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Abstract

Continued climate change is increasing the frequency, severity, and duration of populations’ high temperature exposures. Indoor cool-
ing is a key adaptation, especially in urban areas, where heat extremes are intensified—the urban heat island effect (UHI)—making
residential air conditioning (AC) availability critical to protecting human health. In the United States, the differences in residential
AC prevalence from one metropolitan area to another is well understood, but its intra-urban variation is poorly characterized, ob-
scuring neighborhood-scale variability in populations’ heat vulnerability and adaptive capacity. We address this gap by constructing
empirically derived probabilities of residential AC for 45,995 census tracts across 115 metropolitan areas. Within cities, AC is unequally
distributed, with census tracts in the urban “core” exhibiting systematically lower prevalence than their suburban counterparts. More-
over, this disparity correlates strongly with multiple indicators of social vulnerability and summer daytime surface UHI intensity,
highlighting the challenges that vulnerable urban populations face in adapting to climate-change driven heat stress amplification.
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Significance Statement:

In the United States, residential AC is one of the most obvious and commonly available protective heat adaptation mechanisms,
and potentially one of the most influential determinants of heat vulnerability. However, while inter-urban estimates of residential
AC prevalence are broadly available for metropolitan areas, few studies have examined its intra-urban variation. This research
provides census tract estimates of AC prevalence across a large sample of US cities with important implications for characterizing
urban populations’ risk with regards to heat, and informing heat resilience policies and climate adaptation strategies, as well as
future research on assessing the effect of heat adaptation on health outcomes.

Introduction

The frequency and intensity of extreme high temperatures and
heat spells, as well as the length and duration of season for ex-
treme heat, are projected to increase further with continued cli-
mate change (1), posing an ongoing and increasing risk to the
health of populations (2, 3). Extreme high temperature exposures
are associated with increased morbidity and mortality (4-7), ad-
verse mental health outcomes (8, 9), and decreased labor pro-
ductivity (10). Temperature extremes are amplified in urban ar-
eas due to the influence of the built environment on radiative,
thermal, moisture, and aerodynamic processes—the urban heat
island (UHI) effect (11). Amongst personal cooling strategies (e.g.
increased ventilation, use of electric fans, and evaporative cool-
ers), residential air conditioning (AC) remains one of the most
prevalent mechanisms of heat adaptation (12-14) and is crucial
to reducing the risk of heat-related mortality (15, 16), increas-
ing thermal comfort, and improving human capital accumulation
and workplace productivity (17, 14, 18). The role played by access
to AC in protecting human health against the adverse effects of

extreme heat is therefore potentially large, but poorly character-
ized at the geographic scales at which such impacts manifest.
Although estimates of AC prevalence are widely used in the de-
velopment of heat vulnerability indices (12, 19, 20), evidence of
its moderating effect on heat-related health outcomes has shown
mixed results (21-24), largely due to the coarse spatial resolution
of AC prevalence estimates that limit epidemiologic analyses (25,
26). Prior efforts to quantify residential AC have relied on survey
data that vary in spatial scale and/or temporal resolution (27, 28,
24), focus on specific geographic areas (29-31), or lack information
on AC adoption’s fine-scale housing, socioeconomic and demo-
graphic correlates (32, 33). Moreover, broad regional or inter-urban
comparisons of AC prevalence are not particularly actionable at
the local level for which heat resilience planning and mitigation
efforts are implemented. It is this need to comprehensively char-
acterize intra-urban variation in residential AC availability, its ori-
gins, and consequences, that we address here.

In this paper, we use longitudinal survey data from the Ameri-
can Housing Survey (AHS) and the American Community Survey
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Fig. 1. Intra-metropolitan area variation in percentile ranking of predicted probability of residential AC in five metro areas (a to e), each representing a
quintile of regional climate (annual metropolitan area cooling degree days). Pink dots denote the metro area downtown or financial center. 5th
percentile, median, and 95th percentile of metro area probabilities (f), grouped by CDD quintile.

(ACS) to construct probabilities of household availability of AC at
the census tract level in 115 core-based statistical areas (CBSAs,
hereafter, “metropolitan areas”) that are in aggregate home to 67%
of the total US population. We focus explicitly on AC prevalence in
residential settings given that many adverse heat-related health
outcomes are associated with indoor temperature exposures (34)
and the home is where most people spend the majority of their
time, though we acknowledge that heat exposures and AC usage
also occur elsewhere (e.g. school or work). The resulting variability
in the spatial distribution of residential AC within cities demon-
strates a pattern of inequality in AC prevalence that is pervasive
across metro areas: “core” high population density urban cen-
sus tracts tend to have lower prevalence of AC compared to their
lower-density suburban and outlying counterparts, irrespective of
regional climate. We show here that AC prevalence is inversely as-
sociated not only with overall social vulnerability, but also with
surface urban heat island (SUHI) intensity (SUHI is a type of UHI
that refers to urban-rural differences in land surface tempera-
tures. This is distinct from UHIs that are, for example, measured
by differences in air temperature between the surface and roof-
level, known as the canopy layer urban heat island, CUHI) (35):
within a metropolitan area, the tracts with the least amount of
AC tend to have both greater social vulnerability and SUHI in-
tensity. While we are not able to causally link these attributes
of heat vulnerability with adverse health outcomes within a
given city, our results suggest further evidence that extreme
heat risks are systematically unequally distributed within US
cities.

Results

Following the framework used by the Intergovernmental Panel
on Climate Change (IPCC) (36), we refer to risk in the context
of climate change impacts as embodying the dynamic intersec-
tion of hazards (a climate event or trend that impacts society
or ecosystems—here, extreme heat), exposures (entities at risk—
populations and human health), and vulnerabilities (characteristics
that increase the propensity of a negative outcome conditional on
experiencing a hazard—e.g. lack of AC, advanced age, and access
to medical care). We evaluate census tract AC prevalence along-
side several individual and aggregate markers of social vulnera-
bility, as well as summer daytime SUHI intensity (which we use as

an indicator of heat exposure amplification due to urbanization)
to conceptualize the within-city spatial distribution of risks from
heat.

Census tract residential AC

We estimate AC prevalence as the probability of a household hav-
ing either room or central AC, which we empirically project for
45,995 census tracts across US metro areas (details in the “Materi-
als and Methods” section); suburban and rural tracts are not con-
sidered in our predictions. Urban prevalence of any residential AC
(henceforth, “AC”) is generally high, with a median predicted prob-
ability of 0.97 and a range of 0.15 to 1.00 across census tracts and
a population-weighted metropolitan area-level median predicted
probability of 0.98 with a range of 0.28 to 1.00. Metropolitan-
level estimates largely agree with the computed multiyear preva-
lence estimates of residential AC from the American Housing
Survery (AHS, Supplementary Fig. S1), with an average absolute
percentage deviation of 7.9% for metro area-level predictions. The
largest differences between AHS and our predicted probabilities
are observed in the Northeast, Northwest, Midwest, Colorado, and
coastal California—cities that experience relatively cool climates
with the fewest cooling degree days (CDDs)—the first and second
quintiles of the distribution, and exhibit the most variability in
residential AC within metropolitan areas. See Supplementary Fig.
S2 for a map of CBSAs and their CDD quintile classification.
Notwithstanding the generally high level of prevalence in cities
across the country, AC is unequally distributed within cities. Rank
ordering census tract probabilities of AC into percentiles within
each metro area (see the “Materials and Methods” section) re-
veals a pattern of pervasive inequality in the spatial distribu-
tion of AC. Tracts in the urban core tend to have systematically
lower AC prevalence compared to surrounding suburban tracts,
while other outlying tracts have a tendency toward low to middle
ranked probabilities of AC that depend on the metro area’s ge-
ographic, climate, and socioeconomic context. We illustrate this
point by highlighting results for a representative metropolitan
area from each CDD quintile, Fig. 1a to e (remaining metro ar-
eas are shown in Supplementary Fig. S3). This unequal distribu-
tion of AC is visible across metro areas in different CDD quin-
tiles. Within-city variation of tract AC prevalence is largest for
metro areas in the coolest climates and progressively declines
with increasing CDDs, illustrated in Fig. 1f. The greatest relative
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Fig. 2. Percentile rankings of census tract AC and percentile ranking of select sociodemographic variables (top row) and SVI sub-indicator and overall
scores (bottom row), grouped by CDD quintile of census tract metropolitan area.

variabilities in tract AC probabilities are found in cities in Califor-
nia and in Seattle, WA.

Residential AC and social vulnerability

Within each metropolitan area, our results illustrate that differ-
ences in the spatial distribution of residential AC prevalence are
correlated with indicators of social vulnerability—race, ethnicity,
age, income, educational attainment, and the composite social
vulnerability index (SVI) (37). Across metro areas, the probability
of AC is inversely correlated with the fraction of the population
that identify as either Black or African American or Hispanic or
Latino (Fig. 2). This pattern is somewhat weaker in warmer metro
areas in the Southeast, Southwest, Texas, and inland California—
quintile 5 for race and quintile 4 for ethnicity. Tracts with the low-
est median income and those with high percentages of residents
with less than high school education are the least likely to have
AC. The same pattern emerges for census tract SVI values for the
socioeconomic status summary theme: the median SVIis 0.86 for
tracts below the 20th percentile of AC prevalence, whereas the
median SVI is 0.20 for tracts above the 80th percentile. High per-
centages of elderly residents are associated with higher probabil-
ities of having AC, but this association is the weakest of the corre-
lates examined.

Across the four constituent SVI themes, and for overall SVI,
high vulnerability is negatively correlated with tracts’ percentile
ranking of AC, for cooler and warmer metro areas alike. House-
hold composition and disability exhibits a non-monotonic rela-
tionship with AC prevalence. The latter is lower for tracts with SVI
scores near O (severely vulnerable) in comparison to comparably
less vulnerable tracts (0> SVI score >0.25), which can be traced to

the partially offsetting impact of larger shares of elderly residents
who are more likely to have AC. (Tracts ranked above the 80th per-
centile for share of elderly residents have a median AC percentile
ranking of 0.61.)

Residential AC and urban heat exposure
amplification

Figure 3a contrasts summer daytime heat exposure amplifica-
tion of census tracts, indicated by SUHI values, (38) with their
within-city percentile ranking of AC prevalence. For our sample,
median summer daytime SUHI is 2.3°C and ranges from —10.7°C
to +10.6°C. Tracts facing the highest exposure to extreme heat
amplification have systematically lower AC prevalence. Here as
well, this trend is observed across metro areas in every quintile
of CDDs. On average, tracts with low AC prevalence (<20th per-
centile) are 3.4°C hotter as compared to high (>80th percentile)
prevalence tracts, and experience daytime SUHI intensities as
high as 7°C over the year and 10.6°C in the summer. The high-
est summer daytime SUHI values (in excess of 8.7°C, > 99th per-
centile) occur in tracts of every CDD quintile but are predomi-
nately found in low AC prevalence tracts located in metro areas
in the Northeast. High SUHI (>80th percentile), low AC prevalence
tracts are the least populated but also the most dense (median
population density 4.1 persons/km?) (Fig. 3b), which tend to be
located in the urban core. Median population density for low AC
tracts across all SUHI intensities ranges from 1.2 (quintile 4) to 3.9
(quintile 2) persons/km?.

Across US urban areas, the incidence of summer daytime
SUHI exposure falls disproportionately on vulnerable commu-
nities (39). Patterns of disparities in residential AC mirror these
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Fig. 3. (a) Percentile ranking of census tract AC and summer daytime SUHI intensity (°C), grouped by CDD quintile of the metropolitan area. (b) Census
tract population per 100,000 (dark color) and population density (light color) by CDD quintile and percentile ranking of tract AC.

spatial trends. Tracts that are identified as highly vulnerable un-
der each of the four SVI summary themes or overall SVI (>80th
percentile rank) and also exhibit low AC prevalence experience
average summer daytime SUHI intensities of 4°C to 4.2°C, in stark
contrast to —0.1°C to 0.7°C in low vulnerability (<20th percentile
rank), high AC census tracts. Across CDD quintiles, these differ-
ences for overall SVI are largest for cities with the coolest cli-
mates, +5.1°C, and decline monotonically to +2.6°C in the top
quintile.

Intersection of residential AC, SUHI, and social
vulnerability

To provide a more comprehensive picture of overall risk asso-
ciated with extreme heat, census tract AC prevalence, summer
daytime SUHI, and social vulnerability are assessed together in
Fig. 4 by CDD quintile (a) and illustrative metro area per CDD
quintile (b). Tracts’ percentile rank of AC within a city, their over-
all social vulnerability, and heat amplification via SUHI demon-
strate a negative linear relationship, irrespective of climate stra-
tum or individual metro area. In particular, clusters of census

tracts across metro areas in the third CDD quintile (Washing-
ton, D.C,; Baltimore, MD; St. Louis, MO; Louisville, KY; Lancaster,
PA; and Philadelphia, PA) exhibit very high SUHI intensities (>7°C,
95th percentile), high social vulnerability, and low AC prevalence.
Tracts in CDD quintile 1 show the largest dispersion of SUHI in-
tensities across levels of AC and social vulnerability, a pattern that
also arises to a lesser extent in CDD quintile 5. Additional clus-
ters of tracts are highly vulnerable in terms of added tempera-
ture intensity and overall social vulnerability but less so in terms
of adaptive capacity—between the 20th and 80th percentiles of
AC—CDD quintile 2 (Bridgeport, CT; Hartford, CT; Chicago, IL; De-
troit, MI; Milwaukee, WI; and New York, NY). Census tracts ex-
hibiting high SVI and very high SUHI (>7°C) alongside high AC
prevalence are only observed in New York, NY; San Francisco, CA;
and San Jose, CA. While a clear inverse association between social
vulnerability, SUHI intensity, and AC remains evident across our
chosen set of example metro areas (Fig. 4b), the strength of this
correlation across tracts is very heterogeneous. For example, nu-
merous tracts throughout Boston, MA appear to have high SUHI
across all levels of AC percentiles and SVI score, whereas thereis a
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comparatively smaller range of SUHI intensity across tracts in
Austin, TX.

Overall, while the combination of high social vulnerability, high
SUHI (>80th percentile of summer daytime SUHI, 4.8°C), and low
AC prevalence is characteristic of only a small fraction (4.7%) of
urban census tracts, these high heat vulnerability areas occur in
70% of the metro areas in our sample and are, on average, among
the most densely populated, with a total at-risk population of
more than 7.8 million. Of the metro areas that include high heat
vulnerability tracts, the fraction of the total population that is
highly vulnerable to heat along all three dimensions ranges from
0.2% (Charlotte, NC, CDD quintile 4) to 11.9% (Boston, MA, CDD
quintile 1), with a median of 3.2%. Cities where more than 10%
of residents face high heat risk are predominantly located in the
cooler climate of the Northeast.

Finally, because percentile rankings of AC prevalence do not
reflect absolute AC probabilities, we additionally explore the in-
tersection of high SUHI, high social vulnerability, and lower ab-
solute probability of residential AC (<0.8) across census tracts,
(Table 1). This grouping of vulnerability attributes is characteristic
of census tracts in 17 of the 115 metropolitan areas in our sam-
ple and are primarily located in the Northeast, California, and Pa-
cific Northwest (CDD quintiles 1 and 2). Of these, San Francisco
has the largest vulnerable population along these components of
heat vulnerability at more than 450,000, in contrast to only 4,155
in Akron, OH.

Discussion

We demonstrate that across major US metro areas, census
tracts in and around the urban core exhibit systematically lower

percentile or relative rankings of AC prevalence compared to sur-
rounding suburban and outlying census tracts, highlighting a fun-
damental inequality in intra-urban availability of residential AC
that persists across diverse geographies and regional climates.
Moreover, the pattern of inequality is strongly correlated with
well-understood disparities in indicators of social vulnerability
and amplification of summer heat exposure, with the potential
for differential AC prevalence to exacerbate the risk of adverse
heat-related health outcomes among vulnerable urban popula-
tions. Separately, while we do not estimate AC probabilities for
suburban and rural census tracts, the mixed pattern of relatively
high tomid- and low-ranking AC prevalence found in many subur-
ban tracts across metro areas highlights the importance of char-
acterizing nonmetro AC prevalence as an area of future study.
AC is currently one of the most widely available technologies
to adapt to extreme heat by increasing thermal comfort and has
been shown to be an influential factor in reducing heat-related
mortality and improvements in workplace productivity (16, 14). It
should be noted, however, that reliance on AC has simultaneously
been shown to have important consequences for future electric-
ity demand (40), the stability of the electric grid (41) (especially
during heat waves), and anthropogenic heat fluxes (42). While al-
ternative individual-level strategies for cooling such as increased
ventilation and the use of electric fans have lower greenhouse gas
emissions than AC, they may not be sufficient to offset physiolog-
ical heat strain at high temperature extremes and are less effec-
tive amongst vulnerable groups such as older individuals (43, 14).
Moreover, our focus on the inequality of residential AC prevalence
highlights its significance as a determinant of disparities in heat
vulnerability. Nevertheless, it is important that increased access
to AC be energy efficient and increasingly powered by renewable
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Table 1. Metropolitan areas with census tracts exhibiting low probability of AC (<0.8), high SUHI (>4.8°C), and high social vulnerability

(overall SVI >0.8).

CDD Total Number of Affected Median AC Median
Metropolitan area quintile population tracts population probability SUHI°C Median SVI
San Francisco-Oakland-Hayward, Quintile 1 4,588,807 93 458,600 0.39 6.45 0.90
CA
Seattle-Tacoma-Bellevue, WA Quintile 1 3,801,830 69 352,510 0.34 5.93 0.91
Los Angeles-Long Beach-Anaheim, Quintile 3 12,751,313 67 289,805 0.76 5.55 0.91
CA
Portland-Vancouver-Hillsboro, Quintile 1 2,437,447 43 230,650 0.75 5.53 0.94
OR-WA
San Jose-Sunnyvale-Santa Clara, Quintile 2 1,952,215 30 161,047 0.73 5.23 0.91
CA
Buffalo-Cheektowaga-Niagara Quintile 1 1,116,840 35 111,111 0.66 7.10 0.90
Falls, NY
Rochester, NY Quintile 1 1,060,588 39 92,141 0.75 6.11 0.92
Providence-Warwick, RI-MA Quintile 1 1,614,611 23 82,181 0.79 7.79 0.94
Worcester, MA-CT Quintile 1 935,342 19 75,030 0.77 7.10 0.90
San Diego-Carlsbad, CA Quintile 3 3,181,153 13 73,312 0.64 5.66 0.89
Syracuse, NY Quintile 1 633,223 25 61,388 0.69 6.52 0.91
Albany-Schenectady-Troy, NY Quintile 1 872,426 12 36,588 0.78 6.05 0.92
Utica-Rome, NY Quintile 1 287,036 11 27,982 0.67 6.43 0.93
Eugene, OR Quintile 1 364,408 5 24,504 0.60 5.23 0.96
Erie, PA Quintile 1 270,003 16,308 0.72 7.07 0.91
New York-Newark-Jersey City, Quintile 2 18,304,055 5,050 0.69 5.15 0.92
NY-NJ-PA
Akron, OH Quintile 2 697,627 2 4,155 0.79 5.30 0.81

Median AC probability, SUHI, and SVI denotes the median value of each characteristic of the tracts that meet the above defined criteria.

energy sources alongside proliferation of other heat adaptation
technologies (e.g. reflective coating, quality housing insulation), as
well as passive and nature-based cooling approaches (e.g. shading
infrastructure, greenspace).

Disparities in residential AC prevalence differ across geogra-
phies (12, 24) with underlying variations in the climatic, socioeco-
nomic, and infrastructural determinants of adoption (44, 33, 45).
US metro counties with high AC prevalence are estimated to have
the lowest levels of heat vulnerability (12), which we corroborate.
Across cities, there is a strong latitudinal gradient of prevalence of
central AC, higher across the southern United States (24). Differ-
ences among metro areas in the prevalence of central and room
AC are in large part predicted by housing characteristics (value,
building age, and home ownership) as well as climate (32). Our
study builds upon the work of Gronlund and Berrocal (32) by addi-
tionally considering the impact of demographic characteristics on
the within-city variation in residential AC. A key challenge is that
demographic data are not typically available at the parcel level.
Thus, while it is possible to construct property-level predictions
of the probability of AC ownership by coupling empirical models
with assessor records of the structural characteristics of individ-
ual houses (32), we expand upon that approach to construct esti-
mates that are spatially aggregated to the census tract and reflect
a more complete set of influences. The advantage of the latter is
that it allows us to undertake a comprehensive US-wide assess-
ment of the implications of social and behavioral forces on vul-
nerability to extreme heat.

Compared to Sera et al. (24), our estimates of metro area AC
prevalence are considerably higher, with a mean absolute per-
centage deviation of 45.2%, concentrated in CDD quintiles 1 and
2 (Supplementary Fig. S5). This phenomenon arises from sev-
eral differences in our methodologies: predicting the distribution
of central AC (24) rather than any AC, the use of different mi-
crodata sources in different regions, and a focus on an earlier

period throughout which AC adoption was lower [additional de-
tails in Supplementary Information (SI)]. Results from Gronlund
and Berrocal (32) highlight the potential to perform a US-wide
cross-city comparison, but this opportunity has so far only been
followed up on to a limited extent (41).

Separately, Gronlund and Berrocal (32) establish that AC preva-
lence varies within cities [see also Ito et al. (46)]. This literature
heretofore has tended to focus on the effect of local and regional
climatic, societal, and built-environment attributes on AC access
(29,28,47,32,31) and its implications (48, 30) in a limited number
of discrete locations. Compared to our findings, which include the
additional effect of demographic correlates, application of Gron-
lund and Berrocal’s (32) structural-characteristics-only model to
Detroit assessor data suggests a cross-tract median raw probabil-
ity of any AC of 0.75, which is 10 percentage points lower than
our estimate (Supplementary Fig.S6). We additionally apply their
central AC model coefficients to our sample of cities to generate
census tract probabilities with which to compare our estimates.
Across tracts in the highest CDD quintiles, agreement between
the two probabilities is high, with a mean absolute percentage dif-
ference of 2% and 2.3% for quintile 4 and quintile 5, respectively.
Differences between estimates of AC prevalence increase sequen-
tially across the remaining CDD quintiles, with the largest diver-
gence in tract predictions of central AC compared to our estimates
of any AC occuring in cities with the coolest climates (quintile 1)
(details in the “Supplementary Material”).

While limited availability of replication data precludes addi-
tional head-to-head comparisons, our patterns of predicted prob-
ability of AC ownership are broadly consistent with prevalence
documented in Fraser et al. (29), Guirguis et al. (28), Gamarro et
al. (47),and Ahn et al. (31). For example, predicted probabilities for
census tracts in Maricopa County (Phoenix metro area) are higher
than those for Los Angeles County (LA metro area) mirroring the
pattern described in Fraser et al. (29), and percentile rankings of
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tract prevalence in San Diego county suggest lower rates of AC
along the coast, as in Guirguis et al. (28). In Jacksonville, Florida,
Ahn et al. (31) find markedly lower AC ownership in the urban
core, a result that we demonstrate persists throughout cities. (De-
tailed discussion in the Supplementary Material). Our contribu-
tion is to build on these efforts to construct comprehensive, con-
sistent estimates of fine-scale AC prevalence for a broad range of
climatically and socioeconomically diverse cities across the US.

A key implication of our results is that unequal AC prevalence
compounds existing disparities in urban populations’ social vul-
nerability and temperature exposure. Together, social vulnerabil-
ity and SUHI increase the risk of adverse heat-related health out-
comes (49). Social vulnerability, as indicated by high SVI rank-
ings, is both spatially clustered and correlated with heat-related
morbidity (50, 51). Inner cities tend to experience higher surface
temperatures (Supplementary Fig. S4), are more exposed to heat
extremes, and their downtown cores are home to disproportion-
ately larger shares of vulnerable populations (12). Surface temper-
atures are statistically higher in areas of poverty, ethnic minori-
ties, lower education, and elderly residents (52) and Black, His-
panic or Latinx, and low-income populations disproportionately
experience amplification of summer temperatures across both US
and global urbanized areas (39, 53). Others have found that urban
heat island intensity is disproportionately stronger in neighbor-
hoods with more people of color and lower household incomes
(54). Other spatial analyses have linked high surface temperature
exposures across US urban areas to inequitable historical housing
policy practices, i.e. “redlined,” neighborhoods that are overrepre-
sented by poor and minority residents (55, 56).

Our results add to, and reinforce, this body of evidence,
confirming the inverse relationship between minority—or low
socioeconomic—status and residential AC prevalence (21, 27, 33);
emphasizing that these vulnerable urban populations are system-
atically more likely to experience high temperatures but have sys-
tematically less capacity to adapt to this increasing heat than
their more advantaged suburban counterparts. The latter will ulti-
mately determine how the health consequences of heat exposure
are distributed among the population. The present findings take
the first step of elucidating the precursor distribution of adaptive
capacity: elaborating the potentially unequal consequent moder-
ating effects is well beyond the scope of our inquiry butis an active
area of our research in progress, and relatedly, exploring city-level
characteristics (particularly policies or practices) that are asso-
ciated with lower inequalities in AC prevalence is of interest for
future exploration.

It is important to recognize the limitations of our study. First,
the multilevel nature of our empirical specification is slightly less
flexible than the two-level structure employed by Gronlund and
Berrocal (32), who capture the variation associated with regional
climate using a continuous measure of CDDs that are also inter-
acted with housing characteristics. We purposely opt for a more
parsimonious specification in order to introduce additional hous-
ing and sociodemographic correlates that are known to drive AC
adoption without creating potential pervasive multicollinearity.
Separately, we would prefer to implement a multinomial model
stratified by housing type (single or multifamily) in order to elu-
cidate the joint probability of a household owning either central
or room AC; however, sample size limitations for a number of
metropolitan areas that result in a computationally singular sys-
tem preclude the use of this approach.

Second, while housing characteristics are significant determi-
nants of residential AC adoption (44, 32), our empirical model
includes a limited subset of housing attributes that potentially

predict household AC. In addition to housing type (single or mul-
tifamily), tenure (own or rent), and building age, detailed building
properties, such as size (square footage of living space), insula-
tion, and building quality have been shown to correlate with AC
adoption (57, 45). Other physical attributes such as construction
material, solar orientation, roof and wall albedo, and window-to-
wall ratio modify indoor heat exposure and vulnerability (58), po-
tentially indicative of the likelihood of having AC. The absence of
comprehensive high-resolution data on such detailed housing in-
formation in the United States has restricted the inclusion of such
variables in efforts to quantify intra-urban residential AC. While
the AHS captures some information relating to building structural
features (e.g. bedrooms, bathrooms, square footage, stories) and
housing issues that reflect building quality (e.g. mold, leaks, heat-
ing problems), most of these variables are not captured by the ACS.
Our subset of housing covariates therefore only reflects overarch-
ing building features such as type, tenure, and number of bed-
rooms (see the “Materials and Methods” section).

In addition, given the strategy of matching our empirical
model’s covariates to the limited number of ACS tract-level build-
ing attributes, introducing additional explanatory variables into
the empirical model might improve its precision, but cannot
relax the binding constraint on the range of factors that can
be brought to bear to project AC prevalence. In particular, the
variables that AHS microdata have in common with other data
sources such as ACS datasets also restrict our ability to inves-
tigate the potential impacts of a broader slate of relevant com-
munity, infrastructural, or institutional variables. Examples in-
clude proximity to greenspace (59), access to cooling centers (29),
or improved housing quality (60), all of which indicate alterna-
tive means to keep cool that can potentially substitute for in-
home AC use. A deeper caveat is that we estimate the prob-
ability of residential AC but cannot directly observe utilization
conditional on ownership, which is the true measure of cool-
ing access. Even if socially vulnerable households do have an air
conditioner, their high energy costs and risk of energy poverty
may render them unable to afford to operate it to the degree
necessary to protect health (61-64). This issue is potentially im-
portant in the hot climates of the South and Southwest, where
AC prevalence is quite high. For this reason, our transformation
of AC probabilities into within-city percentile rankings may not
fully capture urban populations capacity to adapt to high tem-
peratures. Investigation of households’ ability to pay for cool-
ing through the estimation of additional electricity consumption
and its cost burden is another avenue of high interest for future
work.

Third, we use a publicly available dataset of census tract-level
remotely sensed SUHI as an indicator for urban heat exposure
amplification, which does not necessarily reflect experienced in-
door or outdoor human thermal comfort (38). SUHI intensity is
based on land surface temperatures and, as such, is an imperfect
metric of exposure [a detailed examination of SUHI in the con-
text of urban heat is available elsewhere (65, 66)]. Other metrics,
such as apparent temperature (ambient temperature, humidity)
(67), wet-bulb globe temperature (ambient temperature, humidity,
solar radiation, wind speed) (68), or ecostress (land surface tem-
perature, evapotranspiration) (69) may more accurately capture
absolute urban heat stress. However, our goal was to character-
ize relative spatial heterogeneity in AC prevalence and heat stress
within each particular metropolitan area—in this context SUHI
provides a useful metric for showing which parts of the city are
relatively hotter than the rest of the city on summer-time days,
and hence is an appropriate proxy for identifying places that may
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have greater AC needs relative to the city as a whole, net of other
factors, irrespective of the absolute ambient temperature.

Finally, we acknowledge the concern that our focus on per-
centile rankings of AC may overstate the salience of disparities.
If differences in percentile rankings among subsets of urban res-
idents in different locations correspond to only slight variations
in heat exposure amplification, indicators of social vulnerability,
or the probability of residential AC, or any combination thereof,
then one might argue that there is little meaningful difference
in adaptive capacity or residual vulnerability. However, given ev-
idence that heat exposure increases the relative risk of a broad
range of illnesses (7, 9, 70), a key question is whether—and if so,
how—even seemingly small differences along these dimensions
can translate into substantial differences in adverse health out-
comes. Elucidating these issues is a priority for future research.

Notwithstanding these shortcomings, our findings highlight
multiple disparities that amplify vulnerability to the nega-
tive effects of heat throughout a comprehensive sample of US
metropolitan areas. Our spatially refined probabilities of residen-
tial AC prevalence reflect a number of regional and local climatic,
socioeconomic, demographic, and infrastructural contexts, while
the granularity of estimates allows us to gain insight into intra-
urban differences in the spatial distribution of AC with broader
implications for characterizing urban populations’ risk with re-
gards to heat, informing heat resilience policies, and assessing the
effect of heat adaptation on health outcomes. The distribution
of AC is widely uneven both between and within US metropoli-
tan areas and reinforce existing disparities in social vulnerabil-
ity and surface UHI intensity. Our findings bolster evidence of the
most vulnerable populations being disproportionately impacted
by heat, in addition to bearing the additional burden of compar-
atively lower AC availability, challenging their ability to adapt to
heat stress. Moreover, future analyses can combine these high-
resolution estimates of residential AC with data on health out-
comes to empirically determine the extent to which AC preva-
lence impacts heat vulnerability broadly, across urban popula-
tions, and at finer scales within cities.

Materials and Methods

Our approach draws on empirical studies of the drivers of AC
prevalence and adoption and the socioeconomic and demo-
graphic determinants of heat-related health impacts. Leveraging
the methodological contribution by Gronlund and Berrocal (32),
we specify a three-level multilevel mixed model of household
presence of AC (i.e. either central or room AC) that we estimate
using AHS microdata, and then apply our model to ACS data at the
census tract level to predict probabilities of residential AC within
a large sample of US cities. We interpret these probabilities as the
proportion of prevalence of AC in a given census tract, which is
used to calculate the percentile rankings of census tracts within
each city and used to indicate metropolitan area-specific dispari-
ties in access to cooling. To characterize how this could affect the
spatial distribution of heat health vulnerability, we assess how the
latter correlates with indicators of social vulnerability and sum-
mer daytime SUHI intensity.

Data

We use AHS public use microdata, stratified according to the de-
mand for cooling. AHS metropolitan and national samples for
2003 to 2019 were combined, yielding 325,744 household obser-
vations within 115 core-based statistical areas (CBSAs, which

collectively refer to metropolitan and micropolitan statistical ar-
eas delineated by the Office of Management and Budget—denoted
“metropolitan areas” throughout the text). Each observation pro-
vided information on characteristics of the household’s residence
as well as socioeconomic and demographic attributes of house-
hold respondents. We focused on variables in the AHS that were
also recorded at the census tract level in the ACS 5-y estimates:
survey year, metropolitan area of the household, tenure (rent or
own), year built, presence of room or central AC, rent, market
value, unit type (single or multifamily), number of bedrooms, in-
come, age (<29, 30 to 49, 50 to 64, and >65), race (White, Black or
African American, Asian, other race, two or more races), ethnicity
(Hispanic or Latino), and educational attainment (no high school
diploma, high school diploma, some college, bachelor’s degree, or
higher).

Metropolitan areas were grouped into quintiles of annual cool-
ing degree days (CDDs-the excess degrees of each day’s aver-
age temperature above 18°C, aggregated over the number of an-
nual days with temperatures exceeding 18°C) tabulated at the
county scale by the National Centers for Environmental Informa-
tion (NCEI) Climate Divisional Database [NClimDiv- (71, 72)]. We
matched metropolitan areas with their constituent metropolitan
counties’ CDDs over the 1981 to 2010 period and computed area-
weighted climatic annual average cooling degree days for each
city (Supplementary Table S3).

ACS 5-y census tract estimates for 2015 to 2019 were combined
with our fitted empirical model to construct fine spatial scale pre-
dictions of AC prevalence. The ACS is a nationally representative
annual survey that records information on the social, economic,
housing, and demographic characteristics of the population to
produce 5-y estimates at various geographic aggregations—a US
census tract is a geographic entity representing a statistical sub-
division of a county (or county equivalent). We obtained census
tract level estimates for our empirical model covariates (popula-
tion, tenure, year built, median housing value, units in structure,
number of bedrooms, median income, age, race, ethnicity, and ed-
ucation) for our sample of 115 metropolitan areas. ACS popula-
tion equivalents of AHS household-level categorical variables (e.g.
tenure, income, or race categories) were constructed as popula-
tion shares (e.g. the proportion of the tract’s population represent-
ing a certain characteristic, such as owning a house or Hispanic
or Latino ethnicity). For housing value and income, census tract
median values were employed.

Indicators of vulnerability

Within metropolitan areas, we assessed correlations between
inter-tract disparities in residential AC prevalence and differences
in high temperature exposure amplification and socioeconomic
and demographic determinants of heat vulnerability. Tract-level
population characteristics (race, ethnicity, age, education, and in-
come) were obtained from ACS. Tract population shares of Black
or African American race, Hispanic or Latino ethnicity, elderly
(age 65y and older), median income, and educational attainment
(no high school diploma) are percentile ranked within their re-
spective city and evaluated against their AC percentile ranking,
grouped by quintile of metro area climatic average annual CDDs.
The same applies for each tract’s overall and summary theme SVI
score. For composite indicators of social vulnerability at the tract
level we used the SVI (37, 73), a relative ranking of the vulnerabil-
ity of locations based on 15 variables grouped into four thematic
categories: (1) socioeconomic status (poverty, unemployment, in-
come, and education); (2) household composition (age, disability,
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and single parenthood); (3) race, ethnicity, and language (minor-
ity and English language proficiency); and (4) housing and trans-
portation (multiunit structures, mobiles homes, crowding, access
to personal vehicle, and group quarters). Both the overall SVI and
the four thematic SVIs are on 0 to 1 scales, with 1 indicating the
highest social vulnerability (37). Since the SVI is provided as a
national ranking of tract-level vulnerability and our analysis is
only for a subset of US cities, we recalculated metropolitan area-
specific SVI percentiles following the methodology used by CDC
(37). This allowed for consistency with our metro area-scale AC
prevalence percentiles and enabled us to similarly assess within-
city variability in social vulnerability.

Amplification of exposure to extreme high temperatures is as-
sessed using summer daytime values of SUHI, obtained from
Chakraborty et al. (74). These data consist of clear-sky SUHI in-
tensities for all urbanized areas in the US and their constituent
census tracts, computed by combining several remotely sensed
variables [land surface temperature from NASA’s Moderate Res-
olution Imaging Spectroradiometer (MODIS) 8-day and daily LST
products, MODIS 8-day surface reflectance product, USGS’ Global
Multi-Resolution Terrain Elevation Data (GMTED) and National
Land Cover Database (NLCD) tree canopy dataset, as well as the
European Space Agency’s Climate Change Initiative (ESA CCI) land
cover data] on the footprint of Census-delineated urban areas [de-
tails in Chakraborty et al. (38)]. We extract annual and summer
daytime SUHI intensities for census tracts corresponding to the
115 metro areas in our sample. Due to differences between ur-
banized areas and metropolitan area geographic boundaries, SUHI
values are not available for a small fraction (7.5%) of the census
tracts in our full sample. Since SUHI is based upon differences
in urban-rural land surface temperatures (Ts), we acknowledge
that it is an imperfect measure of heat exposure [the relevance
of remotely-sensed land surface temperatures as a measure of ur-
ban heat stress is discussed in detail elsewhere (65, 66, 76)]. Briefly,
the relationship between air temperatures (Ta) and Ts is com-
plex, especially at fine spatial (intra-urban) and temporal (hourly,
daily) scales. Moreover, heat stress is influenced not only by tem-
perature, but by a myriad of inputs pertaining to urban climate
processes such as humidity, solar radiation, wind speed, and tree
canopy/shading (35). As such, we more aptly regard tract values of
SUHI intensity as an indicator of potential exposure amplification.

Empirical approach

For our empirical approach, we employ a three-level hierarchi-
cal specification that models households (indexed by h) nested
within CBSAs (indexed by i) nested within climatic CDD quintiles
(indexed by j). Our dependent variable is a binary indicator for
the presence of AC, in households within cities within climate
zones, ACy;;, while our covariates are housing characteristics,
Xﬁtl”ft (unit type, tenure, number of bedrooms, and real market
value) and characteristics of their constituent households, Xﬂ‘}ld—
-both socioeconomic (income, educational attainment), and de-
mographic (age, race, and ethnicity)—all observed across different
AHS survey waves (indexed by y). The model is written as:

logit (E[ACy; 0)]) = e+ X075 () B+ X315 )y
+ 7+ ul Ty 1)
in which « indicates the conditional mean propensity of house-
hold presence of AC, o is a random intercept for CDD quintiles

that controls for the effect for unobserved time-invariant climatic
influences, u;f)- is a random intercept for cities that controls for

unobserved time-invariant CBSA-level shocks, and 7y is a ran-
dom city-specific time trend that controls for shifts in the condi-
tional mean probability across cities and years in response to un-
observed secular forces associated with urban growth and change.
The parameters of interest, g and y, are deterministic (i.e. not ran-
dom slopes) coefficient vectors that capture the average effects
on AC ownership of structural and household (socioeconomic and
demographic) characteristics across cities and CDD quintiles.
Equation 1's advance is to incorporate the socioeconomic and
demographic predictors that allow us to draw the inferences that
constitute our main results. Its foundation is Gronlund and Berro-
cal’s (32) model of AC prevalence as a function of housing at-
tributes and the regional climates in which houses are located.
(32) That analysis specifies a two-level model (households within
CBSAs) that introduces CDDs as a continuous modifier of the ef-
fect of structure characteristics through multiple interactions:

logit (E[ACk; 0)]) = @ +Xi™ (v) B, + (CDD; - X377 () 2
+ 81CDD; + 8y + 83 (CDD; - y) + 85 (Tenurey,; () - y)
+ 86 (CDD; - Tenurep; (y) - y) + fui. (2)

Equation 1thus captures the mean influence of the
continuously-varying effect of housing characteristics in Eq.
2: p~LE(B,+ B, -CDD;), while controlling for city- and year-
varying unobserved shocks whose impacts potentially vary with
cities’ climate: &7 + uf; + 7}y ~ 81CDD; + 82y + 83(CDD; - y) + jus.
The benefit of stratifying by CDD quintile is enabling variation
in the probability of residential AC to be conditioned on a much
broader slate of predictors while avoiding the multicollinearity
associated with multiple interaction terms.

Using t to index census tracts, we apply our fitted Eq. 1 to ACS
tract-level predictors, X, ; j, for the 115 cities in our sample over the
2015-2019 period (y). The result is our predicted AC prevalence:

SHhold, o, « v =
+Xii; PO+ Y (3))

huj =X B
We computed average AC prevalence for metropolitan areas as
the population-weighted average of probabilities for tracts within
their encompassing CBSAs. Scatterplots of metropolitan area-
level (central) AC and (any) AC prevalence estimates are com-
pared to AHS in Supplementary Fig. S7b. (See Supplementary Ma-
terial for details, robustness checks, validation of predicted proba-
bilities, and comparison with alternative empirical specifications,
Supplementary Tables S1 and S2.) Analyses were conducted in R
(version 4.0.5), and estimation procedures used a generalized lin-
ear mixed-effects modeling package (Ime4, version 1.1.27.1).

Acknowledgments

The authors are grateful to Carina Gronlund for providing parcel
and census tract probabilities for Detroit, MI for comparison.

Supplementary Material

Supplementary material is available at PNAS Nexus online.

Funding

This work was supported by the National Science Foundation
Research Traineeship (NRT) grant no. DGE 1735087 (Y.R.), an Es-
tablished Investigator Award from idea hub at the Boston Uni-
versity School of Public Health. (Y.R), the US Department of


https://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgac210#supplementary-data

10 | PNAS Nexus, 2022, Vol. 1, No. 4

Energy, Office of Science, Biological and Environmental Research
Program, Earth and Environmental Systems Modeling, MultiSec-
tor Dynamics, Contract No. DE-SC0016162 (I.S.W. and Y.R.), and
grant R0O1-ES029950 (K.S. and G.W.) from the US National Insti-
tutes of Health/National Institute of Environmental Health Sci-
ences and grant 216033-Z-19-Z from the Wellcome Trust (K.S. and
G.W.). The funders had no role in considering the study design or
in the collection, analysis, interpretation of data, writing of the
report, or decision to submit the article for publication.

Authors’ Contributions

LSW, G.W, K.S, and Y.R. conceived the research objectives. [.S.W.
formulated the model for estimation. Data collection, results gen-
eration, and analyses were conducted by Y.R. L.SW,, GW.,, and K.S.
reviewed results and analyses. All authors reviewed and edited
the manuscript.

Data Availability

Output AC prevalence data are publicly available at Har-
vard Dataverse: https://doi.org/10.7910/DVN/HWFVP6. Input data
used in this analysis are publicly available at the follow-
ing: AHS microdata: https://www.census.gov/programs-survey
s/ahs/data.html; 2015-2019 5-y ACS: https://api.census.gov/d
ata/2019/acs/acs5/variables.html; CDDs from NClimDiv https:
//www.ncel.noaa.gov/pub/data/cirs/climdiv/; CDC 2018 census
tract SVI: https://www.atsdr.cdc.gov/placeandhealth/svi/data_d
ocumentation_download.html; and census tract summer day-
time SUHI: https://data.mendeley.com/datasets/x9mv4krnm?2/2.

References

1. Douville H et al., 2021. Weather and Climate Extreme Events in
a Changing Climate, In: Masson-Delmotte V, Zhai P, Pirani A,
Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis
MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK,
Waterfield T, Yelekci O, Yu R, Zhou B, editors. Climate Change
2021: The Physical Science Basis. Contribution of Working Group
I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. pp. 1513-1766. Cambridge University Press,
Cambridge, United Kingdom and New York, N, USA.

2. EDbiKL, et al 2021. Hot weather and heat extremes: health risks.
Lancet North Am Ed. 398:698-708.

3. Tuholske C, et al. 2021. Global urban population exposure to ex-
treme heat. Proc Natl Acad Sci. 118:€2024792118

4. Gasparrini A, et al. 2015. Mortality risk attributable to high and
low ambient temperature: a multicountry observational study.
Lancet North Am Ed. 386:369-375.

5. Ebi KL, et al. 2018. Impacts, risks, and adaptation in the United
States: Fourth national climate assessment, In: DR Reidmiller,
editor. 539-571. U.S. Global Change Research Program, Washing-
ton (DC).

6. Liss A, Naumova EN. 2019. Heatwaves and hospitalizations due
to hyperthermia in defined climate regions in the conterminous
USA. Environ Monit Assess. 191:1-16.

7. Sun S, et al. 2021. Ambient heat and risks of emergency depart-
ment visits among adults in the United States: time stratified
case crossover study. BMJ. 375:e065653

8. Thompson R, Hornigold R, Page L, Waite T. 2018. Associations be-
tween high ambient temperatures and heat waves with mental
health outcomes: a systematic review. Public Health. 161:171-
191.

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Nori-Sarma A, et al. 2022. Association between ambient heat and
risk of emergency department visits for mental health among US
adults, 2010 to 2019. JAMA psychiatry. 79:341,

Zhao M, Lee JKW, Kjellstrom T, Cai W. 2021. Assessment of the
economic impact of heat-related labor productivity loss: a sys-
tematic review. Clim Change. 167:1-16.

Oke TR. 1982. The energetic basis of the urban heat island. QJ R
Met Soc. 108:1-24.

Reid CE, et al. 2009. Mapping community determinants of heat
vulnerability. Environ Health Perspect. 117:1730-1736.

Hondula DM, Balling RC, Vanos JK, Georgescu M. 2015. Rising
temperatures, human health, and the role of adaptation. Curr
Clim Change Rep. 1:144-154.

Jay O, et al. 2021. Reducing the health effects of hot weather and
heat extremes: from personal cooling strategies to green cities.
Lancet North Am Ed. 398:709-724.

Petkova EP, Gasparrini A, Kinney PL. 2014. Heat and mortality in
New York City since the beginning of the 20th century. Epidemi-
ology. 25:554.

Barreca A, Clay K, Deschenes O, Greenstone M, Shapiro JS. 2016.
Adapting to climate change: the remarkable decline in the US
temperature-mortality relationship over the twentieth century.
J Polit Econ. 124:105-159.

Park RJ, Goodman J, Hurwitz M, Smith J. 2020. Heat and learning.
Am Econ J Econ Policy. 12:306-339.

Park RJ, Behrer AP, Goodman J. 2021. Learning is inhibited by heat
exposure, both internationally and within the United States. Nat
Hum Behav. 5:19-27.

Bao J, Li X, Yu C. 2015. The construction and validation of the
heat vulnerability index, a review. Int ] Environ Res Public Health.
12:7220-7234.

Nayak SG, et al. 2018. Development of a heat vulnerability index
for New York State. Public Health. 161:127-137.

O’'Neill MS, Zanobetti A, Schwartz J. 2005. Disparities by race in
heat-related mortality in four US cities: the role of air condition-
ing prevalence. ] Urban Health. 82:191-197.

Ostro B, Rauch S, Green R, Malig B, Basu R. 2010. The effects of
temperature and use of air conditioning on hospitalizations. Am
J Epidemiol. 172:1053-1061.

Bobb JF, Peng RD, Bell ML, Dominici F. 2014. Heat-related mortal-
ity and adaptation to heat in the United States. Environ Health
Perspect. 122:811-816.

Sera F, et al. 2020. Air conditioning and heat-related mortality: a
multi-country longitudinal study. Epidemiology. 31:779-787.
Kinney PL. 2018. Temporal trends in heat-related mortality: im-
plications for future projections. Atmosphere. 9:409.

Chen M, Sanders KT, Ban-Weiss GA. 2019. A new method utilizing
smart meter data for identifying the existence of air conditioning
in residential homes. Environ Res Lett. 14:094004.

Biddle JE. 2011. Making consumers comfortable: the early
decades of air conditioning in the United States. ] Econ Hist.
71:1078-1094.

Guirguis K, et al. 2018. Heat, disparities, and health outcomes
in San Diego County’s diverse climate zones. GeoHealth. 2:
212-223.

Fraser AM, et al. 2017. Household accessibility to heat refuges:
residential air conditioning, public cooled space, and walkability.
Environ Plan B Urban Anal City Sci. 44:1036-1055.

Mallen E, Stone B, Lanza K. 2019. A methodological assessment
of extreme heat mortality modeling and heat vulnerability map-
ping in Dallas, Texas. Urban Climate. 30:100528.

Ahn'Y, Uejio CK, Wong S, Powell E, Holmes T. 08 Feb 2022. Spa-
tial disparities in air conditioning ownership in Florida. bioRxiv


https://doi.org/10.7910/DVN/HWFVP6
https://www.census.gov/programs-surveys/ahs/data.html;
https://api.census.gov/data/2019/acs/acs5/variables.html;
https://www.ncei.noaa.gov/pub/data/cirs/climdiv/;
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html;
https://data.mendeley.com/datasets/x9mv4krnm2/2

Romittietal. | 11

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

1321547. https://doi.org/10.21203/rs.3.r5-1321547/v1, preprint:
not peer reviewed.

Gronlund CJ, Berrocal VJ. 2020. Modeling and comparing central
and room air conditioning ownership and cold-season in-home
thermal comfort using the American Housing Survey. J Exposure
Sci Environ Epidemiol. 30:814-823.

Davis L, Gertler P, Jarvis S, Wolfram C. 2021. Air conditioning and
global inequality. Glob Environ Chang. 69:102299.

Quinn A, et al. 2014. Predicting indoor heat exposure risk during
extreme heat events. Sci Total Environ. 490:686-693.

Oke TR, Mills G, Christen A, Voogt JA. 2017. Urban climates. Cam-
bridge, United Kingdom and New York, NY, USA: Cambridge Uni-
versity Press.

Reisinger A, et al. 2020. The concept of risk in the IPCC Sixth
Assessment Report: a summary of cross-working group dis-
cussions. Intergovernmental Panel on Climate Change. Geneva,
Switzerland. 15

Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B. 2011.
A social vulnerability index for disaster management. ] Homel
Secur Emerg. 8.

Chakraborty T, Hsu A, Manya D, Sheriff G. 2020. A spatially ex-
plicit surface urban heat island database for the United States:
characterization, uncertainties, and possible applications. ISPRS
J Photogramm Remote Sens. 168:74-88.

Hsu A, Sheriff G, Chakraborty T, Manya D. 2021. Disproportionate
exposure to urban heat island intensity across major US cities.
Nat Commun. 12:1-11.

Obringer R, et al. 2022. Implications of increasing household air
conditioning use across the United States under a warming cli-
mate. Earth’s Future. 10:e2021EF002434.

Stone Jr, B, et al. 2021. Compound climate and infrastructure
events: how electrical grid failure alters heat wave risk. Environ
Sci Technol. 55:6957-6964.

Takane Y, Kikegawa Y, Hara M, Grimmond CSB. 2019. Urban
warming and future air-conditioning use in an Asian megac-
ity: importance of positive feedback. NPJ Clim Atmos Sci. 2:
1-11.

Morris NB, English T, Hospers L, Capon A, Jay O. 2019. The effects
of electric fan use under differing resting heat index conditions:
a clinical trial. Ann Intern Med. 171:675-677.

De Cian E, Pavanello F, Randazzo T, Mistry MN, Davide M. 2019.
Households’ adaptation in a warming climate. Air conditioning
and thermal insulation choices. Environ Sci & Policy. 100:136-
157.

Pavanello F, et al. 2021. Air-conditioning and the adapta-
tion cooling deficit in emerging economies. Nat Commun. 12:
1-11.

Ito K, Lane K, Olson C. 2018. Equitable access to air condition-
ing: a city health department’s perspective on preventing heat-
related deaths. Epidemiology. 29:749-752.

Gamarro H, Ortiz L, Gonzalez JE. 2020. Adapting to extreme
heat: social, atmospheric, and infrastructure impacts of air-
conditioning in megacities—The case of New York City. ASME
J Eng Sustain Bldgs Cities. 1:031005.

Rosenthal JK, Kinney PL, Metzger KB. 2014. Intra-urban vulner-
ability to heat-related mortality in New York City, 1997-2006.
Health Place. 30:45-60.

Gronlund CJ. 2014. Racial and socioeconomic disparities in heat-
related health effects and their mechanisms: a review. Curr Epi-
demiol Rep. 1:165-173.

Zottarelli LK, Sharif HO, Xu X, Sunil TS. 2021. Effects of social
vulnerability and heat index on emergency medical service in-

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

cidents in San Antonio, Texas, in 2018. ] Epidemiol Community
Health. 75:271-276.

Lehnert EA, Wilt G, Flanagan B, Hallisey E. 2020. Spatial explo-
ration of the CDC’s Social Vulnerability Index and heat-related
health outcomes in Georgia. Int J Disaster Risk Reduct. 46:
101517.

Huang G, Zhou W, Cadenasso ML. 2011. Is everyone hot in the
city? Spatial pattern of land surface temperatures, land cover
and neighborhood socioeconomic characteristics in Baltimore,
MD. J Environ Manage. 92:1753-1759.

Chakraborty T, Hsu A, Manya D, Sheriff G. 2019. Dispro-
portionately higher exposure to urban heat in lower-income
neighborhoods: a multi-city perspective. Environ Res Lett. 14:
105003.

Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L. 2006.
Neighborhood microclimates and vulnerability to heat stress.
Soc Sci Med. 63:2847-2863.

Wilson B. 2020. Urban heat management and the legacy of
redlining. ] Am Plann Assoc. 86:443-457.

Hoffman JS, Shandas V, Pendleton N. 2020. The effects of histor-
ical housing policies on resident exposure to intra-urban heat: a
study of 108 US urban areas. Climate. 8:12.

Randazzo T, De Cian E, Euro-Mediterraneo C, Mistry M. 2020. Cli-
mate change impacts on household electricity expenditure: the
contribution of air conditioning in OECD countries.

Samuelson H, et al. 2020. Housing as a critical determi-
nant of heat vulnerability and health. Sci Total Environ. 720:
137296.

Heo S, etal. 2021. Temporal changes in associations between high
temperature and hospitalizations by greenspace: analysis in the
Medicare population in 40 US northeast counties. Environ Int.
156:106737.

Gabbe CJ, Pierce G. 2020. Extreme heat vulnerability of subsi-
dized housing residents in California. Hous Policy Debate. 30:
843-860.

Jessel S, Sawyer S, Hernandez D. 2019. Energy, poverty, and health
in climate change: a comprehensive review of an emerging liter-
ature. Front Public Health. 7:357.

Kontokosta CE, Reina V], Bonczak B. 2020. Energy cost burdens
for low-income and minority households: Evidence from energy
benchmarking and audit data in five US cities. ] Am Plann Assoc.
86:89-105.

Tong K, et al. 2021. Measuring social equity in urban energy
use and interventions using fine-scale data. Proc Natl Acad Sci.
118:€2023554118.

Ortiz L, Gamarro H, Gonzalez JE, McPhearson T. 2022. Energy
burden and air conditioning adoption in New York City under
a warming climate. Sustain Cities Soc. 76:103465.

Martilli A, Roth M, Chow WT. 2020. Summer average urban-rural
surface temperature differences do not indicate the need for ur-
ban heat reduction. Institutional Knowledge at Singapore Man-
agement University: School of Social Sciences.

Manoli G, et al. 2020. Reply to Martilli et al. (2020): summer aver-
age urban-rural surface temperature differences do not indicate
the need for urban heat reduction.

Rothfusz LP, Headquarters NSR. 1990. The heat index “equation”
(or, more than you ever wanted to know about heat index). SR
90-23, 2pp.

Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R.
2008. Modeling the wet bulb globe temperature using stan-
dard meteorological measurements. ] Occup Environ Hyg. 5:
645-655.


https://doi.org/10.21203/rs.3.rs-1321547/v1

12

| PNAS Nexus, 2022, Vol. 1, No. 4

69.

70.

71.

72.

Hulley G, Shivers S, Wetherley E, Cudd R. 2019. New ECOSTRESS
and MODIS land surface temperature data reveal fine-scale heat
vulnerability in cities: a case study for Los Angeles County, Cali-
fornia. Remote Sensing. 11:2136.

Spangler KR, Liang S, Wellenius GA. 2022. Wet-bulb globe tem-
perature, universal thermal climate index, and other heat met-
rics for US Counties, 2000-2020. Sci Data. 9:1-9.

Bernstein AS, et al. 2022. Warm Season and Emergency Depart-
ment Visits to US Children’s Hospitals. Environ Health Perspect
130:017001.

Vose RS, et al. 2014. Improved historical temperature and pre-
cipitation time series for US climate divisions. ] Appl Meteorol
Climatol. 53:1232-1251.

73.

74.

75.

76

Vose RS, et al. 2014. NOAA Monthly US. Climate Divi-
sional Database (NClimDiv). NClimDivCOUNTY Temperature-
Precipitation.

Centers for Disease Control and Prevention, (CDC). CDC/ATSDR
Social Vulnerability Index 2018 Database US. [accessed
2022 Feb 25]. https://www.atsdr.cdc.gov/placeandhealth/svi
/data_documentation_download.html.

Chakraborty TC, Hsu A, Sheriff G, Manya D. 2020. United States
surface urban heat Island database. [accessed 2022 Feb 25]. http
s://data.mendeley.com/datasets/x9mv4krnm?2/3.

Kelly Turner V, et al. 2022. More than surface temperature: miti-
gating thermal exposure in hyper-local land system. ] Land Use
Sci. 17:79-99.


https:\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ \begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ www.atsdr.cdc.gov\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ placeandhealth\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ svi\begingroup \count@ "002F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ data\begingroup \count@ "005F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ documentation\begingroup \count@ "005F\relax \relax \uccode `~\count@ \uppercase {\gdef {\relax \protect $\relax \sim $}}\endgroup \setbox \thr@@ \hbox {}\dimen \z@ \wd \thr@@ download.html
https://data.mendeley.com/datasets/x9mv4krnm2/3

