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SUMMARY

Single-cell RNA sequencing (scRNA-seq) quantifies gene expression for individual cells in a sample,
which allows distinct cell-type populations to be identified and characterized. An important step in many
scRNA-seq analysis pipelines is the annotation of cells into known cell types. While this can be achieved
using experimental techniques, such as fluorescence-activated cell sorting, these approaches are impracti-
cal for large numbers of cells. This motivates the development of data-driven cell-type annotation methods.
We find limitations with current approaches due to the reliance on known marker genes or from overfitting
because of systematic differences, or batch effects, between studies. Here, we present a statistical approach
that leverages public data sets to combine information across thousands of genes, uses a latent variable
model to define cell-type-specific barcodes and account for batch effect variation, and probabilistically
annotates cell-type identity from a reference of known cell types. The barcoding approach also provides
a new way to discover marker genes. Using a range of data sets, including those generated to represent
imperfect real-world reference data, we demonstrate that our approach substantially outperforms current
reference-based methods, particularly when predicting across studies.

Keywords: Single-cell RNA-seq.

1. INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) quantifies gene expression at the level of individual cells,
rather than measuring the aggregated gene expression in a biological sample containing millions of cells,
as is done with bulk RNA-sequencing. This improved granularity permits the identification or discovery
of distinct populations of cell types within the tissues under study. To effectively accomplish this, it
is important to annotate cells reliably by known cell types, especially cells that are present in many
tissues, such as immune system cells. Fluorescence-activated cell sorting (FACS) can be used prior to
the sequencing step to physically sort cells from a mixed sample into their cell-type populations. While
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generally regarded as highly accurate, FACS-sorting has limited throughput and thus is impractical when
sequencing large numbers of cells. As a result, there is a need for data-driven approaches to annotate
cell types.

Current methods fall into one of two categories, which we will refer to as clustering-based and reference-
based. In clustering-based methods, the more widely used approach, the target cells are first grouped using
an unsupervised clustering algorithm (e.g., Kiselev and others, 2017; Lin and others, 2017; Ntranos and
others, 2016; Stuart and others, 2018). Next, differential expression analysis is used to identify genes that
are uniquely expressed in each group and compared to known cell-type-specific marker genes to annotate
the group as a particular cell type.

Reference-based methods (e.g., Zhang and others, 2019; Pliner and others, 2019; Lieberman and
others, 2018; Kiselev and others, 2018; de Kanter and others, 2019) use supervised learning approaches
in which the target cells are compared to reliably annotated, such as by FACS-sorting, reference data for
each cell-type of interest, and each target cell is annotated using the closest match. Approaches to defining
the closest match vary. Many of these supervised methods are based on complex and hard-to-troubleshoot
machine learning algorithms, such as XGBoost (Lieberman and others, 2018) and deep neural networks
(Lopez and others, 2018). As a result, unexpected systematic differences between training and test sets
may lead to overfitting. In addition, some of the most popular methods rely on marker genes to guide the
determination of the closest match (Pliner and others, 2019; Zhang and others, 2019). However, reliable
marker genes are not always known for every cell type of interest.

In this work, to avoid reliance on marker genes and minimize overfitting, we consider all genes as
potentially informative and develop a latent variable model that characterizes cell types by the probabilities
of genes being in expressed or not-expressed states, a probabilistic barcode. Other sources of within-state
variabilities, such as that introduced by batch effects, are accounted for within our multilayer model.
Exploratory data analysis, described in Section 4, demonstrates the need for these to be gene-specific
distributions. We therefore implement a two-stage procedure: first, we estimate gene-specific parameters
using a fixed public database, and second, we estimate cell-type-specific probabilities, the barcodes, for
each cell type using training data. To classify cells into known cell types, we fit this model and use the
resulting fit to compute posterior probabilities.

We start by describing the data sets used to build and assess our method, then provide a detailed
description of our approach, and, finally, demonstrate its advantages over existing approaches. We chose
existing methods to compare our approach to based on previously described results and popularity, with
the goal of representing the full range of current approaches.

2. DATA DESCRIPTION

2.1. PanglaoDB database

To motivate and fit gene-specific distributions across tissues and cell types, we used the PanglaoDB
database (Franzén and others, 2019), which provides publicly available scRNA-seq data from a diverse
set of experiments. We considered only the data sets corresponding to nontumor samples from humans.
This yielded 218 data sets comprising a total of 3, 389, 679 cells, with each data set representing one cell
type or tissue type.

2.2. Assessment data

To benchmark our approach against existing methods, we constructed four assessment data sets. We
selected data sets for which we were highly confident of the accuracy of assigned cell-type labels. In
most cases, we chose to use data sets with experimentally (rather than computationally) derived labels,
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such as from FACS or MACS sorting. When not possible, we used subsets of data sets that contained
well-established cell-type labels, as opposed to novel, rare, or otherwise poorly studied cell types, that
were supported via additional analyses in the original study, such as leveraging spatial information. Note
that our requirements made the construction of the assessment data sets challenging as annotations for
most public data sets are computationally derived.

We considered four assessment data sets, which we refer to as the PBMC data set, the Colon data set,
the Brain data set, and the Lung data set. For each of these data sets, we constructed a main data set from
one or more published studies. This data set was split into a training set and a test set. For each main data
set, a second test set was formed using data from a separate study not included in the main data set. We
refer to the two test sets as the withheld and external test sets, respectively. Note that overtraining due to
study-specific biases and batch effects will result in better performance in the withheld test set compared to
the external test set. We also created three additional versions of the training set by altering the training set
to mimic three scenarios commonly faced in practice. In the first additional version, we sampled 50 cells
from each cell type to form a smaller training set. In the second version, we downsampled the counts to
produce a training set with different coverage than the test set. Finally, in the third version, we introduced
incorrect labels into the training set to mimic a situation with imperfect annotations. Details are in Note
S1 of the Supplementary material available at Biostatistics online. Note that all results shown in the main
text use the unaltered original training set.

3. MOTIVATION

3.1. Clustering-based approaches identify more clusters with data set size

We used the Lung data set to investigate the relationship between the number of clusters and the data set
size. In particular, we applied the Louvain clustering algorithm (Que and others, 2015), as implemented
in version 3 of the Seurat package (Stuart and others, 2018), to successively subsetted versions of the
Lung data set, ranging from a total of 100 cells to a total of 15, 000 cells in increments of 500 cells.
We applied this clustering algorithm with three different resolution parameters (0.4, 0.8, and 1.2), where
larger values are likely to lead to larger numbers of clusters. Although the cells are randomly sampled
each time, and therefore, we expect approximately the same number of cell types to be represented in each
subset, the number of clusters found ranges from 2 to 27, with a general increasing trend with data set
size (Figure 1). This pattern persisted across all three resolution parameters tested. Moreover, the number
of clusters found at each data set size differed with the resolution parameter, which shows that results can
be highly sensitive to this value.

To ensure that this finding is not specific only to the Louvain algorithm and/or to the Seurat implemen-
tation, we also applied another popular clustering algorithm, SC3 (Kiselev and others, 2017), to the same
data set using default parameters and the SC3’s built-in approach to determining the number of clusters.
The number of clusters found ranged from 5 to 59, again with an increasing trend with data set size. It is
notable as well that more clusters were found at each subset size than with Seurat (Figure 1).

3.2. Marker genes can be unreliable due to sparsity

Clustering-based methods, as well as some reference-based methods, rely on marker genes. We therefore
examined the reliability of such marker genes for labeling in scRNA-seq data. To do so, we used subsets
of the reference PBMC data set and the reference Lung data set as examples and looked at the counts for
marker genes for each cell type. We then selected the marker genes used in the publicly available Garnett
classifiers (Pliner and others, 2019), which are popular, prebuilt cell-type classifiers based on marker
genes, for PBMCs and lung as examples of markers that are likely to be used in practice. Specifically, in
the PBMC data, we used the marker genes NCAM1 and FCGR3A for NK cells; CD4, FOXP3, IL2RA, and
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Fig. 1. Applying two popular clustering algorithms to successive subsets randomly sampled from the Lung reference
data set identifies more clusters with increasing data set size. The number of clusters identified by Seurat at three
different resolutions (0.4, 0.8, and 1.2) as well as SC3 is plotted against the number of cells included in the analysis
on the log scale.
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Fig. 2. (A) Markers in NK, CD4, and CD8 cells from blood show that some are unlikely to be observed. (B) Markers in
endothelial and epithelial cells from lung. (C) Example of density plots of genes with bimodal expression distributions
across cell and tissue types. Every tick mark represents the rate of that gene in a particular cell type or tissue type.
The centers of the on and off distributions can be seen to vary by gene.

IL7R for CD4 cells; and CD8A and CD8B for CD8 cells. In the lung data, we used LYVE1, TEK, KDR,
RAMP2, FLT1, and SELE for endothelial cells. We additionally used EPCAM and CDH1 for epithelial
cells. Although epithelial markers were not provided by Garnett, these two genes have been validated as
markers for lung epithelial cells (Xu and others, 2016).

If we examine the expression of these markers in random subsets of these cell types (Figures 2(A) and
(B)), some markers appear to consistently have nonzero expression in the appropriate cell type, whereas
others are much more unreliable. For example, RAMP2 and EPCAM have nonzero counts in almost every
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endothelial and epithelial cell respectively, and nearly all zero counts in the other cell type. Other markers,
however, are more sparsely expressed, such as FCGR3A in NK cells and CD8A and CD8B in CD8 cells,
and still others have nonzero counts in only very few cells, such as the gene CD4 in CD4 cells or SELE in
endothelial cells. This is consistent with the fact that scRNAseq is sparse in a way that even genes known
to be expressed can have majority nonzero counts.

4. METHODS

4.1. Model-based probabilistic classifications provide substantial improvements

Given the limitations of clustering-based approaches, we considered reference-based approaches instead.
We denote the unknown cell type for cell i as Yi and the observed gene counts as xi = xi1, . . . , xiJ

with J the total number of genes. For each cell i, our approach is to estimate the conditional prob-
ability Pr(Yi = k | Xi = xi) using Bayes rule and then select the cell type k that maximizes it.
While several statistical learning approaches are available to estimate this conditional probability, this
is a particularly challenging problem because of the large number of genes, the sparsity of the data as
demonstrated in Section 3.2, and systematic biases due to batch effects that make gene counts diffi-
cult to compare across studies (Cable and others, 2020). Here, we developed an approach that tackles
these challenges by (i) using a conditional Poisson model to account for the sparsity and differences in
coverage, (ii) introducing a parsimonious parametric model that assumes counts are independent across
genes once we condition on cell type, and (iii) providing robustness to batch effects by assuming a latent
state model for each gene that models within-state variability in a way that downweights its influence
on prediction.

We start by using the Bayes rule to rewrite the posterior probability as:

Pr(Yi = k | Xi = xi) = Pr(X i = xi | Yi = k)Pr(Yi = k)∑K
k ′=1 Pr(X i = xi|Yi = k ′)Pr(Yi = k ′)

. (4.1)

We then assumed that each of the K possible cell types is equally likely: Pr(Yi = k) = 1/K . To make
the model parsimonious, we assumed that, conditional on the cell type, the Xij are independent across
genes j:

Pr(X i = xi | Yi = k) =
J∏

j=1

Pr(Xij = xij | Yi = k). (4.2)

To account for sparsity, we assumed that for any cell type k , Xij can be modeled as

Xij | Yi = k ∼ Poisson(Niλjk), (4.3)

with λjk proportional to the expected gene expression for gene j in cell type k and Ni = ∑J
j=1 Xij the total

observed counts across all genes in cell i. A challenge is that estimating λjk from data in the training set
suffers from the limitations listed above: (i) we may have few cells available for estimation, (ii) data can
be sparse, and (iii) batch effects result in systematic biased estimates that lead to unsuitable across-study
performance. We developed an approach that tackled these limitations by (i) assuming that the biological
information is represented by expressed (on) and not-expressed (off) latent states and (ii) accounting for
other sources of variability with a random variable λj that follows a parametric distribution and assuming
the λjk are realizations of this random variable. Next, we describe how we developed this parametric
model.
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4.1.1. Count distributions are bimodal and gene-specific To determine a parametric form for the gene-
specific distributions of λj, we leveraged the fact that the PanglaoDB database offers large numbers of
cells for each cell type k , defined estimates

λ̂jk =
∑

i|Yi=k Xij∑
j′
∑

i|Yi=k Xij′
, (4.4)

and used exploratory data analysis. Specifically, we used 3, 389, 679 cells from 218 cell types and tissues
from the PanglaoDB database to obtain precise estimates of the rates λ̂jk for k = 1, . . . , 218. We found that
many genes showed a clear bimodal distribution for these rates when examined across cell types, consistent
with our latent state model assumptions of off and on gene expression (Figure 2(C)). Furthermore, we
noted that the centers of these off and on distributions vary by gene, consistent with results previously
observed using gene expression data from the Gene Expression Omnibus and Array Express (McCall and
others, 2010). This implies that observed gene count rates are not comparable across genes. For example,
note that some values associated with the off distribution for RPL31P7 could be categorized as on for
genes such as AC140076.1 (Figure 2(C)).

Further data exploration (Figure S1 of the Supplementary material available at Biostatistics online)
led us to assume the off distribution was best modeled by a mixture of exponential and log-normal dis-
tributions, with the exponential accounting for counts that were mostly zeros, consistent with practically
no expression, and the log-normal component accounting for low counts consistent with a nonzero back-
ground level of expression distinctly lower than the expressed state (Figure S2 of the Supplementary
material available at Biostatistics online).

We therefore further divided the off state into two. We represented the latent structure by introducing
the unobserved variable Zjk that can be one of three states, off-null, off-low, or on, for each gene j in each
cell type k . For simplicity of exposition, we will refer to the off-low state as simply off. Note that if the Zjks
were observed, the vector Z k can be considered a gene expression barcode that uniquely identifies cell
type k . The main challenge of our approach is estimating these Zjk in a computationally efficient manner.
We connect the unobserved Zjks to the observed X by modeling the distribution of λj as

λj | Zjk = off-null ∼ Exp(αj) (4.5)

λj | Zjk = off ∼ log-Normal
(
μ0j, σ0j

)
λj | Zjk = on ∼ log-Normal

(
μ1j, σ1j

)

based on our data exploration. Here, μ0j and μ1j represent gene-specific means of the off and on distribution,
respectively. The gene-specific standard deviations σ0j and σ1j quantify the variability that accounts for
the fact that we observe different rates for tissues within the same latent state. This includes variability
introduced by batch effects.

4.2. Estimating gene-specific parameters

Our approach to estimating this model is to first estimate the gene-specific parameters αj, μ0j, μ1j, σ0j, and
σ1j in model (4.5) using the PanglaoDB database (Figure S3 of the Supplementary material available at
Biostatistics online). Because some genes had few tissues in the on state, and some genes, the housekeeping
genes for example, had few tissues in the off state, to improve power, we borrowed strength across genes by
imposing a prior distribution. Data exploration implied that gene-specific on and off means were correlated
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across genes, so we used a bivariate normal distribution with correlation ρ:

(
μ0j

μ1j

)
∼ Normal

{(
μ0

μ1

)
,
(

τ 2
0 ρτ0τ1

ρτ0τ1 τ 2
1

)}
. (4.6)

Here, μ0 and μ1 represent the overall expected log-rate for genes that are off and on, respectively, and
τ0 and τ1 quantify the variability in the gene-specific shifts.

In the next step, we used the λ̂jk defined in (4.4) to estimate the parameters that define (4.5). We noted
that the marginal distribution of the random variable λj can be written as

(1 − πoff,j − πon,j)Exp(αj) + πoff,jlog-Normal
(
μ0j, σ 2

0j

) + πon,jlog-Normal
(
μ1j, σ 2

1j

)
(4.7)

with πoff,j = Pr(Zj = off), πon,j = Pr(Zj = on) and the same parameters as those that defined the
distributions in (4.5).

We selected prior parameters μ0, μ1, τ0, τ1, and ρ using an empirical approach. Specifically, we consid-
ered housekeeping genes (Eisenberg and Levanon, 2013), for which the microarray-based gene expression
barcode (McCall and others, 2010) estimated nonzero probabilities of being on across all healthy tissues.
We then took the mean of the log-rates log(λ̂jk), as defined by (4.4), for these genes in the PanglaoDB data-
base as μ1, and the sample standard deviation as τ1. We next took all genes for which the microarray-based
gene expression barcode estimated zero probabilities of being on across all healthy tissues and used the
Expectation–Maximization (EM) algorithm to fit a mixture of the off components, namely an exponential
and a log-normal distribution, to all the rates λ̂jk of this subset of genes in the PanglaoDB database. We
used the mean of the log rates for genes with 95% probability or higher of belonging to the log-normal
distribution as μ0, and the sample standard deviation of these same genes as τ0. We set ρ = 0.5 based on
exploratory data analysis.

With the prior distribution in place, we then fit the model to λ̂j1,. . . , λ̂jK using the EM algorithm for
each gene j. To prevent label-switching and ensure interpretability of the model, we also set the constraints
μ0j < μ1j, σ0j > 0.5, and σ1j > 0.5 for all j. Details of the algorithm are in Note S4 of the Supplementary
material available at Biostatistics online, and we discuss convergence in Note S5 of the Supplementary
material available at Biostatistics online. We considered the gene-specific parameters to be frozen going
forward and denoted them with α̂j, π̂off, π̂on, μ̂0j, μ̂1j, σ̂0j, and σ̂1j.

4.3. Estimating the probabilistic barcode from training data

With estimates of the gene-specific distributions (4.5) in place, all we need to produce a classification
algorithm based on our estimate of the posterior probabilities (4.1) is an estimate of the Zjk for each
gene j and cell type k present in the training data. Note that any training data can be used, and the only
requirement is they must have cell-type annotations for each cell.

Due to the typically very large sizes of these data sets, it is critical to use computationally efficient
approaches. Hence, for each cell type k , we sum the cells of that type into a single pseudo-cell, and define
Sjk = ∑

i|Yi=k Xij. We can show that if (4.3) and (4.5) hold, then for the pseudo-cell of cell type k ,

Pr(Sjk = s | Zjk = off-null) = Negative binomial

⎛
⎝s; r = 1, p = 1

Nk
αj

+ 1

⎞
⎠ (4.8)

Pr(Sjk = s | Zjk = off) = Poisson-Lognormal
(
s; μ = μ0j + log Nk , σ = σ0j

)
(4.9)

Pr(Sjk = s | Zjk = on) = Poisson-Lognormal
(
s; μ = μ1j + log Nk , σ = σ1j

)
. (4.10)
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In the equations above, we define Nk = ∑
j Sjk . Although each Sjk is often substantially larger than the

individual Xij, the inclusion of Nk accounts for the total coverage across all cells, and this approach can
be understood as analogous to modeling the rate of each gene across the cell type.

We can then plug-in our frozen estimates α̂j, μ̂0j, μ̂1j, σ̂0j, and σ̂1j into (4.8) to define estimates of Zjk by
computing Pr(Zj = l | Sjk = s) for each state l (off-null, off, on). These are found using the Bayes rule:

Pr(Zj = l | Sjk = s) = Pr(Sjk = s | Zj = l)Pr(Zj = l)∑
l′ Pr(Sjk = s | Zj = l′)Pr(Zj = l′)

,

where Pr(Sjk = s | Zj = l) are computed as above, and we can plug-in our existing estimates π̂on,j, π̂off,j,
and 1 − π̂on,j − π̂off,j, respectively for Pr(Zj = on), Pr(Zj = off), and Pr(Zj = off-null).

The resulting probabilities constitute our cell-type-specific barcode and can be interpreted as the prob-
ability of each gene belonging to each latent state for that given cell type. This can be computed for any
cell type based on any annotated training data. We can plug-in our frozen estimates and rewrite (4.5) as

λjk ∼ Pr(Zjk = off-null)Exp(α̂j) +
Pr(Zjk = off)log-Normal(μ̂0j, σ̂0j) +
Pr(Zjk = on)log-Normal(μ̂1j, σ̂1j)

for each cell type k . This then fully specifies the distributions of the rates for each gene in cell type k .
Finally, to classify each unknown cell, we first selected informative genes by considering only those

exhibiting bimodal expression based on their gene-specific distributions. Specifically, we required a large
enough difference between the off and on gene-specific means μ1j − μ0j > 1 and that the probability of
gene being always off or always on was less than 5%: 0.05 < π̂on,j < 0.95. This filter yielded a set of
6,996 genes. Considering only these informative genes, we can evaluate the posterior probability of each
test cell belonging to each cell type of interest as in (4.1).

Evaluating this posterior probability requires computing Poisson-lognormal densities, which can be
computationally inefficient. To improve the computational properties of our approach, we instead approx-
imate the Poisson-lognormal densities with Poisson-gamma (i.e., negative binomial) densities, choosing
parameters such that the gamma distribution has the same mean and variance as the lognormal distribution.
In particular, if the lognormal distribution is parametrized by μ and σ , a gamma distribution with parame-
ters α = 1

exp(σ2)−1
, β = exp(−μ−σ2/2)

exp(σ2)−1
will have the same mean and variance. Hence, we would approximate

the corresponding Poisson-lognormal density with the corresponding negative binomial density with
parameters r = α and p = 1

1
β

+1
.

This approximation is motivated by the previous finding that in many analyses, similar results are
achieved under either assumption of a lognormal or gamma distribution (McCullagh and Nelder, 2019).
In practice, we find that this approximation at the classification step has minimal to no effect on the final
results, while dramatically reducing the computational time. However, it should be noted that modeling
the off and on distributions as Poisson-gamma from the start was found to be ineffective. The choice of
lognormal was made based on the empirical distributions of real data, and in this case, was found to result
in superior performance. The effectiveness of the gamma approximation in the classification step can be
explained by the fact that we sum up the logarithms of these approximated densities for each gene to
estimate the overall posterior probability for each cell type. This lessens the dependence on the accuracy
of the density for any individual gene. By contrast, inaccurate modeling of any particular gene from the
start can completely change all future learned barcodes with respect to that gene.

Optionally, it may be desired to detect if a test cell belongs to a cell type not represented in the training
data. To do so, we construct an average cell type k ′ such that Pr(Zjk ′ = l) = Pr(Zj = l), i.e. we use our
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existing estimates π̂on,j, π̂off,j, and 1 − π̂on,j − π̂off,j for l = on, off, and off-null, respectively. Note that
these are the estimates learned from the PanglaoDB database as described in Section 4.2 and do not come
from the training data; as a result, these can be thought of as the global probabilities that each gene is
expressed across many cell types from many different tissues. The intuition is that if this average cell type
represents a given test cell better than any of the cell types present in the training data, then the test cell is
likely to not belong to any of the present cell types. Hence, we can also compute the posterior probability
of the test cell belonging to this average cell type and report this result if the posterior probability is larger
than those from all of the cell types under consideration.

5. RESULTS

5.1. Our approach improves current reference-based methods

We compared our method to eight leading classification methods: CHETAH (de Kanter and others, 2019),
scmap (Kiselev and others, 2018), CaSTLe (Lieberman and others, 2018), SingleR (Aran and others,
2019), Garnett (Pliner and others, 2019), CellAssign (Zhang and others, 2019), SingleCellNet (Tan and
Cahan, 2019), and SVM. The latter two were the top two methods from a benchmark of cell-type annotation
approaches (Abdelaal and others, 2019), and the others are widely used methods that represent a range
of current approaches. We provide more details about these methods in Note S2 of the Supplementary
material available at Biostatistics online.

For each of these methods, we processed the reference and test data sets as recommended in their
respective documentation, and for the methods requiring markers (Garnett and CellAssign), we identified
six markers for each cell type using scran (Lun and others, 2016) on the reference data set. This was
done for consistency because not every cell type under consideration had readily available, independently
verified marker genes. For the runs with Garnett, we used Garnett’s built-in marker diagnostic function
to assess the marker genes on the corresponding reference data, and we dropped any high ambiguity
markers.

We applied each method to our assessment data sets. All the methods besides CaSTLe will call cells
unassigned if a label cannot be given with sufficient certainty, so we report three metrics: (i) classification
accuracy on the external test set among all cells that were assigned labels, (ii) the proportion of cells in the
external test set that were assigned labels, and (iii) the ratio of accuracy among all assigned cells between
the external test set and the withheld test set (Table 1). Ratios much lower than 1 in this third metric indicate
overtraining due to batch effects. Note that methods have various names for their unassigned category;
we considered any cell to be unassigned if it was given a label that does not correspond to one of the
original training set labels. In particular, any intermediate or root node label from CHETAH is considered
unassigned, as well as the “rand” label from SingleCellNet.

The barcode approach performed well universally. On the Lung data set, which was the most challenging
due to the inclusion of many similar cell types, the barcode had an accuracy of 91.8%, and was able to
assign labels to 84% of cells. The methods that had higher accuracy (CellAssign, CHETAH, SVM, and
scmap) were only able to assign labels to 49%, 32%, 25%, and 11% of the cells, respectively. Because the
test set is imbalanced in the numbers of each cell type, we also report F1 scores, defined as the harmonic
mean of precision and recall, for each cell type in Table S1 of the Supplementary material available at
Biostatistics online. The barcode’s lowest F1 score for any cell type is 0.897, which is higher than the
lowest F1 score for any other method that assigned labels to the majority of cells. The barcode approach
achieved the highest accuracy on the Colon data set, tied the highest accuracy on the Brain data set, and
obtained an accuracy of 98.6% on the PBMC data set, which was within 1.5% of the highest accuracy.
Note that the test sets for Colon, Brain, and PBMC were all balanced, so we do not report F1 scores.
In sum, the barcode was the only method to show strong performance on all four data sets. Our lowest
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Table 1. Comparison of leading methods to our approach on our assessment data sets. For each method
and data set, we report the classification accuracy on the cells that are assigned labels, and in parentheses
the proportion of cells that were assigned labels. We also report the ratio of accuracy among assigned
cells between the external and withheld test sets

Accuracy (% assigned)
in external test set

Ratio of accuracy
in external to withheld test sets

Lung Colon Brain PBMC Lung Colon Brain PBMC

Barcode 0.918 (84) 0.998 (100) 1.000 (73) 0.986 (100) 0.95 1.01 1.01 1.02
SingleR 0.824 (100) 0.879 (100) 0.964 (99) 0.955 (100) 0.84 0.88 0.96 1.00
Garnett 0.823 (85) 0.905 (72) 1.000 (100) 1.000 (100) 0.89 0.94 1.00 1.05
CellAssign 0.940 (49) 0.994 (97) NA (0) 0.985 (99) 0.97 1.01 NA 1.08
CaSTLe 0.633 (NA) 0.677 (NA) 0.136 (NA) 0.984 (NA) 0.65 0.68 0.14 1.00
CHETAH 0.968 (32) 0.647 (72) 1.000 (96) 0.991 (97) 0.98 0.66 1.00 1.00
SingleCellNet 0.640 (100) 0.650 (100) 1.000 (100) 0.984 (100) 0.66 0.65 1.00 1.02
SVM 1.000 (25) 0.517 (96) 1.000 (74) 0.962 (22) 1.01 0.52 1.00 0.97
scmap 0.988 (11) 0.877 (82) 1.000 (0.31) 0.991 (78) 1.02 0.88 1.00 1.02

accuracy in any data set was 91.8%. The next best, among methods that assigned labels to the majority of
cells, was SingleR with the lowest accuracy of 82.4%.

These results also show that the barcode is robust to overtraining. A method that overtrains typically has
markedly worse performance in an external test set than in a withheld test. Hence, a ratio between external
test set accuracy and withheld test sets accuracy that is much lower than 1 is suggestive of overtraining.
Our approach is the only one among those that assigned labels to the majority of cells to have ratios above
0.90 across the four data sets. By contrast, other methods exhibit ratios farther from 1, especially on the
more challenging Lung and Colon data sets.

It should be noted that our approach identified a relatively large proportion (27%) of the cells in the
Brain data set as unassigned. These test cells are all purportedly microglia, which are present in the
reference, but originate from an experimental procedure in which human-induced pluripotent stem cells
(iPSCs) were differentiated into microglia within a mouse brain environment. While the original study
validated this approach and showed that the resulting cells reproduce the expression profiles of endogenous
human microglia, it was noted that some iPSCs appear to have differentiated into other similar cell types
(Hasselmann and others, 2019).As a result, it is possible that our approach may be legitimately identifying
a subset of cells with a distinct identity (Figure S4 of the Supplementary material available at Biostatistics
online).

We also evaluated each method using altered versions of the reference data to mimic realistic appli-
cations (Tables S2–S4 of the Supplementary material available at Biostatistics online). On each version
of the data, the barcode achieved very similar accuracies as compared to using the unaltered reference
data, with no drop in accuracy larger than 1.5%. This was close to SingleCellNet, whose largest drop in
accuracy was 3.2%. Every other method had at least one drop of 5% or more. The performance of these
other methods varied substantially across the different versions.

To evaluate the ability to correctly classify novel cell types as unassigned, we ran each method on the
external test sets with one cell type removed at a time from the main reference data (details in Note S3 of the
Supplementary material available at Biostatistics online). We summarized each method’s performance,
pooling across all these comparisons, using three metrics: true positive rate, defined as the percentage
of cells that should be called unassigned that were called unassigned; false positive rate, defined as the
percentage of cells that should not be called unassigned that were called unassigned; and F1 score (Table S5
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Table 2. Median time, in minutes, and peak memory usage, in mebibytes, for each method to classify
each external test set from the four main data sets (PBMC, Colon, Brain, and Lung)

Time (min) Peak memory (MiB)

PBMC Colon Brain Lung PBMC Colon Brain Lung

Barcode 0.29 0.42 1.04 0.80 7603 9864 19 722 10 815
SingleR 1.17 4.66 0.528 4.36 9723 6633 2950 14 687
Garnett 3.35 7.71 13.19 54.72 8321 9331 3072 30 427
CellAssign 0.14 0.40 1.50 5.80 21 32 40 46
CaSTLe 5.52 5.16 0.97 31.26 22 636 28 432 15 248 32 615
CHETAH 0.98 0.43 0.86 0.28 697 526 832 1189
SingleCellNet 10.16 6.47 0.599 47.99 38 130 28 701 10 508 42 363
SVM 0.68 0.42 0.09 2.18 26 581 26 584 26 590 26 625
scmap 0.13 0.46 0.78 0.17 5738 4727 1118 11 069

of the Supplementary material available at Biostatistics online). We found that our approach attains a true
positive rate of 96.9% and a false positive rate of 5.8%. Only one other method, CHETAH, had a higher
true positive rate (99.9%) but also a much higher false positive rate (63.1%). Our approach also had the
highest F1 score at 0.962, with the next highest F1 score belonging to CellAssign (0.892).

Finally, we benchmarked the computational properties of each method on each external test set using
median time, in minutes, reported by the R package bench and peak memory usage, in MiB, reported
by the R package peakRAM. Since we used a Python implementation of SVM, timing and peak memory
usage were assessed using the Python modules time and memory_profiler. We found that the
barcode, scmap, SVM, and CHETAH were the fastest (Table 2). By far, the methods that had the least
peak memory usage were CellAssign and CHETAH, and the methods with the highest peak memory usage
were CaSTLe, SingleCellNet, and SVM. The barcode had similar peak memory usage as the remaining
methods.

5.2. Model-based approach identifies predictive genes

Fitting model (4.3) permitted us to explain why some markers are more effective than others and to
identify new marker genes. For example, note that for the FOXP3 gene, a marker we found to be reasonably
effective for CD4 cells, the on distribution is clearly distinguishable from the off distribution (Figure 3(A)).
In contrast, for the gene named CD4, which we found to be an ineffective marker despite having a larger
rate than FOXP3 among CD4 cells in our PBMC data set, we see a less clear separation of the on and off
distributions. Furthermore, markers such as IL7R have well-separated distributions but are on in many
tissue types, which makes them less effective as well. Our method was also useful for defining new
markers: for a given cell type k , we search for genes j for which Pr(Zjk = on) is high, but Pr(Zjk ′ = on)

is low for most or all k ′ �= k . Using this approach, we identified genes NDUFA13, PPIB, PCBP1, and
POLR2F as potentially effective markers for CD4 cells (Figure 3(B)), for example.

Our model also allows us to understand how the barcode approach is able to distinguish very similar
cell types such as those in the most challenging Lung data set. We examined one very similar pair, capillary
and artery, which was frequently mixed up under other approaches. After fitting our model to both cell
types, we compared the probability of observing a nonzero count from each gene in a capillary cell versus
an artery cell (Figure 4). This shows that there are very few dichotomous genes between the two, i.e., genes
that will almost certainly have a nonzero count in one cell type and a zero count in the other. However, our
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Fig. 3. Distributions of the rates of CD4 markers across cell- and tissue-types, against the fitted off and on components
for each gene. Ticks show the rates of that gene in a particular cell- or tissue-type. Arrows indicate the rates in CD4
cells from the PBMC data set. (A) Four canonical CD4 markers. (B) Four CD4 markers we identified.
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Fig. 4. Probability of a nonzero count for each gene under our model for artery and capillary cells in the lung, assuming
coverage of 2000 counts. Highlighted points indicate the top 50 genes contributing to the classification between artery
and capillary in a set of 100 withheld capillary cells. These were identified as the genes with the highest average
log-likelihood differences across the withheld capillary cells under the capillary barcode and the artery barcode.

probabilistic barcodes enable leveraging genes with more subtle differences between the two cell types,
since we quantify the probability of a gene being on rather than using strictly binary expression. When
we highlight the top genes contributing to the classification of withheld capillary cells, we can show that
our approach is able to use many such genes with subtle differences.

6. DISCUSSION

Currently, cell-type identification in scRNA-seq data sets is done with either clustering-based or reference-
based methods. We showed that clustering-based methods can identify more clusters as the data set size
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increases, and that the number of clusters can be sensitive to algorithm parameters. This implies that
overclustering can occur for large data set sizes, or that rare cell types are challenging to identify at small
or medium data set sizes. As a result, clustering can sometimes result in ambiguous findings.

Moreover, clustering-based methods can depend on arbitrary user decisions such as the choice of marker
genes, which is a problem for cell types that do not have well-established and widely accepted markers.
Different users examining the same clusters might draw two different conclusions about the cell-type
identities. We further showed that marker genes in scRNA-seq data can have varying reliability, even for
well-studied cell types. This method of direct annotation by a user additionally implies that probabilistic
classification is not possible; a given target cell is assigned to some particular cell type without any
information about the certainty of this assignment. Finally, with clustering approaches, it is difficult to
specify the desired granularity of the cell types. Since clusters are identified in an unsupervised manner,
there is no differentiation between, for instance, a use case where it is enough to identify cells as T-cells and
a use case in which identification at the level of T-cell subtypes is needed. With certain parameter settings,
data set size, choice of marker genes, and other robust user decision-making, clustering approaches can
yield strong results, but they are highly sensitive to all of these choices and can be difficult to validate.
In other contexts, such as when the primary goal is the unsupervised discovery of distinct novel cell-type
populations, this flexibility can be a strength. However, when the primary goal is the annotation of largely
previously known cell types, which is the context we are concerned with, this sensitivity and large possible
range of results is a significant challenge.

Reference-based methods avoid the pitfalls of clustering-based methods in this context. The supervised
approach ensures that the desired granularity can be controlled with the choice of reference data and avoids
artifacts such as the number of distinct cell types identified growing as the data set size increases. Because
each cell is typically classified independently of the other cells in the data set, rare or fine classifications
can be made no matter the size of the data. Nevertheless, we showed that many of the currently available
algorithms are susceptible to overtraining due to study-to-study variability or batch effects. We introduced
an approach that provides a solution to these challenges. First, we leverage thousands of genes, rather than
only a few markers, to make the annotations, which provides robustness to the challenges introduced by
sparsity. Second, we directly account for coverage in our model, allowing us to make reliable classifications
even with varying coverage between the reference and test data. Finally, to account for study-specific
biases and batch effects, we assume a latent variable model, model unwanted variability with gene-
specific distributions across cell types and represent each reference cell type with a unique probabilistic
barcode.

We demonstrated the advantages of our approach by assessing performance on several real-world data
sets, in which our approach was successful at generalizing to external test sets. It is possible that the poor
performance of the two marker-based methods (Garnett and CellAssign) on some of the data sets could be
attributed to the choice of markers, and that a richer analysis to guide marker selection could have yielded
better results. Even if better performance might be possible, this would require extra steps beyond what is
part of the method. By contrast, our approach does not require additional inputs other than the reference
data.

The fact that our method permits cells to be classified as unassigned offers the ability to detect unknown
cell types in the test data. We demonstrated that our approach compares favorably to others on this
challenge. In general, our approach will assign test cells to their closest cell type available in the reference,
unless they are closer to the average cell-type profile. If a test cell belongs to a different subtype or cell
state as a cell type in the provided reference, whether the test cell is classified as that reference cell type or
as unassigned will depend on the relative closeness of the two profiles. As such, if the goal is specifically
to identify particular subtypes or cell states, those should be provided in the reference.

Finally, we note that when classifying, our method assumes equal prior probabilities for each of the
cell-type labels present in the training data. This means that the classifications are driven entirely by a
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comparison of the likelihoods of observing each cell’s profile under each possible cell type. In cases where
one or more cell types may be very rare, our method consequently will always assign whichever label
results in the highest likelihood, and will not discourage rare labels on the basis of this prior knowledge.
This could result in assigning rare labels too often in cells that have similar likelihoods under both a rare
label and a more common label. Because our method also returns the probabilities of each cell belonging
to each cell type, in some cases it may be prudent to reweight these probabilities according to prior
knowledge of cell-type abundance.

7. SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available at https://github.com/igrabski/scRNAseq-cell-type.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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