 2). Further, the AUC values for the
second model are also identical to the first model. In terms of
model fit, this suggests that using a three-level coding scheme for
race/ethnicity versus a five-level coding scheme does not appear
to make much difference.

In Table 4, we have the odds ratios and the intercept term when
using the five-level race/ethnicity coding scheme. As expected,
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Fig. 2. Separation plot (A) for assessment of fit for the second logistic model; ROC curves and AUC values (B).

Table 4. Coefficients for logistic regression model of STEM degree attainment using the five-level student race/ethnicity variable.

Term Estimate P-value 95% Adj.
(SE) CI

Intercept 3.161 (0.031) <0.001 (2.972, 3.361)
HS GPA 1.078 (0.015) <0.001 (1.045, 1.111)
ACT 0.916 (0.012) <0.001 (0.893, 0.939)
No STEM intent 0.052 (0.027) <0.001 (0.050, 0.055)
DFW count 0.472 (0.028) <0.001 (0.446, 0.499)
Female 0.657 (0.027) <0.001 (0.622, 0.694)
Asian 1.025 (0.065) 0.700
Black 0.554 (0.104) <0.001 (0.451, 0.681)
Hispanic/Latinx 0.674 (0.070) <0.001 (0.587, 0.775)
Native American 0.638 (0.198) 0.023 (0.431, 0.945)
Female and Asian 1.190 (0.095) 0.068
Female and Black 1.241 (0.129) 0.094
Female and Hispanic/Latinx 1.204 (0.097) 0.055
Female and Native American 1.006 (0.262) 0.981
Female and DFWs 1.085 (0.043) 0.060
Asian and DFWs 1.030 (0.079) 0.708
Black and DFWs 0.831 (0.110) 0.092
Hispanic/Latinx and DFWs 0.907 (0.082) 0.233
Native American and DFWs 0.838 (0.217) 0.416
University A 0.123 (0.033) <0.001
University B 0.476 (0.036) <0.001
University C 1.297 (0.047) <0.001
University E 0.195 (0.042) <0.001
University F 0.470 (0.049) <0.001

all the nonintercept terms not involving race/ethnicity were es-
sentially unchanged in their estimates with the CIs only slightly
widening in response to there being more terms. The coefficients
for Black, Hispanic/Latinx, and Native American students provide
a more nuanced and still pessimistic picture than the single es-
timate for URM students as a combined category. Furthermore,
for these terms, we can start to see the small sample size issue

coming into play. The SEs are approximately 1.8, 1.2, and 3.5 times
as large as the SE for the URM level in the first model. There is also
an increase in SEs for the interaction of race and DFW count. In
the first model, this interaction was flagged as significant through
our False-Coverage Rate method. In contrast, in our second model,
the analogous terms are not flagged. We suspect that given the
similarity in the magnitude of the odds ratios between the two
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Table 5. STEM degree attainment probabilities and 95% Šídak corrected CIs for epistemic student profiles using the first model.

Three-level Number of STEM DFWs
Sex Race/ethnicity 0 1 2

Male White 0.484 (0.464, 0.504) 0.334 (0.313, 0.355) 0.208 (0.184, 0.233)
Male Asian 0.475 (0.434, 0.517) 0.333 (0.286, 0.380) 0.214 (0.150, 0.278)
Male URM 0.401 (0.363, 0.439) 0.236 (0.201, 0.272) 0.121 (0.085, 0.158)
Female White 0.413 (0.392, 0.435) 0.285 (0.261, 0.309) 0.181 (0.151, 0.210)
Female Asian 0.467 (0.419, 0.516) 0.340 (0.286, 0.395) 0.230 (0.156, 0.304)
Female URM 0.353 (0.316, 0.390) 0.211 (0.177, 0.244) 0.113 (0.078, 0.148)

Table 6. STEM degree attainment probabilities and 95% Šídak corrected CIs for epistemic student profiles using the second model.

Five-level Number of STEM DFWs

Sex Race/ethnicity 0 1 2

Male White 0.484 (0.463, 0.505) 0.334 (0.312, 0.356) 0.208 (0.182, 0.235)
Male Asian 0.475 (0.431, 0.519) 0.333 (0.284, 0.382) 0.214 (0.146, 0.281)
Male Black 0.311 (0.248, 0.374) 0.165 (0.116, 0.214) 0.077 (0.033, 0.122)
Male Hispanic/Latinx 0.457 (0.408, 0.506) 0.287 (0.236, 0.338) 0.157 (0.097, 0.217)
Male Native American 0.428 (0.292, 0.565) 0.244 (0.119, 0.369) 0.119 (0∗, 0.246)
Female White 0.413 (0.391, 0.436) 0.285 (0.260, 0.310) 0.181 (0.150, 0.212)
Female Asian 0.467 (0.416, 0.518) 0.340 (0.283, 0.398) 0.230 (0.153, 0.307)
Female Black 0.282 (0.230, 0.334) 0.155 (0.111, 0.199) 0.077 (0.034, 0.121)
Female Hispanic/Latinx 0.421 (0.369, 0.473) 0.269 (0.216, 0.322) 0.153 (0.092, 0.215)
Female Native American 0.368 (0.235, 0.501) 0.211 (0.094, 0.328) 0.107 (0∗, 0.225)

∗Confidence interval truncated at zero.

models, the difference owes to the small sample sizes in the sec-
ond model. This difference serves as a reminder that strictly fol-
lowing bright-line rules with regards to P-values is an approach
that confers challenges and limitations (25).

Probability profiles
The interpretation and coordination of multiple coefficients in
logistic regression can be a challenging endeavour. To this end,
we use the models to produce estimates for the probability that
a set of epistemic students will attain a STEM degree. For these
students, we have fixed their attributes of high school GPA to 3.57,
ACT composite score to 26, and that they intend to get a STEM de-
gree in their first term. The choice of values for GPA and ACT are
inline with the average value for these measures in our sample
when we restrict to just STEM-intending students. We then vary
students along the lines of sex (male or female), race (both three-
level and five-level coding schemes), and the number of DFWs (0,
1, or 2). Given that university attended is in the model, we calcu-
late separate tables for each one and present here the averaging of
the probabilities, weighted by the proportion of students at each
university in the training data set.

Table 5 shows these predicted probabilities using our first
model (three-level race/ethnicity). Our findings here are consis-
tent with ref. (9), with the probability of STEM degree attainment
for all profiles being less than a fair coin toss (0.5). In looking at
the most optimistic case of zero DFWs, we can see that there is
difference between white male students and three other groups:
URM males, white females, and URM females as shown by the
nonoverlapping CIs. Perhaps what is most concerning in Table 5
is what happens when we increase the number of DFWs. Male
URM, female URM, and white female students with one DFW have
probabilities of getting a STEM degree more similar to those of
White males, Asian males, and Asian females with two DFWs. The
relative change in probability for white males between zero and

one DFW is approximately -31%; for URM males, this value is -
41%. For white females and URM females, we see relative changes
of -39% and -40%. The relative changes between one and two
DFWS for these same epistemic students are approximately -38%,
-49%, -36%, and -46%, respectively. These disparities in the relative
change in probability suggest that DFWs do not impact students
in a uniform way.

When we use our second model that makes use of the five-level
categorization of race/ethnicity, we see consistent findings (see
Table 6). Note the width of the intervals for Black, Hispanic/Latinx,
and Native American students. These intervals tend to be wide
due to the small sample sizes, which impact the estimates of the
SEs. This is particularly true for Native American students; the
lower bounds of the intervals have been truncated to 0 as the cal-
culations actually produce negative values.

The nuance in Table 6 provides a somewhat more pessimistic
view than Table 5. In particular, Black students with zero DFWs
have similar probabilities of attaining STEM degrees as white male
students with one or two DFWs. Black males have relative changes
in probability with respect to DFWs of approximately -47% and
-53%; Black females have values of -45% and -50%. These discrep-
ancies in the relative changes of probabilities point towards the
importance of the interaction of race and DFW count in both mod-
els.

Discussion
For decades, higher education’s efforts to address STEM dispari-
ties have focused on “fixing students,” with interventions such as
bridge programs, undergraduate research experiences, and reme-
dial/developmental courses (7). These approaches are rooted in
perceived deficits in student preparation or interest; they attempt
to mold students to better navigate the higher education sys-
tem as it exists. Despite good intentions, these programs have not
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reduced attrition among underrepresented minority groups (7).
Thus, new approaches are needed, including a critical examina-
tion of institutional structures and policies that may inhibit eq-
uity. Indeed, major funding agencies such as the NSF, Howard
Hughes Medical Institute, and the National Institutes of Health
are calling for institutional transformation as part of a multi-
pronged approach to reducing disparities (26–28). We adopted this
view in our study through our exploration of the interactions be-
tween students’ sex, race/ethnicity, and the impacts of DFWs.

Returning to our first research question, previous work has
established the roles that DFWs, race/ethnicity, and sex play in
STEM degree attainment (8–10, 12). In contrast, ours is the first
study that treats intersecting identity categories. Through our
modeling and analysis, we find that DWFs differentially impact
students who are women and/or underrepresented minorities.
These impacts are negative. Moreover, our work illustrates the
severity of these disparities by calculating the probability of de-
gree completion for prototypical students from different demo-
graphic groups. In an equitable education system, students with
comparable high school preparation, intent to study STEM, and
who get Cs or better in all their introductory STEM courses ought
to have similar probabilities of attaining a STEM degree. This is not
what we observe. White male students have the highest probabil-
ity of obtaining a STEM degree (48.4%) while female URM students
are the least probable STEM graduates at 35.3%. Zooming in more
closely, we see that Black female students only have a probabil-
ity of 28.2% of graduating with a STEM degree. Given the size of
our data set and conservative methods of analysis, a gap of this
magnitude demonstrates how far we have to go before achiev-
ing equity in STEM education. To put our results more plainly,
female students and URM students are essentially penalized for
attributes over which they have no control. While there is an ar-
gument that course grades are at least partially under the con-
trol of a student, the roles of teacher and the university should
not be ignored. Further, the interaction of students’ race/ethnicity
and DFW count points towards the presence of troubling insti-
tutional effects. Our study shows that we need to move beyond
the “fixing students” mentality. We suggest as a starting point the
critical reflection and examination of department, school, college,
and university policies and cultures.

In comparing our two models, we find an answer to our sec-
ondary research question on the impact of using a three-level
versus a five-level categorization of race/ethnicity. Our two mod-
els are consistent with each other and suggestive that the choice
might be immaterial to answering our primary research question.
As with many analysis choices, there are trade-offs. The five-level
coding scheme provides more nuance while the three-level cod-
ing scheme provides smaller SEs. Our recommendations here are
two-fold. First, we encourage other researchers to perform sim-
ilar comparisons between different coding schemes to see what
differences emerge. Such an approach lies with an emerging area
known as multiverse analysis (29). Second, researchers should
think carefully on what they are attempting to explore and build
an understanding of as to whether fine-grain classifications are
appropriate. In an ideal world, we would have sufficient numbers
to be able to do full analyses of intersecting identities with as fine-
grain categorizations as we might wish. However, even using MID-
FIELD, sample size issues were still a concern.

Limitations
There are several limitations which we need to address. First, we
have inherited limitations that stem from the fact we are doing

secondary data analysis. We are bound by the data reporting
choices made by each MIDFIELD participating university registrar
as well as the choices made by the MIDFIELD team. While the ideal
is to have a consistent coding scheme in any data set, we do not
get such a luxury with the MIDFIELD data. The choices of each
university create idiosyncratic coding schemes. For example, the
race variable contains two categories we omitted from our anal-
ysis, Other/Unknown and International, as they are not specific
enough for interpretation.

Second, institutions self-select into the MIDFIELD database,
and hence constitute neither a random sample nor a nationally
representative sample. Indeed, generating a random sample of
R1 and R2 institutions and obtaining their student records is, at
present, infeasible. On the other hand, the large size of our sam-
ple brings benefits that small, random samples do not. For com-
parison, ref. (9) uses a sample of 7,697 bachelor’s degree intend-
ing students, ref. (10) uses 2,266 students, and ref. (8) uses a high
of 4,828 students for some of their models. In contrast, our 80%
training set (N = 87,231) is an order of magnitude larger than all
these important studies. Further, the size of our sample in con-
junction with the train/test split, and our adjustments for multi-
ple comparisons help to guard against Type I errors, an issue not
mentioned in the previous studies.

We hoped that the large size of the MIDFIELD data set
would allow for intersectional explorations, especially between
race/ethnicity and sex. However, there are still sample size issues
when we parse the data by university attended. For example, as
shown in Table 2, University C only has eight male, Native Amer-
ican students. Of these, five intended to get a STEM degree and
only three actually obtained a one. This small sample size is sev-
eral orders of magnitude smaller than other racial/ethnic groups
and an order of magnitude smaller than other observed counts of
Native American students. As we have previously mentioned, the
incorporation of university attended essentially weakens the ap-
peal and power of using large multi-institutional databases. As we
have shown, these small sample sizes lead to increased standard
errors for estimates.

Finally, our response variable—attainment of a STEM degree
from a certain university—differs from that of refs. (8, 9). Those
studies used self-reports of whether a student attained a STEM
degree at any university, not necessarily the one at which they
originally matriculated. However, from a single university’s per-
spective, as opposed to a national STEM-pathways perspective,
the most salient question is how many students who enter the
university actually attain degrees there. The absence of self-
reported degree-attainment data in MIDFIELD is, in our view, not
a limitation of the present study.

Future work
More research is needed to establish a causal link and explore in-
terventions that may level the playing field. These future steps are
challenging because the classroom experience involves numer-
ous factors: pedagogy, e.g. traditional lecture versus active learn-
ing methods (30); class size; assessment, e.g. high-stakes final ex-
ams versus mastery grading; course prerequisites and placement;
curriculum; and instructor variables such as whether one holds
a fixed versus growth mindset (31). In such a complex system,
the power of any one explanatory variable to describe student
outcomes is likely to be small, so large sample sizes and care-
fully controlled designs may be needed to observe effects. Regard-
less, we urge administrators and STEM educators to center equity
in all reform efforts, lest they unintentionally improve outcomes
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for the most privileged students at the expense of those already
marginalized.

Our study leaves open several routes for future work. Perhaps
most critically, our study, though large in scale, was restricted to
public R1 and R2 universities. A large scale national-level study
similar to ours could be valuable, but the data is lacking. A large,
nationally representative sample is needed. Additionally, it could
be valuable to know how outcomes differ by specific intended
STEM major, which could also be addressed with nationally repre-
sentative data. Moreover, analytical frameworks other than ours
could be important. For instance, survival analysis of the data
could help elucidate the role of time. Finally, we comment that the
MIDFIELD database, and indeed many educational data sets, re-
port a binary male/female sex variable. We hope that future data
gathering efforts will use self-identified gender, with a richer and
more nuanced set of categories.

Supporting projects such as MIDFIELD (14) becomes critical.
One way we encourage readers to support is to speak with their
own university administration about contributing data to such
projects. By building out such databases in careful ways, we hope
the above limitations may be resolved for future research.

Though not the focus of our study, our results raise questions
about how to go about accounting for prior academic prepared-
ness. In our work we made use of high school GPA and a stan-
dardized test score (ACT composite). Recent work (20) has found
that high school GPA appears to be a more powerful predictor
of college graduation. We found a slight positive association be-
tween high school GPA (odds ratio of 1.078 > 1) and graduat-
ing with a STEM degree while a slight negative association be-
tween ACT composite and the response (odds ratio of 0.917 < 1).
We currently have no explanations for these observations. How-
ever, they raise the need for researchers to continue questioning
whether the benefits of using standardized tests such as the ACT
or SAT outweigh the associated problems of systemic racial bias
(32).

Conclusions
This study has contributed to the understanding of diversity and
equity in STEM education. We have used a large database of
student records to analyze intersecting identity categories. This
approach identifies institutional effects where grades differen-
tially impact students by sex and race/ethnicity.

White male students have the highest probability of graduat-
ing with a STEM degree when they start college with that intention
at 48.4%; however, URM female students only have a probability
of 35.3%. Given the size of our data set and conservative meth-
ods of analysis, a gap of this magnitude demonstrates how far we
have to go before achieving equity in STEM education. We also
caution administrators who might gauge equity at their univer-
sity by comparing internal data to the values in Tables 5 and 6:
we ourselves do not consider degree attainment at those rates to
represent success. We encourage institutions to take the results
from our study and other studies to continue working towards
change at multiple levels—course, department, and institution—
in order to make STEM pathways diverse, equitable, and
inclusive.
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