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Abstract

Cyclic strain avoidance, the phenomenon of cell and cytoskeleton alignment perpendicular to the direction of cyclic strain of the
underlying 2D substrate, is an important characteristic of the adherent cell organization. This alignment has typically been attributed
to the stress-fiber reorganization although observations clearly show that stress-fiber reorganization under cyclic loading is closely
coupled to cell morphology and reorientation of the cells. Here, we develop a statistical mechanics framework that couples the cy-
toskeletal stress-fiber organization with cell morphology under imposed cyclic straining and make quantitative comparisons with
observations. The framework accurately predicts that cyclic strain avoidance stems primarily from cell reorientation away from the
cyclic straining rather than cytoskeletal reorganization within the cell. The reorientation of the cell is a consequence of the cell low-
ering its free energy by largely avoiding the imposed cyclic straining. Furthermore, we investigate the kinetics of the cyclic strain
avoidance mechanism and demonstrate that it emerges primarily due to the rigid body rotation of the cell rather than via a trajectory
involving cell straining. Our results provide clear physical insights into the coupled dynamics of cell morphology and stress-fibers,
which ultimately leads to cellular organization in cyclically strained tissues.
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Significance Statement:

Cellular organization dictates the biological and mechanical properties of tissues in part because cells exert forces on their sur-
rounding primarily in the direction they are aligned. This orientational arrangement of cells in tissues is strongly influenced by
cyclic straining that is often experienced in vivo. We have developed a statistical mechanics framework that couples the mechano-
chemistry of the stress-fiber cytoskeleton with cell morphology under imposed cyclic loading. The model shows that the cyclic
strain avoidance (the tendency of cells to reorient away from the cyclic straining direction) emerges as a consequence of cells
attempting to lower their free-energies. Our numerical framework is expected to form an essential component to help design
functional tissue engineered systems.

Introduction
Mechanical interactions of cells with their environment are
known to strongly influence the morphological and biochemical
responses of cells. For example, it is well known that a reduced
mechanical stiffness of the substrate leads to a decrease in cell
spreading (1, 2), elongation (3, 4), and cytoskeletal ordering (3, 5).
Similarly, cells seeded on substrates with ligand patterns or het-
erogeneous elasticity respond by forming actin and focal adhe-
sion distributions that typically align with the heterogeneity (6–8).
This mechanosensitivity of adherent cells is mediated by a series
of protein complexes, including the transmembrane focal adhe-
sions and the dynamic network of intracellular proteins, such as
stress-fibers (SFs).

Mechanosensitivity also affects the behavior of cells when they
are subjected to external forces and/or deformations. For exam-
ple, there exists a wealth of in vitro data to simulate the cyclic
strain experienced by endothelial cells (9). In these experiments,
cells are seeded on 2D substrates that are stiffer than the cells and
the substrates subjected to uniaxial cyclic straining; cells orient

away from the imposed cyclic strain direction and this behavior
is widely known as cellular strain avoidance (10–13). Typically, the
phenomenon of strain avoidance increases with increasing load-
ing frequency (Fig. 1a) and strain amplitude (12, 14). Alignment
behavior has also been shown to be reported in 3D tissues where
cells are seeded in a collagen matrix, although now the precise
boundary conditions on the 3D tissue play a more crucial role (15–
17).

Under cyclic loading, cells assume a diversity of shapes but
intriguingly with increasing frequency and amplitude of cyclic
strain, not only do cells reorient away from the cyclic loading di-
rection (Fig. 1a), but the distributions of shapes they assume also
become more peaked (18, 19). Associated with the reorientation of
cells is also a reorientation of the SF arrangements whose angu-
lar distributions are typically quantified via circular histograms
(Fig. 1a). The vast majority of models developed to understand
cyclic strain avoidance include only the SF reorganization and ig-
nore the observation that cell morphology and SF distributions are
closely linked. Nevertheless, these models [e.g. Deshpande et al.
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Fig. 1. (a) Immunofluorescence images showing actin distributions within U2OS cells subjected to a uniaxial cyclic strain with a stretch amplitude 10%
at frequencies f = 0.01 and 1 Hz for around 12 hours. Reproduced from (14). Scale bar 25 μm. (b) Sketch showing a single cell adhered to a substrate
subjected to a biaxial cyclic strain in the x1–x2 plane. The cell exchanges high energy nutrients with the nutrient bath. A morphological microstate is
defined by the mapping of material points on the cell membrane with material points on the substrate. (c) The 2D approximation of the cells. The
components of the cell that are modeled explicitly include an elastic nucleus and cytoplasm as well as the contractile SFs in their polymerized state
along with the the unbound components that are free to diffuse within the cytoplasm. (d) The elliptical approximation of the cell as a spatially
uniform ellipse on the cyclically loaded substrate. The principal axes 2a1 and 2a2, respectively, of the ellipse are labeled along with the definition of the
orientation θ of the cell. (e) Sketches to illustrate the orientation δ of an SF relative to the x1 imposed cyclic strain direction and the orientation φ of the
SF relative to the major axis of the ellipse.

(20), Vernerey and Farsad (21)], are successful in predicting cyclic
strain avoidance by SFs for cells on 2D substrates: this avoid-
ance stems from the sensitivity of SF stresses to strain-rate. How-
ever, these models cannot capture the alignment of the SFs with
the imposed strain in a 3D setting. A modified model by Obbink-
Huizer et al. (22) is able to account for the cyclic response of cells
in both the 2D and 3D settings by including a strain dependence
in the SF kinetics. However, the strain dependence of SF kinet-
ics is hard to justify given the extensive remodeling that occurs
on timescales of interest. To alleviate these issues, Vigliotti et al.
(23) proposed a thermodynamically motivated model with the key
feature that the cell strain-rate leads to the SF remodeling by con-
currently adapting the SF angular distribution and the density of
functional units in SFs. While this framework successfully pre-
dicts a range of observations, it again makes no reference to cell
morphology and thus fails to include the coupled dynamics of
SFs and cell morphology, which is essential to capture the cellular
strain avoidance.

The coarse-grained model of Safran and colleagues (24, 25) at-
tempted to rationalize the reorientation of cells under applied

strain. Specifically, they treated the cells as needles with the SFs
within the needles acting as force dipoles. They hypothesized that
this force dipole orients away from the imposed external stress to
reduce the free energy of the system. However, since this coarse-
grained approach only makes tenuous connections of the force
dipoles with the intracellular structures, it is unable to predict the
frequency-dependent SF organizations. Nevertheless, to the best
of the authors’ knowledge, this model is the only approach in the
literature that recognizes that SF orientations are intimately con-
nected to cell orientation.

The coupled dynamics of the cell morphology and associated
SF organization as a function of extra-cellular environment is a
complex problem that received little attention. Recently, Shishvan
et al. (26) proposed a statistical framework, called the homeostatic
ensemble, that captures the interplay between the cytoskeletal
structure and cell morphology. The approach has been shown to
accurately predict the distribution of observed shapes of cells, in
absence of cyclic loads, in numerous environments (6, 8, 27). Here,
we extend this framework to cyclic loading conditions. We show,
in quantitative agreement with observations, that SF distributions
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within a cell are not strongly affected by cyclic strain but rather
cells preferentially reorient to avoid the cyclic strain direction.
This alignment occurs by cell rotation rather than by stretching
of the cell. These predictions are a consequence of the changes in
the free-energy landscape for cells on 2D substrates subjected to
cyclic strain: SFs subjected to contractile strain-rates exert lower
stresses resulting in an increase in the free energy, which, in turn,
results in cell reorienting to avoid contractile strain-rates.

Dynamic equilibrium under cyclic strain
We consider a system comprising a cell adhered to an elastic sub-
strate immersed in a nutrient bath at constant pressure and tem-
perature and the substrate is subjected to cyclic strain (Fig. 1b).
Typically, in such experiments (14), a dynamic steady state or
equilibrium is attained after cycling for ∼12 hours, and the statis-
tics of key observables such as cell area, shape, and orientations as
well as SF arrangements within the cell reach steady state. We first
develop a model to estimate the statistics of these observables af-
ter steady-state conditions under cyclic strain are achieved.

Cells respond to extracellular cues, such as cyclic strain,
through cytoskeletal reorganization. The response of this complex
system is recorded through a range of observables, all of which ex-
hibit large variations (18, 19). However, clear trends emerge when
the statistics of these observables are analyzed. The homeostatic
ensemble (26) has been shown to successfully predict these statis-
tics for cells in a range of environments when no external loads
are imposed (6, 8, 27). This motivates us to extend the framework
to predict the response of cells on substrates subjected to cyclic
loading.

Cyclic homeostatic ensemble
Here, we briefly describe the cyclic homeostatic ensemble, with
full details and mathematical derivations given in the Supple-
mentary Material Section S1. The homeostatic ensemble recog-
nizes that the cell is an open system that exchanges nutrients,
such as glucose, Na+ ions, and oxygen with the surrounding nu-
trient bath (Fig. 1b). These high-energy nutrient exchanges cause
large fluctuations (much larger than thermal fluctuations) in the
cell response resulting from the various intracellular biochemical
processes that are fueled by these nutrients. The fluctuations al-
ter the cell morphology and the homeostatic ensemble predicts
the distributions of states the system (the system is defined as
the cell and substrate but the nutrient bath is excluded) assumes;
see Supplementary Material Section S1. Specifically, the homeo-
static ensemble defines a morphological microstate of the system
recognizing that biochemical processes such as actin polymeriza-
tion and treadmilling provide the mechanisms for the cell to ex-
plore morphological microstates. Then employing ansatz that the
these processes result in the system maximizing the morpholog-
ical entropy, the homeostatic ensemble provides the distribution
of states the system (and the cells) attain in a given environment.
The key constraint while maximizing the entropy is that the cells
attain a homeostatic state, viz. the average number of all species
within the cell is fixed independent of the environment. This con-
straint in fact is equivalent to the statement that cells explore a
range of morphological states with a fixed energy “budget.”

In broad terms, a morphological microstate specifies the shape
of a cell. More specifically, a morphological microstate is defined
by the mapping (connection) of material points on the cell mem-
brane to the material points on the substrate (Fig. 1b). An impor-
tant assumption in developing the cyclic homeostasis framework

is a separation of time scales. There are three relevant timescales
in the problem.

(1) Time for the intracellular processes, Tintra. This is driven by a
range of biochemical processes, including cytoskeletal pro-
cesses such as actin polymerization, myosin power strokes
driving SF contraction, and diffusion of species such as un-
bound cytoskeletal and signaling proteins within the cell.
These processes are relatively fast and are typically limited
by diffusion rates (chemical reactions and mechanical pro-
cesses, such as wave propagation are typically much faster
and thus not the rate-limiting processes) (28). Therefore, in-
tracellular remodeling occurs on the order of a few seconds,
i.e. Tintra = O(1 s).

(2) Time for the evolution of morphological microstates, Tcell. Evolu-
tion of a morphological microstate or cell morphology re-
quires co-operative cytoskeletal processes within the cell,
such as cytoskeletal reorganization orchestrated by coor-
dinated actin polymerization, treadmilling, and dendritic
nucleation (29–31). These cytoskeletal processes are much
slower and thus cell morphology evolves slowly and on the
timescale of minutes, i.e. Tcell = O(1 min). This, in turn, im-
plies Tcell � Tintra.

(3) Time period Tp of cyclic straining. We will focus on the cyclic
strain with a time period Tp � Tcell. Given that cyclic strain
conditions of primary interest are typically around the
physiologically relevant frequency of 1 Hz, this covers most
realistic cyclic straining conditions.

Thus, the three timescales are related by

Tintra ∼ Tp � Tcell. (1)

Similar separation of timescales is also used in refs. (24, 32) and re-
ported in experiments (33, 34), where the SFs reorient appreciably
faster compared to the cell (while the case of Tp � Tintra is beyond
the scope of the model, we anticipate that when Tp ∼ Tcell, align-
ment under cyclic loading is expected to be lost as the imposed
frequencies are less than 0.01 Hz.). The separation of timescales
allows us to assume that for a given cell morphology (or mor-
phological microstate), the intracellular structure is well approxi-
mated by its steady-state configuration. In addition, during a time
period of cyclic straining, the morphological microstate undergoes
a negligible change. Exploiting these assumptions, we show (Sup-
plementary Material Section S1.4) that the equilibrium probability
of a morphological microstate (c) under cyclic loading conditions
is given by

P(c)
eq = exp(−β (H(c) − φ (c) ))∑

c exp(−β (H(c) − φ (c) ))
, (2)

where H(c) is the time-averaged Helmholtz free energy of the sys-
tem over period Tp and �(c) is a term associated with the elastic
deformation of the substrate due to the tractions exerted on the
substrate by the adherent cell. The distribution parameter β is set
by the cellular homeostatic constraint, viz. over all the fluctua-
tions of the cell, the numbers of each species (Na+, Glucose) within
the cell remains at fixed values, independent of the extracellular
environment/loading. This constraint reduces to (Supplementary
Material Section S1.4)

∑
c

P(c)
eq (H(c) − φ (c) ) = Hs, (3)

where Hs is the Helmholtz free energy of the cell in suspension
(i.e. the unadhered cell). The distribution P(c)

eq is dependent on the
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imposed cyclic strain profile and provides the statistics of all the
observables for the steady or equilibrium state of the cell under
cyclic loading conditions.

While the elastic properties of cyclically strained substrates are
known to influence the organization of cells (35–37), in many re-
ported experiments (14, 35, 38), substrates are “stiff” (e.g. silicone)
compared to cells such that the tractions exerted by the cell on
the substrate result in negligible substrate deformation. The ad-
vantage of such substrates is that over the period TP, the imposed
cyclic strains (and strain-rates) are directly transmitted to the cell
membrane adhered to the substrate and this simplifies the inter-
pretation of the measurements. We restrict our analysis to this
“stiff” limit and will subsequently show that it suffices to accu-
rately predict numerous reported observations. In the stiff limit,
we can neglect the substrate strain due to cell tractions and fo-
cus on the cyclic response of the cells. Using this assumption, we
show in Supplementary Material Section S1.5 that �(c) is the aver-
age substrate elastic energy that is independent of the morpholog-
ical microstate (c) and depends only on the imposed strain profile.
It then straightforwardly follows that H(c) − φ (c) = H(c)

cell, where H(c)
cell

is the time-averaged Helmholtz free energy of the cell over the
period Tp. Consequently, Eqs. 2 and 3 reduce to

P(c)
eq = exp

( − βH(c)
cell

)
∑

c exp
( − βH(c)

cell

) , (4)

with

∑
c

P(c)
eq H(c)

cell = Hs. (5)

Thus, the morphological microstates the cell assumes are inde-
pendent of the elastic properties of the substrate.

Morphological microstate and the free-energy
H(c)

cell
A morphological microstate is defined by the connection of mate-
rial points on cell membrane to material points on the substrate.
Cells take a large number of complex 3D shapes, but to reduce
the computational cost, Deshpande and co-workers (6, 8, 26) have
shown that in a number of situations it is sufficient to approxi-
mate the cells as 2D bodies as shown in Fig. 1c. In these works,
nonuniform rational B-splines are used to describe complex 2D
cells and morphological metrics such as cell area, aspect ratio are
extracted in a manner similar to that reported in the majority of
experimental studies. In extracting such metrics, cells are often
approximated as ellipses and thus here, we simplify the compu-
tational approach further by approximating cells as spatially uni-
form ellipses in the plane of substrate. We expect that while this
approximation will miss some features, it will suffice to capture
key morphological observables (area, aspect ratio, and cell orien-
tation) of interest.

Consider a spatially uniform ellipse on a flat substrate in the
x1–x2 (Fig. 1d). The morphological microstate is then naturally
characterized by the area A = πa1a2, aspect ratio As = a1/a2 ≥ 1,
and the orientation θ of the major axis of the ellipse with respect
to the x1-direction, with a1 and a2 the lengths of the semi-major
and semi-minor axes of the ellipse, respectively. In our statistical
mechanics framework, the cell samples a phase space comprising
variables that describe the morphological microstate. It is thus
preferable to use microstate variables that span similar extents
and we thus use the analytic geometry definition of the ellipse to
define a morphological microstate. Further, we restrict ourselves

to the case of homogeneous substrate where the energy of the
system is independent of the cell location on the substrate and
therefore it suffices to describe the cell morphology by an ellipse
with its centroid fixed. Then, the points on the periphery of the
ellipse with centroid located at (x1, x2) = (0, 0) satisfy the implicit
equation

hx̂2
1 + kx̂1x̂2 + lx̂2

2 = 1, (6)

where x̂1 = x1/R0 and x̂2 = x2/R0 with R0 an arbitrary length scale
that subsequently we will associate with the size of the cell in a
reference state, while (h, k, and l) are nondimensional coefficients
that describe the ellipse. These coefficients are related to (a1, a2,
and θ ) by

h = cos2(θ )
â2

1

+ sin2(θ )
â2

2

, k =
(

1
â2

1

− 1
â2

2

)
sin(2θ ), and

l = cos2(θ )
â2

2

+ sin2(θ )
â2

1

, (7)

where â1 = a1/R0 and â2 = a2/R0.
The free-energy H(c) is dependent on the steady-state intracel-

lular structure for the given cell morphology (c) and the imposed
cyclic loading. Modeling all the intracellular elements is unrealis-
tic and might not provide appropriate physical insight. Moreover, it
is well-known that the acto-myosin SFs remodel to dictate the cel-
lular response under cyclic straining. Thus, we implement a rela-
tively simple model to capture the active mechano-bio-chemistry
of the SFs (23). The model is described in detail in Supplementary
Material Section S2 and comprises contributions from the pas-
sive elasticity of the cytoplasm and nucleus as well as the active
response of the acto-myosin SFs.

The cell in its undeformed state (also known as the elastic rest-
ing state since the elastic strain energy is zero in this state) is a cir-
cle of radius R0 and includes a circular nucleus of radius RN whose
centroid coincides with that of the cell. The cytoplasm is modeled
as comprising of an active SF cytoskeleton wherein the actin and
myosin proteins exist either in unbound or in polymerized states
(Fig. 1c). Recall that the morphological microstate of the cell is de-
scribed by (h, k, and l) such that the cell deforms to form an ellipse
with a spatially uniform strain distribution. Thus, while the tem-
poral mean strain of the cell with morphology (c) is specified by
(h, k, and l), the strain-rate equals the substrate strain-rate since
the cell remains adhered to the substrate within the period Tp. The
polymerized SF cytoskeleton is modeled as a distribution of active
contractile SFs such that η̂(φ) parameterizes the angular concen-
tration of the SFs at angle φ, measured relative to the major axis
of the ellipse, with n̂(φ) denoting the number of functional units
within each SF. Then, the total concentration N̂b of bound SF pro-
teins is obtained by integrating η̂n̂ over all orientations φ and the
remaining proteins with a concentration N̂u = 1 − N̂b remaining in
the unbounded state. The angular distribution and chemical po-
tentials of the bound proteins along with the concentration of the
unbound proteins together provide the cytoskeletal free-energy
Hcyto(t) at time t within the period Tp. Denoting the contribution
from the lumped elasticity of the passive elements within the cy-
toplasm and nucleus by Hpassive(t), the Helmholtz free energy at
time t for the cellular morphology (h, k, and l) is

Hcell (t) = Hcyto(t) + Hpassive(t). (8)
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The time average over the period Tp then defines H(c)
cell in Eq. 4 for

the morphological microstate (c), i.e.

H(c)
cell = 1

Tp

∫ tI+Tp

tI

Hcell (t)dt, (9)

where tI is an arbitrary time that defines the initial condition of
the period over which the averaging is performed. The numerical
procedure to calculate the cyclic energy is described in Supple-
mentary Material Section S4.1.

While details for the free-energy model are provided in Supple-
mentary Material Section S2.1, it is worth summarizing two key
features of the model that determine cell behavior under cyclic
straining:

(1) Polymerization of SF proteins associated with cell spreading
and elongation reduces Hcyto. Thus, elongated and spread
cell shape are preferred until it becomes energetically un-
favorable due to the higher elastic strain energy Hpassive as-
sociated with these shapes.

(2) The stress in an SF is given by a Hill-type constitutive rela-
tion (Supplementary Fig. S1). Since the tensile SF stress de-
creases with increasing contraction rate, the SF free-energy
Hcyto increases with increasing contraction rate.

These two features imply that while cells prefer to assume elon-
gated shapes, cells elongated along the cyclic straining direction
have a higher free energy compared to the same cell shape aligned
along a direction where the SFs are subjected to lower strain-rates,
as will be shown in the next section. In fact, we shall subsequently
show that the cell free-energy H(c)

cell continuously decreases as an
elongated cell of fixed shape rotates away from the cyclic strain
direction.

Predictions of the cyclic steady state
We present predictions of the steady state that cells assume when
subjected to cyclic straining on a stiff substrate. This steady state
is given by probability distribution Eq. 4 and typically observed
after the cells have been subjected to cyclic loading for 12 hours or
more. In line with most experiments, we consider cyclic straining
of the substrate such that the principal strains ε1(t) and ε2(t) are
given by

ε1(t) = εmean + εamp

2
sin(2π ft), (10)

and ε2 = −rε1, where r is a measure of the biaxiality of the imposed
cyclic strain. Then the substrate principal stretches are λ1(t) = 1 +
ε1(t) and λ2(t) = 1 + ε2(t), while εmean is the mean strain with εamp

the peak-to-peak amplitude of the imposed cyclic strain at fre-
quency f. Unless otherwise specified, we restrict the results to the
case of uniaxial straining with r = 0 and only show a few predic-
tions for the range 0 < r ≤ 1 to demonstrate the generality of the
model. For stiff substrates, the morphological microstate (c) is in-
dependent of the mean substrate strain εmean and hence the cyclic
results are independent of εmean (and thus not specified here). The
numerical procedure to compute the distribution of observables
at the cyclic steady state is summarized in Supplementary Mate-
rial Section S4.2. The majority of the cyclic results presented here
are for the physiologically relevant parameters that are used ex-
tensively in experiments reported in the literature, viz. εamp = 0.1
and f = 1 Hz (14, 18), with material parameters to determine active
and passive energies provided in Supplementary Tables S1 and S2.
A more extensive parametric study is reported in Supplementary
Material Section S5.

Effects of cyclic strain on the dynamic
equilibrium of cells
Typically in experiments, the effect of cyclic strain on the SF an-
gular distribution is of primary interest. To characterize the SF
distributions in our results, we define the metric

ξ (δ) =
∑

c

P(c)
eq η̂(φ)n̂(φ). (11)

Here, the product η̂(φ)n̂(φ) provides a measure of actin concentra-
tion (see Supplementary Material Section S2.1) in morphological
microstate (c) at an orientation φ = δ − θ with respect to the major
axis of the ellipse with δ the angle of the SF with respect to x1-
direction (Fig. 1e). Thus, ξ provides the ensemble average of the
SF concentration at an orientation δ over all morphological mi-
crostates in the cyclic homeostatic ensemble. Predictions of the
ξ̂ (δ) = ξ (δ)/

∫ π/2
−π/2 ξ (δ)dδ are shown in Fig. 2a for a cyclic strain (r =

0) with εamp = 0.1 and f = 0.5, 1 Hz along with the reference case
of no imposed cyclic strain (i.e. f = 0 Hz). While ξ̂ is isotropic for f
= 0 Hz, there is a strong tendency for SFs, as parameterized by ξ̂ ,
to be preferentially orientated at δ = 90◦ with respect to the cyclic
strain direction. Consistent with observations (14), the tendency
of the SFs to “avoid” the cyclic strain direction increases with in-
creasing frequency of the cyclic strain; see Supplementary Fig. S2
in Supplementary Material Section S5 for a more detailed para-
metric study, including dependence on strain amplitude. To make
a direct comparison with metrics reported in measurements (14),
we compute the circular variance (CV) of ξ̂ defined as

CV = 1 −
√[∫ π

0
ξ̂ (δ) cos(2δ)dδ

]2

+
[∫ π

0
ξ̂ (δ) sin(2δ)dδ

]2

. (12)

Comparisons between measurements (14) and predictions shown
in Fig. 2(b) indicate remarkable agreement with measurements
(14) for f = 1 Hz. Of course, consistent with the distributions of
ξ̂ in Fig. 2(a), CV increases with decreasing frequency and attains
the isotropic value of CV = 1.0 at f = 0 Hz.

While Fig. 2(a) and (b) clearly shows that with no cyclic strain,
there is no orientational bias of the SFs with respect to the x1-
direction, it is well established that in the absence of cyclic strain
cells seeded on stiff substrates assume elongated shapes with
aligned SFs (3, 14). To investigate the alignment of SFs within cells,
we define a parameter analogous to ξ̂ , viz. ρ(φ) = ∑

c P(c)
eq η̂(φ)n̂(φ),

with ρ̂(φ) = ρ/
∫ π/2
−π/2 ρdφ. Predictions of ρ̂ in the form of an x–y plot

and circular histograms are shown in Fig. 2(c) for cyclic strain with
εamp = 0.1 and f = 0.5, 1 Hz along with the no cyclic strain case of
f = 0 Hz. The differences between the three cases now are much
less pronounced with strong alignment of the SFs along the major
axis of the ellipse (φ = 0) seen in all cases, although the level of
alignment does marginally increase with increasing f. The circu-
lar variance of ρ̂ can be defined analogously to Eq. 12 and are 0.61,
0.57, and 0.33, respectively, for f = 0, 0.5, and 1 Hz.

Cyclic strain has a small effect on SF alignment with respect to
the cell morphology but a strong influence on the angular distri-
bution of SFs with respect to the global x1-direction. This suggests
that cyclic strain strongly influences the orientation θ of the cells.
Predictions of the probability density of θ for εamp = 0.1 and f =
0.5, 1 Hz with r = 0 along with the no cyclic strain case of f = 0 Hz
are included in Fig. 3(a). While consistent with experimental ob-
servations (18, 19), there is no preferential orientation of the cells
for f = 0 Hz, cells align perpendicular to the cyclic strain direc-
tion x1 with the degree of alignment increasing with increasing f.
We also include in Fig. 3(a) the quantitative comparisons between
predictions and measurements (39) [which we have symmetrized
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Fig. 2. (a) Predictions of the angular distributions of SF concentrations as parameterized by ξ̂ (δ), where δ is the orientation of the SFs with respect to
x1-direction of cyclic stretching. Results are shown for cyclic loading (r = 0) with εamp = 0.1 and f = 0.5, 1 Hz, together with the reference case of no
imposed cyclic loading (i.e. f = 0). (b) Comparison of the predicted and measured (14) CVs, defined by (12), for selected frequencies f and εamp = 0.1. (c)
The angular distributions of the SF concentrations as parameterized by ρ̂(φ) within cell with φ denoting the orientation of the SFs with respect to the
major axis of the ellipse. Predictions are shown for the three straining cases in (a) with the corresponding circular histograms shown as insets. (d) The
angular distributions and circular histograms for SFs parameterized by ξ̂ circ(δ) for a circular cell of radius R0 and subjected to the three straining cases
in (a).

to extend in range to (0 to 180◦)] for the f = 1 Hz case. The excel-
lent agreement with measurements demonstrates the fidelity of
the predictions. The SF alignments within cells (Fig. 2c) and cell
alignments (Fig. 3a) together clearly show that SF alignment un-
der cyclic strain away from the cyclic strain direction (Fig. 2a and
b) is primarily a consequence of cells being preferentially oriented
perpendicular to the cyclic strain direction rather than a signifi-
cant change to the SF arrangements within cells.

Cyclic strain is also known to alter cell morphology with ob-
servations showing that cell aspect ratio increases with the cyclic

strain frequency (18, 19, 40). Predictions of the probability den-
sity distributions of normalized cell area Â = A/(πR2

0) and as-
pect ratio As are shown in Fig. 3(b) and (c), respectively, for
cyclic strain with εamp = 0.1 and f = 0.5, 1 Hz along with the
reference case of f = 0 Hz. Our model not only predicts an in-
crease in the mean area and aspect ratio of the cells under
cyclic strain, but more importantly it predicts that narrower
probability distributions (i.e. less variability in cell morphology)
under cyclic strain, similar to observations of Greiner et al.
(18).
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Fig. 3. Probability density functions of the three key morphological
observables for loading (r = 0) with a cyclic strain εamp = 0.1 and f = 0.5,
1 Hz along with the case of no cyclic strain (f = 0 Hz). (a) Predictions of
the cell orientation p(θ ) along with comparisons with measurements of
Wang et al. (39) for endothelial cells subjected to uniaxial cyclic strain
with f = 1 Hz. Corresponding predictions of the (b) normalized cell area
p(Â) and (c) cell aspect ratio p(As).

Our predictions indicate that cyclic strain mainly influences
cell orientation (and to a lesser extent cell morphology) rather
than SF alignments within cells. While these predictions are con-
sistent with experimental observations, they contrast with all ex-
isting models (20, 21, 23) for the effect of cyclic strain on cells.
These models all attribute the main effect of cyclic strain to be
on SF alignment within cells rather than on cell orientation. The
reason for this is that the existing models are restricted to mod-
eling the SF arrangements within cells with no consideration of
cell morphology. In effect, such previous modeling approaches
implicitly assume a circular cell and investigate the influence
of cyclic strain on SF arrangements for this fixed circular mor-
phology where cell orientation is not a relevant parameter. Such
models only require a framework for SF remodeling with no con-
nection to simultaneously estimate cell morphology. In contrast,
our cyclic homeostasis framework predicts the influence of cyclic
strain on cell morphology by connecting cell morphology to the
SF arrangements under cyclic straining. In the cyclic homeostatic
framework, it is possible to decouple cell morphology and SF re-
modeling to investigate the influence of cell morphology on SF
arrangements. We thus restrict the cell to circular with radius R0

and just employ the SF model (see the “Morphological microstate
and the free-energy H(c)

cell” section and Supplementary Material
Section S2) to investigate the influence of cyclic straining on SF
arrangements. This gives predictions that are directly compara-
ble to existing models (20, 21, 23). With cell morphology fixed to
be circular, ξ̂ and ρ̂ are identical parameters and both reduce to
ξ̂ circ(δ) = n̂(δ)η̂(δ)/

∫ π/2
−π/2 n̂(δ)η̂(δ)dδ, where δ = φ. Circular histograms

and XY plots and of ξ̂ circ(δ) are included in Fig. 2(d) for εamp = 0.1
and f = 0.5, 1 Hz along with the case of f = 0 Hz. This simple cir-
cular cell model, which only accounts for changes in SF arrange-
ments due to cyclic straining, predicts circular histograms that are
qualitatively consistent with the predictions of the cyclic home-
ostasis in Fig. 2(b), but quantitatively they are quite different. To
clarify this, we define CVcirc analogously to Eq. 12 with ξ̂ replaced
by ξ̂ circ. For f = 1 Hz, CVcirc = 0.90, which is significantly higher
than the measured value of 0.34, i.e. restricting the cell to be cir-
cular predicts a reduced level of SF alignment. Thus, the circular
cell model is inconsistent with experimental observations in two
important aspects: it predicts (i) that the SF distributions within a
cell on a substrate not subjected to cyclic strain is isotropic and (ii)
the key effect of cyclic strain is on SF alignment within cells rather
than on the orientation of cells. A corollary consequence of (ii) is
that it predicts a significantly lower level of SF alignment under
cyclic straining in comparison to experimental measurements.

Changes in the free-energy landscape drive the
changes in cell morphology and orientation
The cyclic homeostatic framework makes predictions consistent
with a range of experimental observations. Recalling that P(c)

eq is

set by H(c)
cell in Eq. 4, the landscapes of H(c)

cell in the morphological
phase space provide insights into the predictions reported above.
Using axes of a1/R0 and a2/R0, we show the landscapes of the nor-
malized Helmholtz free-energy Ĥ = H(c)

cell/|Hs| for cell orientations
θ = 0◦, 90◦, and 45◦, 135◦ in Fig. 4(a) and (b), respectively, for cyclic
straining with εamp = 0.1 and f = 1 Hz. [Note that while H(c)

cell is pre-
sented here as a function of the physically intuitive geometrical
parameters a1/R0, a2/R0, and θ , P(c)

eq is estimated by sampling the
morphological phase space in terms of (h, k, and l).] These land-
scapes will help interpret three key predictions, viz. (i) cells re-
orient away from the cyclic strain direction; (ii) the shapes they
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Fig. 4. Predictions of the normalized free-energy Ĥ = H(c)
cell/|Hs|

landscapes using axes of the normalized semi-major and semi-minor
axes a1/R0 and a2/R0, respectively, of the ellipse. These landscapes are
shown for cyclic strain (r = 0) with εamp = 0.1 and f = 1 Hz for cells
oriented at (a) θ = 0◦ and 90◦, (b) θ = 45◦ and 135◦, and (c) the reference
case of no imposed cyclic strain (i.e., f = 0 Hz). In (c), we only show the
landscape for a1 ≥ a2, where a1 is the semi-major axis and there is no θ

dependence of the free-energy landscape.

assume, and (iii) the narrowing of the probability distributions of
the cell morphologies under cyclic strain.

First, compare the θ = 0◦, 90◦ landscapes in Fig. 4(a). Clearly,
overall Ĥ values are lower for θ = 90◦ compared to θ = 0◦ and a
local minimum for Ĥ is found for the θ = 90◦ case at (a1/R0, a2/R0)
≈ (1.9, 0.68). The lower values of Ĥ for nearly all cell morphologies
with θ = 90◦ compared to θ = 0◦ implies that at dynamic equi-
librium, θ = 90◦ morphologies have a higher probability to be ob-
served as seen in the predictions on Fig. 3(a). The θ = 45◦ and 135◦

landscapes in Fig. 4(b) show that at these orientations, Ĥ values
are intermediate to the θ = 0◦, 90◦ cases resulting in intermedi-
ate values of the probability at those orientations. To understand
the differences in the free-energy landscapes at different cell ori-
entations, recall that SF polymerization as characterized by η̂n̂ is
maximum in the direction of maximum cell strain. For the θ = 90◦,
this direction is perpendicular to the cyclic strain with these fibers
close to isometric conditions and hence under high tensile stress.
This leads to these fibers having a low enthalpy that translates
to a low H(c)

cell (see Supplementary Material Section S2.1). On the
other hand, for the same elliptical shape but with θ = 0◦, the fibers
along the direction of maximum polymerization are subject to a
high contractile strain-rate during the contractile phase of cyclic
straining. These contractile strain-rates reduce the fiber stress via
a Hill-type relation and increase their enthalpy and thereby in-
crease H(c)

cell.
The morphologies cells adopt and the effect of cyclic strain on

cell morphologies are best considered together. The free-energy
landscape Ĥ in the absence of cyclic strain is shown in Fig. 4(c). Of
course, cell orientation no longer plays a role in this case with the
landscape independent of θ . The minimum in Ĥ at (a1/R0, a2/R0)
≈ (1.85, 0.72) sets the mode of the area and aspect ratio probabil-
ity distributions (in the absence of cyclic strain) plotted in Fig. 3(b)
and (c), respectively. To understand this minimum, recall that H(c)

cyto

decreases with increasing cell spreading due to higher levels of
polymerization. However, cell spreading also increases the elastic
energy of the cell and the two together compete to give the min-
ima [see Fig. 7 of (8)]. The spreading is not isotropic but results in
elongated cell morphologies as the shear modulus of the cell is
lower than its bulk modulus and thus from an elastic standpoint,
it is energetically favorable to assume elongated spread shapes.
These basic phenomena are also at play under cyclic strain (see
replot of the free-energy landscapes in Supplementary Fig. S3 with
contours of cell area and aspect ratio included) and hence the
free-energy landscape under cyclic strain with θ = 90◦ (Fig. 4a) and
in the absence of cyclic strain (Fig. 4c) are qualitatively similar. So
why do cell morphologies become more deterministic under cyclic
strain? Notice that the free-energy landscapes for the cyclic θ =
90◦ case has a more localized region of low Ĥ, i.e. the free-energy
well is confined over a smaller region of the morphological phase
space compared to in the absence of cyclic strain. Therefore, to
satisfy the homeostatic constraint under cyclic strain, the proba-
bilities of these low free-energy states need to be higher relative to
the higher free-energy states with the consequence that the cells
adopt a smaller variation of morphologies under cyclic strain. As a
corollary, the system also acquires larger value of the distribution
parameter β under cyclic strain (β|Hs| = 18.30 for cyclic straining
with εamp = 0.1 and f = 1 Hz, while β|Hs| = 5.80 in the absence
of cyclic straining). Analogous to the usual canonical ensemble,
the distribution parameter β can be viewed as the inverse of the
“homeostatic temperature” and thus cyclic straining reduces the
homeostatic temperature and therefore makes the cell more de-
terministic.
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Cells align along the direction of vanishing cyclic
strain-rate
The above uniaxial cyclic straining (r = 0) results suggest that cells
primarily align along the direction of zero strain-rate. In this ori-
entation, the majority of SFs are under isometric conditions and
this reduces the overall free energy of the cell. To check the gener-
ality of this prediction, we now consider biaxial cyclic loading of
the substrate with 0 ≤ r ≤ 1. Keeping in mind that our aim is to pre-
dict the orientation of the cells, we now employ a 1D (or rod-like
model) for the cell rather than modeling cells as ellipses. Spatially
uniform rod-like cells implies that the microstate (c) of the cell is
modeled by just two degrees of freedom, the cell stretch λ, and cell
orientation θ ; see Supplementary Material Section S3 for details.
This approximation substantially reduces the numerical cost of
the model and suffices to describe distribution of the cell orien-
tations. When this rod-like model for cells is implemented within
the statistical framework, it provides predictions for the probabil-
ity distribution of cell orientations (Supplementary Fig. S4a for f
= 1 Hz and εamp = 0.1) for each choice of the loading biaxiality r.
For r > 0 two modes are observed in the probability distributions
at orientations of vanishing strain-rate, viz. θ = tan−1(1/

√
r) and

θ = π − tan−1(1/
√

r). The reasons are the same as discussed ear-
lier in the context of elliptical cells: in the direction of vanishing
strain-rate, the SFs are under isometric conditions and this min-
imizes the cell free energy for a given value of λ. Comparisons
between predictions of the mode of p(θ ), viz. θ = tan−1(1/

√
r) and

measurements (32) are included in Supplementary Fig. S4b. Ex-
cellent agreement with observations confirms that cells indeed to
orient in directions of vanishing substrate strain-rate.

Evolution of cell morphology under cyclic
strain
Under dynamic equilibrium conditions, cells on substrates sub-
jected to cyclic straining orient themselves away from the strain
direction with the consequence that the SFs too are primarily
aligned away from the cyclic strain direction. However, the dy-
namic equilibrium analysis discussed earlier did not address the
mechanism of this process; viz. did cells reorient themselves away
from the cyclic strain direction by rotating while keeping cell mor-
phology fixed or stretch themselves so as to contract in the cyclic
strain direction and elongate in other directions to ultimately re-
sult in reorientation? To answer this question, a kinetic analysis of
the temporal evolution of the cells under cyclic strain is required.

A Langevin formulation for cyclic strain
Within the context of the cyclic homeostatic ensemble for cells
on stiff substrates, the free-energy H(c)

cell of the cell fluctuates un-
der dynamic equilibrium conditions but the corresponding cyclic
homeostatic potential M = Hs − (1/β)ST, where ST is the morpho-
logical entropy of the cell, is constant over these fluctuations (Sup-
plementary Material Section S1.5). This establishes a direct anal-
ogy between the homeostatic ensemble and the well-established
canonical ensemble, where the system energy fluctuates but the
Helmholtz free energy remains constant. Since the temporal evo-
lution of the microstates of an isothermal system whose equi-
librium distribution is given by the canonical ensemble is often
described by the Langevin dynamics, we present a similar equa-
tion to characterize the kinetics of cell evolution. The low “speeds”
at which cell morphologies fluctuate implies that it suffices to
consider overdamped Langevin dynamics and ignore inertia. Such
an approach was pursued by Ippolito et al. (8) for cells on sub-

strates in the absence of cyclic strain and here we extend it to
when substrate on which these cells are seeded is subjected to
cyclic straining. Specifically, the Langevin equation describes the
evolution of the cell morphology parameterized by the nondimen-
sional coefficients (h, k, and l). The overdamped Langevin equa-
tion for the evolution of the cell morphology is then written as

∂ri

∂t
= − 1

γ

∂H(c)
cell

∂ri
+

√
2

βγ
W(t), (13)

where r = (h, k, l), and γ is a damping coefficient, sometimes re-
ferred to as the mobility, and W(t) a Wiener process. Recall that our
assumption of the separation of timescales implies that the coef-
ficients r evolve over timescales � the cyclic straining period Tp

and the timescales over which the intracellular structure adapts.
Thus, in Eq. 13, we employ the cyclic free-energy H(c)

cell for describ-
ing the temporal evolution of r.

A key justification of the validity of this approach is that it re-
covers the dynamic equilibrium distribution discussed in the sec-
tion “Cyclic homeostatic ensemble.” To observe this note that the
Fokker–Planck equation corresponding to Eq. 13 is given by

∂P(r, t)
∂t

= 1
γ

3∑
i=1

∂

∂ri

(
P(r, t)

∂H(c)
cell

∂ri

)
+ β

γ

3∑
i=1

∂2P(r, t)
∂2ri

, (14)

where P(r, t) is the probability of morphological microstate (c) pa-
rameterized by r at time t. The steady-state solution to Eq. 14 cor-
responding to ∂P(r, t)/∂t = 0 is the equilibrium probability distri-
bution and is then

Peq(r) = 1
Z

exp
( − βH(c)

cell

)
, (15)

where

Z =
∫

exp
( − βH(c)

cell

)
dr. (16)

Thus, the Fokker–Planck equation (Eq. 14) converges to the dy-
namic equilibrium state and provides a justification for the choice
of the corresponding Langevin equation (Eq. 13). There is a single
temporal scaling parameter in Eq. 13 and so we can recast it in
terms of a nondimensional time t̂ = t|Hs|/γ as

∂ri

∂ t̂
= − ∂Ĥ

∂ri
+

√
2

β̂�t̂
N (0, 1), (17)

where Ĥ = H(c)
cell/|Hs|, β̂ = β|Hs|, and N (0, 1) is a Gaussian distribu-

tion of zero mean and unit variance. In writing Eq. 17, we used the
fact that the stochastic differential equation (Eq. 13) is solved with
a finite time step �t, where �t̂ = �t|Hs|/γ . We thus first present
the temporal evolution of the cell morphologies in terms of t̂ with-
out explicit knowledge of γ and subsequently estimate γ by com-
paring with measurements. Details of the numerical procedure to
solve Eq. 17 are provided in Supplementary Material Section S4.3.

Evolution of cell morphology
We first consider the temporal evolution of the cell that is seeded
onto the substrate from suspension (a deterministic circular cell
morphology of radius 0.96R0) at time t̂ = 0 with the substrate sub-
jected to cyclic strain (r = 0) with εamp = 0.1 and f = 1 Hz. The
Langevin equation (Eq. 17) is a stochastic differential equation so
that a different solution is generated for every realization of the
noise process, i.e. much like in repeated nominally identical ex-
periments a different trajectory of morphological evolution is ob-
tained for every solution of Eq. 17 with the same initial state at



10 | PNAS Nexus, 2022, Vol. 1, No. 5

t̂ = 0. To generate probability distributions of the temporal evo-
lution of the key observables, viz. the normalized area Â, aspect
ratio As, and cell orientation θ , we simulated 1,000 such trajecto-
ries for the cell starting from its state in suspension at t̂ = 0. The
probability density distributions are then generated by collecting
the 1,000 cell morphologies at each time t̂ from the 1,000 Langevin
trajectories.

Predictions of the temporal evolution of the probability den-
sity functions p(Â), p(As), and p(θ ) are included in Fig. 5. Since the
cell state is deterministic (cell in suspension) at time t̂ = 0 with
Â = 0.92 and As = 1, p(Â) and p(As) are delta functions at t̂ = 0. On
the other hand, cell orientation θ is undefined for a circular cell
and we assume that p(θ ) is uniform at t̂ = 0. Soon after the seeding
of the cell (t̂ = 0.1), the distributions p(Â) and p(As) are still highly
peaked having diffused out from their initial delta functions. Sim-
ilarly, at t̂ = 0.1, p(θ ) has not changed substantially from its ini-
tial uniform distribution. With increasing time, the distributions
of cell area and aspect ratio become more diffuse with the mean of
the distributions shifting to higher values. On the other hand, the
cell orientation distribution becomes peaked around θ = 90◦ im-
plying that cells are starting to orient perpendicular to the cyclic
strain direction. In fact, these three distributions nearly converge
for t̂ ≥ 100 to the dynamic equilibrium distributions seen in Fig. 3.

Cells rotate to avoid cyclic strain
Simulations starting from cells in the suspended state are not
suited to answer the question: what is the process by which cells
avoid cyclic strain? This is because cell orientation at t̂ = 0 is not
clearly defined for circular cells. We thus change approach and
investigate the cyclic response of cells that have been seeded on
the substrate prior to application of cyclic strain and allowed to
attain their equilibrium distributions. Cyclic straining of the sub-
strate is then commenced at t̂ = 0 after the static equilibrium has
been attained. Not only is such a straining protocol experimen-
tally realizable, it has the advantage that the equilibrated cells
are elongated with cell orientation well defined at t̂ = 0.

Our aim here is to differentiate between the two processes by
which cells could avoid cyclic strain. These two processes are
sketched in Fig. 6(a): (i) the strain mode: morphological changes
involving cell straining but no cell rotation and (ii) the rotation
mode: cell rotation with negligible morphological changes. Both
these modes have been observed for fibroblasts seeded on cycli-
cally loaded substrates (32); see Fig. 6(b). However, the observa-
tions have to-date been unable to quantify the degree of preva-
lence of the two modes and moreover to the best of our knowl-
edge there exists no model in the literature with the fidelity to
differentiate between the two modes of cyclic strain avoidance.
To differentiate between these two modes, we will use the follow-
ing simulation protocol. Recall that all orientations θ of a given
morphology of a cell are equally probable in the absence of cyclic
strain. We thus consider 50 different cell morphologies specified
by couplets of (Â, As ) selected using the equilibrium probability
distributions in the absence of cyclic strain (Fig. 3b and c) and we
assign an orientation θ = θ0 to all these morphologies. Using these
initial conditions, we then run 20 Langevin trajectories on each of
the 50 initial cell morphologies (i.e. a total of 1,000 Langevin tra-
jectories for each initial cell orientation θ0). By following each of
these 1,000 trajectories in time, we can evaluate the cell rotation
θr(t̂) in each case. We emphasize that θr(t̂) is fundamentally differ-
ent from the cell orientation θ : while θ provides the orientation of
the major axis of the ellipse with respect to the x1-direction, θr(t̂)
is the rigid body rotation of the cell. Here, we calculate θr(t̂) by
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Fig. 5. Temporal evolution of the probability density functions of (a) the
normalized cell area p(Â), (b) cell aspect ration p(As) and (c) cell
orientation p(θ ) for cells subjected to cyclic strain (r = 0) with εamp = 0.1
and f = 1 Hz. Cell are seeded from suspension onto the cyclically
strained substrates at normalized time t̂ = 0.
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Fig. 6. (a) Sketches for the two mechanisms via which the cells could orient away from the cyclic straining direction illustrated here for uniaxial cyclic
straining (ε2(t)/ε1(t) = 0). In the strain mode, cells stretch with negligible cell rotation, while in the rotation mode, cells rotate with negligible
morphological changes. The sketch shows the reorientation of the cell by 90◦. To illustrate kinetics of the two processes, we mark a material line (solid
black line) corresponding to the minor axis of the initial cell morphology and follow temporal evolution of this material line. In the strain mode, this
line does not rotate but stretches to become the major axis, while in the rotation mode, the line rotates by 90◦ but remains the minor axis. (b)
Observations of these two modes in fibroblasts seeded on cyclically loaded substrates. Reproduced from (32).

monitoring the rotation of one of the principal axes of the ellipse
in the manner illustrated in Fig. 6(a).

Evolution of the probability density distributions of p(θ r) for
three initial orientations θ0 = 0◦, 45◦, and 90◦ with r = 0 cyclic
straining εamp = 0.1 and f = 1 Hz imposed at t̂ = 0 are shown in
Fig. 7(a), (c), and (d), respectively. In all cases, p(θ r) is a Dirac delta
function centered at θ r = 0◦ at t̂ = 0. First, consider the θ0 = 0◦

case. With increasing t̂, the initial Dirac delta function diffuses
out and forms a bimodal distribution with modes at θ r = ±90◦ at
time t̂ = 100 when the p(θ ) distribution is expected to attain its
steady state (Fig. 5c). This strongly suggests that the orientation
distribution at t̂ = 100 has been attained primarily by the rotation
rather than the strain mode with cells rotating by ±90◦ to align
perpendicular to the cyclic straining direction. Recall that while θ

varies over the range 0◦ ≤ θ ≤ 180◦, θ r is unbounded and in fact
p(θ r) will continue to evolve even after p(θ ) has attained a steady-
state distribution, although the distribution p(θ r) will maintain a
periodicity of ±180◦ so as to not affect the steady-state distribu-
tion of the cell orientation p(θ ).

To quantitatively verify the claim that the p(θ ) distribution has
primarily been attained by cell rotation, recall that cell rotations
in steps of ±π result in the same cell orientation θ . We thus de-
fine an auxiliary angle such that θ̃r = θr ± nπ and n ≥ 0 is an in-
teger that shifts θ r so that 0◦ ≤ θ̃r ≤ 180◦. A comparison between
the predictions of the probability density functions p(θ ) and p(θ̃r )
at time t̂ = 100 from these Langevin simulations with θ0 = 0◦ are
shown in Fig. 7(b). The two distributions are very similar with two
exceptions: (i) the peak in p(θ̃r ) at θ̃r = 90◦ is smaller than the cor-
responding peak in p(θ ), and (ii) two smaller peaks are observed at
θ̃r = 0◦ and 180◦ in p(θ̃r ) that are absent in p(θ ). These differences
result from the fact that a small fraction of cells avoid the cyclic
straining direction by the strain mechanism without rotating sig-
nificantly and this results in peaks around θ̃r = 0◦ and 180◦ and a

smaller peak at θ̃r = 90◦. To quantify the fraction of cells that avoid
the cyclic strain direction by the strain mode rather than the rota-
tion mechanism, notice that the integral of p(θ ) ≈ 1 over the range
40◦ ≤ θ ≤ 140◦ while over the equivalent range p(θ̃r ) ≈ 0.87, which
implies that ∼13% of cells have avoided the cyclic strain direction
in this case via the strain mechanism.

A similar conclusion that the rotation mechanism is dominant
is obtained from the θ0 = 45◦ case in Fig. 7(c), where the distri-
bution again diffuses out with increasing time but also the mode
of the p(θ r) distribution shifts to θ r = 45◦. The p(θ r) distribution is
unimodal at the time t̂ = 100 as now the shortest path for cells
to align perpendicular to the cyclic straining direction is via a 45◦

rotation. On the other hand, for the θ0 = 90◦ case (Fig. 7d), the cells
are already aligned perpendicular to the cyclic strain direction at
t̂ = 0. Thus, with increasing time p(θ r) diffuses out a little (keep-
ing the mode of the distribution fixed at θ r = 0◦) as a few cells
rotate toward the cyclic strain direction but this spread in p(θ r) is
relatively small.

There are two possible reasons for the rotation mode to be
the dominant mechanism of cyclic strain avoidance: (i) energy-
governed: the energy barrier is lower in the rotational mode, or (ii)
entropy-governed: the energy barriers are similar for both modes
but the number of available phase space trajectories for the rota-
tional mode are more numerous. Rather counter-intuitively, we
find that the energy trajectories are very similar for the two
modes. This is illustrated in Supplementary Fig. S5a and b, where
we include plots of the temporal variations of cell rotation θ r

and the normalized cell energy Ĥ, respectively, for two specific
Langevin trajectories, where the cells were initially oriented at θ0

= 0◦ (these two Langevin trajectories were selected from the 1,000
trajectories used to construct Fig. 7a). The two trajectories corre-
spond to cyclic strain avoidance by the rotation and strain modes
as evidenced by the temporal variations of θ r (the cell rotation
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Fig. 7. Temporal evolution of the probability density function of cell rotation θ r for cells subjected to cyclic strain (r = 0) with εamp = 0.1 and f = 1 Hz.
Cells are first allowed to equilibrate on the substrate in the absence of cyclic straining with loading commenced at t̂ = 0 for cells initially oriented at θ

= θ0. Results are shown for (a) θ0 = 0◦, (c) θ0 = 45◦, and (d) θ0 = 90◦. In (b), we show a comparison between the probability density functions of the cell
orientation and the auxiliary rotation θ̃r at time t̂ = 100 for the θ0 = 0◦ case. Note that for the p(θ r) distributions, we show a range of θ r in each case
such that the integral of p(θ r) over the range is at least equal to 0.9. Note that the probability distributions are Dirac delta functions at t̂ = 0, which, in
turn, implies that the modes of probability distributions are large at t̂ = 0.1 and hence been cut for clarity.

θ r ≈ 0◦ for the strain mode while θ r evolves to 90◦ in the rota-
tion mode). Remarkably, the energy trajectories for the two modes
are indistinguishable within the inherent noise of the stochastic
Langevin solution (Supplementary Fig. S5b). In fact, the energy
barriers along both trajectories are minimal. These findings were
confirmed to be consistent across all the Langevin simulations we
conducted. We thus conclude that entropy drives the mechanism
by which cells avoid cyclic strain: the rotational mode dominates

as it has a larger number of low energy barrier trajectories across
the phase space by which cells can reduce their free energy and
avoid cyclic strain.

Comparison of predictions with measurements
for the temporal evolution of cell orientation
There exists limited data for the temporal evolution of cells
seeded on cyclically loaded substrates and here we use data for
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Fig. 8. Comparison between measurements and predictions of the temporal evolution of cell orientation with two choices of the damping co-efficient
γ /|Hs| = 500 s and 1,000 s. (a) Order parameter S = 〈cos(2θ )〉 is compared with measurements of Jungbauer et al. (41). Cells are randomly oriented at t =
0 and align perpendicular to the strain direction at large times. (b) Evolution of the orientation of a single cell oriented at θ = 0◦ and ≈20◦ at t = 0 in the
predictions and measurements (32), respectively. The interquartile of the predictions over the 1,000 Langevin trajectories are indicated in (b) for γ /|Hs|
= 500 s.

mouse embryo fibroblasts (32, 41) to compare with our predic-
tions and extract the damping co-efficient γ . Jungbauer et al. (41)
reported measurements of the orientational order parameter S =
〈cos(2θ )〉 with time t for uniaxial cyclic loading (r = 0) with εamp

= 0.08 and f = 2 Hz, with 〈·〉 denoting the ensemble average at
a given time t over 30 to 50 cells. Our model is ideally suited
for comparisons with these measurements as given the statisti-
cal nature of the model, the order parameter naturally emerges
from the simulations: we interpret 〈·〉 as the ensemble average
over our 1,000 Langevin trajectories. Comparisons with our pre-
dictions with the choices γ /|Hs| = 500 s and 1,000 s are included
in Fig. 8(a). Based on this comparison, γ /|Hs| = 500 to 1,000 s gives
good agreement with measurements. Remarkably, Ippolito et al.
(8) estimated γ /|Hs| = 600 s by fitting the predictions of the tem-
poral evolution of cell area and aspect ratio with measurements
(42) for fibroblasts seeded on substrates without cyclic loading.
This suggests that the damping co-efficient is an intrinsic property
associated with kinetics of co-operative intracellular processes
rather than a parameter that is loading-dependent.

The order parameter measurements of Jungbauer et al. (41)
were for cyclic loading of cells, where cells were randomly ori-
ented at t = 0. We have demonstrated that the mechanisms of
cell reorientation are strongly dependent on the initial orientation
of the cells (Fig. 7). Predictions of the temporal evolution of the
mean cell orientation, oriented at θ = 0◦ at t = 0, are included in
Fig. 8(b) for the same choices γ /|Hs| as in Fig. 8(a) (The predictions
in Fig. 8(b) are for uniaxial loading with f = 1 Hz and εamp = 0.1.
Symmetry of the loading implies that cells are equally probable
to be oriented at θ and π − θ , where θ is an acute angle. For clarity
of presentation, we include in Fig. 8(b) only the acute angle θ .). In
addition, we also include a band indicating the interquartile range
of the 1,000 Langevin trajectories for the γ /|Hs| = 500 s case. We
observe that similar to the evolution of S, a steady-state cell orien-

tation is attained after ≈10 hours even though now the cells start
with an initial deterministic orientation of θ = 0◦. Lack of data in
the literature makes comparisons with measurements more tenu-
ous in this case. However, Livne et al. (32) reported measurements
for the temporal evolution of the orientation of a single fibrob-
last cell initially oriented at θ = 20◦ with the substrate biaxially
strained (r = 0.25) with a frequency f = 1.2 Hz and strain amplitude
εamp = 0.1. This single measurement is included in Fig. 8(b) and
falls within the interquartile range of the predictions with γ /|Hs|
= 500 s. This suggests that, in line with predictions, the timescale
for cell reorientation is largely independent of the initial cell ori-
entation.

Concluding remarks
We have developed a cyclic homeostatic ensemble to investigate
the distribution of states that cells seeded on cyclically loaded
substrates assume. The ensemble is shown to predict a range of
experimental observations that include not only the influence of
cyclic strain amplitude and frequency on the angular SF distribu-
tions but also the influence of cyclic straining on cell morphology.
Specifically, the model captures the observed cyclic strain avoid-
ance phenomenon where SFs are aligned primarily perpendicu-
lar to the direction of cyclic straining. Moreover, since the model
captures the interplay between cell morphology, SF arrangements
and cyclic straining, it accurately predicts that cyclic strain avoid-
ance is primarily a consequence of the cells orienting away from
the cyclic strain direction rather than a change in the arrange-
ment of SFs within the cells. The more deterministic cell orienta-
tion under cyclic loading is also accompanied by a narrower dis-
tribution of cell morphologies characterized in terms of cell area
and aspect ratio. To the best of our knowledge, no existing model
captures such details of the cyclic strain avoidance mechanism
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and thereby gives physical insight into the physiological impor-
tance of cyclic loading on cell behavior.

While the cyclic homeostatic ensemble accurately captures the
steady-state cells, assume under cyclic loading, it does not pro-
vide insights into the mechanism of cell reorientation. To address
this, we constructed a Langevin-type stochastic differential equa-
tion that captures the evolution of cell morphology under cyclic
loading so as to finally attain the cyclic homeostatic ensemble.
Using the kinetic formulation, we demonstrate that the primary
mechanism of cyclic strain avoidance is cell rotation rather than
a trajectory involving cell straining. These diverse observations
are predicted by the cyclic homeostatic mechanics framework
with the strain-rate sensitivity of the tensile stresses generated by
SFs, the only mechanosensitive mechanism included in the free-
energy model of the cell. Thereby the model provides insights into
the key mechanism by which the cell reorients itself.

Taken together, this paper provides a comprehensive compu-
tational framework that not only provides mechanistic insights
into cyclic cell reorientation but also provides the ability to make
accurate quantitative predictions for the distribution of a range
of observables, including SF arrangements as well as cell mor-
phologies. The novel insights provided by this statistical mechan-
ics framework can potentially guide tissue engineering strategies,
in addition to providing a new understanding of the mechanisms
of healthy and pathological cell biomechanical behavior in vivo.
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