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Abstract

The properties of random Boolean networks have been investigated extensively as models of regulation in biological systems. However,
the Boolean functions (BFs) specifying the associated logical update rules should not be expected to be random. In this contribution,
we focus on biologically meaningful types of BFs, and perform a systematic study of their preponderance in a compilation of 2,687
functions extracted from published models. A surprising feature is that most of these BFs have odd “bias”, that is they produce “on”
outputs for a total number of input combinations that is odd. Upon further analysis, we are able to explain this observation, along with
the enrichment of read-once functions (RoFs) and its nested canalyzing functions (NCFs) subset, in terms of 2 complexity measures:
Boolean complexity based on string lengths in formal logic, which is yet unexplored in biological contexts, and the so-called average
sensitivity. RoFs minimize Boolean complexity and all such functions have odd bias. Furthermore, NCFs minimize not only the Boolean
complexity but also the average sensitivity. These results reveal the importance of minimum complexity in the regulatory logic of
biological networks.
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Significance Statement:

Regulatory rules arising in biological networks are expected to be far from random. To validate this expectation, we introduce a
quantitative framework and perform detailed analyses of a dataset of 2,687 BFs compiled from 88 reconstructed discrete logical
models of biological systems. Our approach reveals that in fact regulatory rules preferentially minimize complexity defined via
either Boolean complexity or average sensitivity, 2 complexity measures that are strongly correlated. In particular, this second
complexity measure is minimized by NCFs, a class of rules that are commonly used when modeling gene regulatory networks.

Introduction
Cells are the building blocks of all living organisms and their
decision-making is tightly controlled by complex and intricate
gene regulatory networks (1). Much work over the past 3 decades
has led to a deeper understanding of the structure and dynamics
of these complex biological networks (2–9). One of the most useful
frameworks for probing the dynamical aspects of such networks is
the so-called “logical modeling” approach first introduced by Stu-
art Kauffman (10) and René Thomas (11). In its usual formulation,
it assumes a Boolean simplification in which all biological entities
are taken to be “on” or “off”. Kauffman considered ensembles of
such Boolean networks in which the input–output rules were cho-
sen at random (12), an idealization allowing the characterization
of the attractors in these networks (2, 13, 14).

Extensive studies of biological networks made possible by re-
cent advances in large-scale data acquisition have revealed that
their topological structure is very far from random (5, 6, 9, 15).

Furthermore, various Boolean dynamical models of such systems
(16–21) have been constructed in the last 2 decades. It is now im-
portant to characterize the properties of the Boolean functions
(BFs) encoding the associated regulatory rules to distinguish them
from randomly chosen functions. In previous studies (2, 22, 23), 1
property that has been used to characterize BFs is the fraction of
occurrences of the output value “1” when considering all possi-
ble combinations of input values. Feldman (24) proposed a way
to classify BFs using the number (k) of inputs to the BF and the
number of occurrences of the output value “1”, which we refer to
as the bias P. One can also consider more functional aspects of
the BFs, leading to what can be called biologically meaningful types
of BFs. In this work, we systematically study different types of bi-
ologically meaningful BFs and their occurrence both in the com-
plete space of 22k

BFs for a k-input BF, and in a reference biolog-
ical dataset of 2,687 BFs compiled from 88 published biological
models.
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Kauffman (2) had proposed that the occurrence of logical rules
could be shaped by the constraint of being “chemically simple”.
Here, we borrow concepts from the computer science literature
to quantify the notion of simplicity (or complexity) of a BF and
then perform a thorough evaluation of the biologically meaning-
ful types of BFs from the perspective of complexity. The 2 mea-
sures of complexity which we exploit are Boolean complexity (24)
and average sensitivity (22, 25). We show that read-once functions
(RoFs) (26) that constitute all logical rules with minimal Boolean
complexity are highly over-represented in the biological data. Fur-
ther, we provide an analytical proof that nested canalyzing func-
tions (NCFs) (19), which are a subset of RoFs, minimize not only
the Boolean complexity but also the average sensitivity across all
BFs in Feldman’s associated k[P] set. Our result that NCFs are min-
imally complex in terms of both complexity measures is a likely
explanation for their prevalence in biological data. In a nutshell,
our exploration of 2 complexity measures using 2,687 BFs com-
piled from published models puts Kauffman’s conjecture of “pref-
erence for simplicity” on a sound footing while refining it, using
a quantitative framework for rule complexity in gene regulatory
networks.

Background
Boolean models of biological networks
A Boolean model of a biological system consists of a network of N
nodes and L edges, wherein the nodes correspond to components
such as genes or proteins and (directed) edges capture the regula-
tion of 1 node by a set of other nodes (2, 10–12). Let us label each
node of the network by an integer i (i = 1,..., N) and denote the “on”
or “off” state of node i by a Boolean variable xi ∈ {0, 1}. The state xi,
output by node i in the Boolean model, is determined by: (a) the
values of its ki inputs, coming from the ki nodes from which it has
incoming links, and (b) a logical update rule or Boolean function fi

that specifies how xi changes in time or is updated given those ki

inputs. (a) and (b) along with an update scheme over the different
nodes (synchronous (2) or asynchronous (11, 27)) determine the dy-
namics of the Boolean network. The different representations of
BFs relevant to this work are given in Section 1 and Figure S1 in
Supplementary Material.

Categorization of BFs based on their bias and use
of isomorphisms
Feldman (24, 28) grouped BFs based on their number of input vari-
ables (k) and bias (P). The bias P of a BF is the number of 1s in the
output column of its truth table (see Figure S1, Supplementary
Material). The BFs with a given k and P constitute the k[P] set. Ev-
idently, the number of k[P] sets for a given k is 2k + 1. Note that
every function in k[P] has a complementary function in k[2k − P]
obtained via complementation of the corresponding Boolean ex-
pression (28) where “on” and “off” states are exchanged.

Within any given k[P] set, Feldman (24, 28) introduced a parti-
tioning into equivalence classes based on isomorphisms. Two BFs
f and g are defined as isomorphic if they are identical up to permu-
tations and negations of any of their input variables. For example,
the BF f = x1 · (x2 + x3) is isomorphic to the BF g = x2 · (x1 + x3).
For our work, we associate 1 “representative” BF to each class,
specifically the one in which the first occurrence of each variable
arises both sequentially (with indices 1, 2, 3, …) and as a positive
literal. Interestingly, Reichhardt and Bassler (29), using concepts
borrowed from chemistry and group theory, have shown how to
enumerate the distinct isomorphic classes in each k[P] set.

We describe some properties associated with the bias of a BF
obtained by combining 2 independent BFs in Section 2 in Supple-
mentary Material.

Complexity Measures
Various measures of complexity of BFs have been studied in the
computer science literature (25, 30, 31). We adopt 2 of them in
this work, namely, Boolean complexity and average sensitivity.

Minimal expressions and Boolean complexity
The first measure of complexity we use, formulated in particu-
lar by Feldman (24), is called the Boolean complexity. In principle,
there are an infinite number of logical expressions correspond-
ing to a given BF (24, 30). Feldman (24) focused on the shortest
possible expression when considering the number of literals it is
composed of, the so called minimal formula for a BF. Feldman de-
fined the Boolean complexity of a BF to be the number of literals
in its minimal formula (24, 30). Though Boolean expression types
such as the minimal canonical disjunctive normal form (DNF) or
the minimal canonical conjunctive normal form (CNF) are widely
used to represent BFs, they are typically distinct from the minimal
formula as defined by Feldman (24).

For instance, the 3-input BF in the minimal canonical DNF,
f (x1, x2, x3 ) = x1x2x3 + x1x2x3 + x1x2x3 containing 9 literals can be
shown to be equivalent to a minimum formula containing 3 liter-
als by applying the laws of Boolean algebra as follows:

f (x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3

= x1(x2x3 + x2x3 + x2x3)

= x1(x2(x3 + x3) + x2x3) = x1(x2 + x2x3)

= x1((x2 + x2)(x2 + x3)) = x1(x2 + x3).

Here, xi and xi represent a positive and negative literal, respec-
tively. In the above simplification, we employ the law x + x = 1,
and the distribution property over the OR (+) operator. Thus, the
minimal irreducible expression f (x1, x2, x3) = x1(x2 + x3) has 3 lit-
erals and the function has Boolean complexity equal to 3. How-
ever, note that the minimal DNF for this BF is x1x2 + x1x3, which
has 4 literals, and factorization of this expression is necessary to
obtain the minimal expression with 3 literals for the above BF.

Computing the Boolean complexity
Obtaining a minimal formula for a given BF or expression is a com-
putationally hard problem (32). In practice, one has to resort to
heuristic algorithms such as the QMV proposed by Vigo (33) for re-
ducing expressions. Thus, barring exceptions, one can only obtain
an upper bound on the Boolean complexity for BFs with several in-
puts. In our work, to obtain the factorized minimal expression of
a BF, we employ the logic synthesis software “ABC” (34, 35). To im-
prove the estimated Boolean complexity of a BF, we give as input to
the ABC software 4 types of Boolean expressions, namely the full
DNF, the full CNF, the Quine–McCluskey minimized DNF expres-
sion (36, 37), and the Quine–McCluskey minimized CNF expres-
sion, corresponding to the same BF. As a result, 4 output Boolean
expressions are obtained of which the one with the least number
of literals is chosen as the minimal equivalent expression of the
BF. The number of literals in this expression is then our estimate
of the Boolean complexity of that BF.
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Average sensitivity of BFs
The second measure of complexity we use, the average sensitivity,
is based on how sensitive a BF is to changes of its inputs (22). For
a BF f with k-inputs, the sensitivity for a given assignment of the
input variables x = (x1 = a1, x2 = a2, . . . , xk = ak ) is the number of
neighbors y of x for which the output f (y) is different from f (x)
(22, 25). The assignments y and x are “neighbors” if they differ in
exactly 1 of their k variables. The average of the sensitivity over
all input combinations gives the average sensitivity of a BF, and is
given by the expression:

S f =
〈

k∑
i=1

f (x ⊕ ei ) ⊕ f (x)

〉
x

, (1)

where ⊕ is the XOR operator and ei ∈ {0, 1}k denotes the unit vec-
tor corresponding to having input variable xi = 1 and all other
input variables set to 0. x can be mapped to a vertex V of a k-
dimensional Boolean hypercube (or k-cube). The sensitivity at x
then has a geometric interpretation: it is the number (between 0
and k) of neighbors of V whose output value differs from that of
V. The total sensitivity of f, which is the sum of the sensitivities
over all the vertices of the k-cube is equal to twice the number of
k-cube edges whose 2 ends are vertices with complementary out-
put values. It follows from the above definition that the lower the
average sensitivity of a BF, the more robust it is to changes of its
input variables (22).

Note that isomorphic BFs have identical average sensitivities.
Indeed, the operations of rotations or reflections about any of the
axes of the hypercube do not change the number of “red” and
“blue” neighbors with output values 1 or 0, respectively, for any
vertex (see Figure S1(d), Supplementary Material). Moreover, a BF
and its complement belonging to sets k[P] and k[2k − P], respec-
tively, also have the same average sensitivity. This is because un-
der complementation of the BF, the “red” and “blue” vertices of the
k-cube are exchanged, thereby leaving the number of edges E01 in
the k-cube unchanged (see Figure S1(d), Supplementary Material).

Biologically Meaningful Types of BFs
The number of BFs having k-inputs is 22k

(see Section 1 in Sup-
plementary Material). Clearly, this number explodes with growing
number of inputs (Figure S2 and Table S1, Supplementary Mate-
rial). It is, thus useful to focus on those subsets of BFs which pos-
sess biologically meaningful properties (38). Here, we describe some
of the biologically meaningful BFs and give their important prop-
erties whose proofs are provided in Section 3 in Supplementary
Material.

Effective function (EF)
A regulatory input is called effective if and only if there exists some
input condition, wherein the modulation of that input alters the
output of the considered function. If such a condition does not
exist, that regulator (or input) can be considered to be ineffective.
It follows that all inputs of a biological BF ought to be effective (38):
if an input is ineffective, it should not be counted as a regulatory
input. Formally, a BF f with k-inputs is an Effective function (EF)
iff:

∀ i ∈ [1, k], ∃ x ∈ {0, 1}k with xi = 0, f (x) �= f (x + ei ), (2)

where ei ∈ {0, 1}k denotes the unit vector associated to the compo-
nent of index i. We find that all ineffective BFs have even bias (see
Property 3.1 in Supplementary Material). Furthermore, a k-input

EF possesses a Boolean complexity that is at least k (see Property
3.2 in Supplementary Material).

Unate function (UF)
A regulatory element may activate or inhibit the expression of a
target gene. Such activatory/inhibitory relationships can be for-
malized as follows (39): a BF f with k-inputs is said to be activating
(increasing monotone) in its input i (or variable xi) iff:

∀ x ∈ {0, 1}k with xi = 0, f (x) ≤ f (x + ei ), (3)

and inhibiting (decreasing monotone) in its input i (or variable xi)
iff:

∀ x ∈ {0, 1}k with xi = 0, f (x) ≥ f (x + ei ). (4)

A BF f with k-inputs is said to be a sign-definite or unate function
(UF) iff each input i = 1, 2, …, k is either activating or inhibiting
(39). For further classification of UFs into different combinations
of activating and inhibiting inputs, see Figure S3 (Supplementary
Material). We now list some properties of UFs which we utilize in
this work. UFs can be represented by a DNF expression in which all
occurrences of any specific input variable (more precisely, literal)
are either negated (i.e. negative input) or non-negated (i.e. posi-
tive input) (39, 40) (see Property 3.3 in Supplementary Material).
If u1 and u2 are UFs with k1 and k2 independent input variables,
respectively, then the combined BF u = u1�u2, where � ∈ {∧, ∨}, is
also unate (see Property 3.4 in Supplementary Material). Here, ∧
and ∨ are the AND and OR operators respectively. If an input i of
a UF u acts as both an activator and an inhibitor, then input i is
ineffective (see Property 3.5 in Supplementary Material).

Canalyzing function (CF)
A BF f with k-inputs is said to be canalyzing in an input i (or vari-
able xi) if and only if

f (x1, x2, . . . , xi−1, xi = a, xi+1, . . . , xk ) = b, (5)

independent of xj for j �= i. In the above equation, a and b can take
values 0 or 1, a is the canalyzing input value and b is the canalyzed
value for input i. A BF f is a canalyzing function (CF) if at least 1 of
its k-inputs satisfies the canalyzing property (2).

Nested canalyzing function (NCF)
NCFs have been previously studied in several works, see e.g. (19,
41, 42). A NCF with k-inputs can be represented as a Boolean ex-
pression with exactly k literals as follows (42, 43):

f (x) = Xσ (1) � (Xσ (2) � (Xσ (3) � . . . (Xσ (k−1) � Xσ (k) ))) , (6)

where σ is a permutation on the inputs {1, 2, …, k}, Xσ (i) ∈ {xσ (i),
xσ (i)} and � ∈ {∧, ∨}. NCFs have odd bias, are effective, are unate,
and have Boolean complexity equal to the number of inputs k (see
Properties 3.6, 3.7, 3.8, and 3.9, respectively in Supplementary Ma-
terial).

Read-once function (RoF)
A BF of k variables is a RoF if it can be represented by a Boolean
expression, using the operations of conjunction, disjunction and
negation, in which every variable appears exactly once (26). Math-
ematically, a k-input BF f is a RoF iff there is a permutation σ on {1,
2, …, k} such that, after stripping of parentheses, f can be written
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Fig. 1 The fraction of biologically meaningful types of BFs among all BFs
for a given number of inputs k ≤ 5.

as

f (x) = Xσ (1) � Xσ (2) � Xσ (3) . . . � Xσ (k), (7)

where as before Xσ (i) ∈ {xσ (i), xσ (i)} and � ∈ {∧, ∨}. The formula for
the RoF requires including the parentheses but there are no re-
strictions on where these are placed. For example, the expressions
x1x2(x3 + x4) and x1(x2x3 + x4) correspond to distinct RoFs. All k-
input RoFs can be generated recursively by pairing i-input RoFs
with j-input RoFs such that i + j = k (see Property 3.10 in Sup-
plementary Material). RoFs have odd bias, are effective, are unate,
and have the lowest Boolean complexity among all EFs for a given
number of inputs k (see Properties 3.11, 3.12, 3.13, and 3.14, respec-
tively in Supplementary Material). Note that NCFs form a subset
of RoFs (see Property 3.15 in Supplementary Material). Interest-
ingly, we show that any RoF with bias P = 1, 3, or 5, regardless
of k, is always an NCF (see Property 3.16 and Figure S4 in Supple-
mentary Material). Using these properties, we generated a catalog
and provide a procedure to check whether a BF is a RoF for k ≤ 10
(see Section 4 and Figure S5 in Supplementary Material).

Characterizing the Overlapping Sets of
Biologically Meaningful BFs
We now can systematically explore the relationships between the
aforementioned types of biologically meaningful BFs. To the best
of our knowledge, such a combined delineation of the different
types of biologically meaningful BFs in the space of all 22k

BFs has
not been carried out previously. Exhaustive enumeration of BFs
for low values of k led us to conjecture some properties of these
BFs for which we provide analytical proofs (see Section 3 in Sup-
plementary Material).

Computational enumeration up to k ≤ 5, shows that the frac-
tion of EFs in the space of all k-input BFs increases with increas-
ing k. In contrast, the fraction of UFs and CFs decreases with in-
creasing k and tend to 0 (see Fig. 1 and Table S2, Supplementary
Material). The proportions of even bias functions within the sets
EFs, UFs and CFs and also in their intersections at k ≤ 5 seem to
tend to 0.5 for increasing k (see Table S3, Supplementary Material).
Note that for a given number of inputs but various combinations
of activators and inhibitors the proportion of even bias functions
is constant (see Table S4, Supplementary Material). Furthermore,
computational enumeration up to k ≤ 10, shows that the fraction

of RoFs, NCFs and non-NCF RoFs among all BFs with exactly k-
inputs decreases and tends to 0 with increasing k (see Fig. 1 and
Table S5, Supplementary Material). We find that in the set of RoFs
for a given value of k, the fraction of these functions that are also
NCFs decreases with increasing k (see Table S5, Supplementary
Material). It is also feasible to perform such enumerations sepa-
rately for the different possible values of the bias P. In Figure S4
(Supplementary Material), we show the corresponding numbers
for RoFs, NCFs, and non-NCF RoFs with k = 4, 5, 6, 7, and 8.

Figure 2(a) gives an overview of the space of biologically mean-
ingful BFs across all 4-input BFs and serves as a visual guide
to the overlaps between the different types of BFs. The space
of all BFs can be divided into 2 equal parts based on the parity
(odd and even) of the bias. Interestingly, all ineffective BFs (IEFs)
lie in the even bias half. This raises the question as to whether
all IEFs have even bias. We theoretically prove that this is in-
deed the case (see Property 3.1 in Supplementary Material). The
UFs, which allow for all possible numbers of activators and in-
hibitors, are rather evenly distributed across even and odd bi-
ases and have some overlap with the IEF set (Fig. 2(a)). Indeed,
not all UFs are EFs (see Property 3.5 in Supplementary Mate-
rial). The CFs, like the UFs, are almost equally distributed across
even and odd biases and overlap with the IEFs, EFs, and UFs
(Fig. 2(a)).

Next, RoFs lie in the odd bias half (Fig. 2(a)). This warrants the
conjecture that all RoFs have odd bias, and we show that this is in-
deed the case (see Property 3.11 in Supplementary Material). Mov-
ing to the NCFs, we see in Fig. 2(a) that NCFs lie within the space
of RoFs (see Property 3.15 in Supplementary Material). Thus, NCFs
also have odd bias. NCFs are also a strict subset of RoFs when k ≥
4. For a proof, see Property 3.6 in Supplementary Material.

Enrichments in the Biological Data
In this section, we report on the relative abundance and associ-
ated statistical significance of the different types of BFs in a com-
piled dataset of 2,687 BFs from 88 reconstructed models. For de-
tails on the compiled reference biological dataset and the statis-
tical tests carried out, see Section 5 and Section 6, respectively
in Supplementary Material. The in-degree distribution for these
2,687 BFs, represented in Fig. 2(b), shows that the number of these
BFs decreases rapidly with increasing k (Fig. 2(b)). The key method-
ology, hereafter consists in focusing on the relative abundances of
the different types of BFs when comparing the ensemble of all BFs
to the ensemble composed of our reference dataset. A statistically
significant enrichment is suggestive of some selection pressure on
the BFs in the biological networks.

Enrichment in types when comparing to the
ensemble of random BFs
Figure 2(b) indicates that for in-degrees 1 ≤ k ≤ 8, the odd bias BFs
are dominant and statistically enriched in the reference dataset. It
is not immediately apparent why BFs with odd bias should be pre-
ferred over BFs with even bias as biologically meaningful BFs with
even bias do exist, e.g. a subset of functions, which are both unate
and canalyzing can have even bias (see Fig. 2(a)). Furthermore,
among 2-input BFs, the XOR and XNOR functions have even bias
but are completely absent from our reference biological dataset.

Figure 2(c) shows the relative abundances, in the reference
dataset (see Tables S6 and S7 (Supplementary Material) for exact
values) and in the ensemble of random BFs, of the various types of
BFs. Statistical tests reveal that the relative abundances in the ref-
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erence biological dataset are larger (1-sided p-values) than those
expected under the null hypothesis, whereby the reference BFs are
drawn from the ensemble of random BFs (see stars above the bars
in Fig. 2 and Table S8 (Supplementary Material) for p-values), with
the exception of the EFs. This exception is justified by the fact that
random functions are typically EFs (see Fig. 1). The ratios provided
in Table 1 show that the RoF, NCF, and the non-NCF RoF types are
all strongly enriched in the reference dataset.

Relative enrichment in subtypes when
comparing to the ensemble of random BFs
Comparing the enrichments of the different types of biologically
meaningful BFs can provide signatures of causes of enrichment.
For instance, if selection operated only in favor of unateness, each
subtype therein (NCF, RoF, or non-NCF RoF) would be expected to
have its relative abundance (proportion within UF) be the same
whether one considers the reference biological dataset or the
ensemble of random BFs. In effect, the proportions of different
subtypes of BFs in the 2 ensembles point to which factors drive the
different enrichments. We, thus developed a way to test the null

hypothesis that a subtype enrichment is solely due to the enrich-
ment in 1 of its englobing types (see Section 6 in Supplementary
Material).

Let us first consider the enrichment ratios of NCFs and RoFs
within the 3 englobing types of BFs: odd bias, EFs, and UFs. From
Table S9 (Supplementary Material), it is clear that, for k > 2, the rel-
ative enrichment ratios ER (when comparing the observed to the
expected under the null hypothesis) of both the NCFs and RoFs
are much greater than 1, implying that the enrichment of these
subtypes does not follow from the enrichment of their supersets.
Thus, biological selection solely in favor of being odd biased, effec-
tive, or unate is not consistent with the enrichments found for the
NCFs or RoFs in the reference dataset, some other factors must be
at work.

Second, since NCFs are a subset of CFs, we can ask whether
canalyzation is the factor driving the enrichment of NCFs. Since
the relative enrichment ratios are high and the p-values low (see
Table 2), we conclude that selection for canalyzation alone does
not explain the enrichment observed for NCFs. Similarly, we can
ask whether it is minimum Boolean complexity, i.e. the fact that a
function is a RoF, that drives the enrichment of NCFs (a subtype of
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Table 1. Fractions of functions that are RoFs, non-NCF RoFs, or NCFs, in the space of all 22k
BFs (f0) or in the reference biological dataset

(f1). E( = f1/f0) is the enrichment ratio; it indicates the extent of the over-representation of such functions in the reference dataset. Over-
representation is highest for NCFs but clearly non-NCF RoFs are also highly over-represented. Computations are reported for functions
with k ≤ 8 inputs.

k RoF non-NCF RoF NCF

f0 f1 E f0 f1 E f0 f1 E

1 0.5 1.000 2.000 0 0 – 0.5 1.000 2.00
2 0.5 0.977 1.953 0 0 – 0.5 0.977 1.95
3 0.250 0.917 3.670 0 0 – 0.25 0.917 3.67
4 1.27 × 10−2 0.946 74.495 1.46 × 10−3 5.43 × 10−2 37.04 1.12 × 10−2 8.91 × 10−1 79.38
5 3.52 × 10−6 0.853 2.42 × 105 1.04 × 10−6 0.083 7.99 × 104 2.47 × 10−6 0.769 3.11 × 105

6 1.91 × 10−14 0.776 4.06 × 1013 9.12 × 10−15 0.150 1.64 × 1013 9.97 × 10−15 0.626 6.28 × 1013

7 2.95 × 10−32 0.804 2.73 × 1031 1.86 × 10−32 0.137 7.39 × 1030 1.09 × 10−32 0.667 6.11 × 1031

8 2.92 × 10−69 0.756 2.59 × 1068 2.18 × 10−69 0.156 7.14 × 1067 7.41 × 10−70 0.600 8.10 × 1068

Table 2. The relative enrichment ratio ER of the NCFs in the CFs and RoFs. fs,0/f0 denotes the fractions of functions that are NCFs in the
space of all CFs or RoFs and fs,1/f1, the equivalent fraction in the reference biological dataset. ER = (fs,1/f1)/(fs,0/f0) denotes the enrichment
ratio and it indicates the extent of the over-representation of such functions in the reference dataset. Computations are reported for BFs
with k ≤ 8 inputs. The low p-values indicate that there is an enrichment of NCFs within the CFs and RoFs in the reference dataset when
compared to that expected in the ensemble of all CFs and RoFs.

k NCF in CF NCF in RoF

fs,0/f0 fs,1/f1 ER p-value fs,0/f0 fs,1/f1 ER p-value

1 0.5 1 2 – 1 1 1 –
2 0.571 0.977 1.709 3.49 × 10−139 1 1 1 –
3 0.533 0.950 1.781 2.47 × 10−78 1 1 1 –
4 0.209 0.962 4.595 5.32 × 10−144 0.885 0.943 1.066 6.86 × 10−04

5 8.22 × 10−3 0.882 1.07 × 102 1.56 × 10−233 0.703 0.902 1.283 7.46 × 10−09

6 1.78 × 10−06 0.720 4.04 × 105 0 0.522 0.807 1.546 1.58 × 10−08

7 7.19 × 10−15 0.694 9.65 × 1013 0 0.370 0.829 2.240 2.42 × 10−10

8 7.88 × 10−33 0.675 8.57 × 1031 0 0.254 0.794 3.129 5.26 × 10−12

RoF). As shown in Table 2, the relative enrichment of NCF within
RoF is quite modest, almost all k having ER values in the range 1–2.
Nevertheless our statistical method shows that these values are
not consistent with 1 (absence of any enrichment) as indicated by
the p-values in Table 2, so there must be some further cause of
the enrichment of NCFs other than that of belonging to the RoF
type.

Enriched Functions in Biological Data Have
Minimum Complexity
A plausible explanation for the enrichment of the RoFs and NCFs
in the dataset is their low complexity. In terms of the first notion
(Boolean complexity), the RoFs, of which NCFs are a subset, have
the minimum Boolean complexity among all EFs. RoFs and NCFs
have the same Boolean complexity but differ in the second mea-
sure of complexity, namely average sensitivity. This section exam-
ines more closely the properties of these 2 complexity measures.
We also harness the fact that for any bias, the minimum aver-
age sensitivity is obtained for a particular geometry of the “on”
vertices of the k-dimensional hypercube. We will show that when
the bias is odd this geometry corresponds to an NCF while if it is
even the function is ineffective.

Correlation between Boolean complexity and
average sensitivity
Let us first explore how the 2 measures of complexity compare.
The average sensitivity of a BF can be computed easily using Eq. 1
while computing the Boolean complexity of a BF is more chal-
lenging but was done as described in the section on complexity
measures. A bivariate analysis of these 2 measures of complex-
ity allows us to obtain the Pearson correlation coefficient (ρ =
0.812) for all BFs at k = 4 inputs. We find that there is a strong
positive linear relationship between the 2 measures (see Fig. 3(a)).
Looking closely at functions in the neighborhood of the brown
line (which highlights the minimum Boolean complexity of 4 for
EFs) in the 3D plot Fig. 3(b), we observe that: (i) all EFs along
this brown line have odd bias and are NCFs or non-NCF RoFs
(see Fig. 3(b) and (c)). (ii) At bias P = 7, NCFs have a lower av-
erage sensitivity than the non-NCF RoFs (see Fig. 3(b) and (d)).
(iii) At any even bias, the BFs having the minimum average sen-
sitivity are IEFs of Boolean complexity strictly less than k (see
Fig. 3(b) and (c)). These computational observations led us to the
2 conjectures listed below, which we prove in the subsequent
subsections:

� When P is odd, NCFs have the minimum average sensitivity
within their k[P] set.
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Fig. 3 Dependence of the 2 complexity measures on the bias and associated 2D projections for all BFs with k = 4 inputs. In each subfigure, a point
corresponds to a class of (isomorphic) BF and is assigned a shape and a color. The shape of a point (triangle, square, circle, or diamond) denotes the
type of BF (NCF, non-NCF RoF, non-ROF EF, or IEF) whereas its color indicates the number of BFs contained in it’s corresponding class. The same shape
and color scheme is applicable to all the plots. A slight ‘jiggle’ is added at some points to resolve overlapping representative BFs. In this plot, the type
‘non-RoF EF’ refers to the subset of EFs which are not RoFs. (a) The linear correlation between the Boolean complexity and the average sensitivity is
large and positive. The Pearson correlation coefficient (ρ) between the 2 measures was calculated for all BFs with k = 4 and P ≤ 8. (b) The 3D plot adds
the third dimension of bias P to the preceding 2D plot. The solid and dashed vertical lines or ‘needles’, as we will refer to them henceforth, show the
projections of the points onto the plane of bias and Boolean complexity. These needles have been included to enhance clarity while distinguishing
between the odd bias BFs and even bias BFs. The brown line drawn at the Boolean complexity 4 highlights the functions that possess the minimum
Boolean complexity and are effective as well. The RoFs are the only functions which lie along this line. Since the 2 complexity measures are invariant
under complementation of the BF, the bias values have been shown only up to P = 8. (c) Variation of the Boolean complexity with the bias. With
increasing bias upto P = 8, the number of representative BFs increases, but so does the range of Boolean complexity of these functions. The RoFs and
ineffective functions (IEFs) have the minimum Boolean complexity in any 4[P] set. The brown line drawn at the Boolean complexity 4 highlights the
functions that possess the minimum Boolean complexity and are effective as well. (d) Variation of average sensitivity with increasing bias. Clearly, the
NCFs and IEFs have the minimum average sensitivity in any 4[P] set. Note that both subfigures (c) and (d) are symmetric about P = 8 due to the
complementarity property.

� When P is even, the functions with minimum average sensi-
tivity are ineffective with Boolean complexity < k.

Mapping average sensitivity to the number of
edges between P vertices of a k-cube
In the k-cube representation of a BF, each vertex corresponds to a
binary string x that defines the BF’s input. We thus assign “0”s and
“1”s to each of the associated vertices to specify the BF’s output for
each input string x. If P is the bias of the BF, there are P vertices
carrying the label “1”. The total number of edges stemming from
these P vertices is kP. Of these, some edges may end at one of the
other P − 1 vertices having the value 1; we refer to the associated

set of edges as E11. Similarly, we denote by E01 the remaining edges,
ending at any of the 2k − P other vertices having the value 0. These
2 quantities satisfy E01 + 2E11 = kP (44). The average sensitivity of
the BF is given by 2E01/2k; clearly the problem of minimizing this
quantity in the set k[P] is equivalent to maximizing E11 since k and
P are fixed.

Edge-maximizing arrangement between P
vertices of the k-cube: defining “good sets”
Hart (44) solved the problem of finding an arrangement of P ver-
tices on a k-cube that maximizes the number of edges connecting
them. This problem has also been solved by other authors (45, 46),
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show the equivalence of that GS with 13 vertices to a NCF with bias 13. The vertices of the hypercube are labeled in the order x4, x3, x2, x1, wherein xi is

0 or 1. Here, Cj
1 and Cj

2 denote the 2 vertex disjoint j-dimensional hypercubes of the (j + 1)-dimensional hypercube. The ‘active’ bit in each part (a), (b),
(c), and (d) is the colored bit in the binary representation of 13 in that part. (a) Since P = 13 lies between 23 and 24, 23 vertices of either C3

1 or C3
2 (here,

C3
1) form part of the GS. This leaves 13 − 8 = 5 vertices to be colored red to complete the GS. This choice of 8 vertices in C3

1 for the GS leads to the
canalyzation of vertices labeled x4 = 0 to the output value 1. In this step, the active bit is 1 and as a result the ∨ operator follows the literal x4. (b)
Following the same procedure as in (a) for coloring the remaining 5 vertices of the GS leads to the choice of 4 vertices in C2

1. This leaves 1 vertex to be
colored (which is the base case of the recursion to construct the GS). The choice of 4 vertices for the GS leads to the canalyzation of vertices with x4 =
1 and x3 = 0 to the output value 1. The active bit in this step is 1 and as a result the ∨ operator follows the literal x3. (c) For the corresponding NCF, the
vertices with x4 = 1,x3 = 1 and x2 = 0 are canalyzed to the output value 0. The active bit in this step is 0 and as a result the ∧ operator follows the
literal x2. (d) For the last step, any vertex in C2

2 can be colored to complete the 13 vertices in GS, and we color here the vertex 1111. The vertex with x4 =
1,x3 = 1,x2 = 1, and x1 = 1 is canalyzed to the output value 1, and the remaining vertex is set to output value 0.

though in other contexts. We choose to use Hart’s approach due to
it’s mathematical clarity and easy visualization. Hart introduces
the notion of a “good set” of P vertices on a k-cube where P < 2k

using the following recursive definition:

(i) If P = 1, we always have a good set.
(ii) Otherwise, find r such that 2r < P ≤ 2r + 1. Select any (r +

1)-cube embedded in the k-cube. Then, select two r-cubes,
which are vertex disjoint subsets of the (r + 1)-cube. To se-
lect the P vertices, include first 2r vertices by taking one of
the r-cubes and include the remaining P − 2r vertices by im-
posing that they form a “good set” containing P − 2r vertices
on the other r-cube.

By expressing P as a sum of powers of 2, i.e. P = ∑l
i=1 2ri , the

resulting set of strictly increasing exponents {r1, r2, …, rl} gives the
dimensions of the successive cubes to be used to define a good set.
Hart (44) was able to prove that good sets maximize the number
of edges connecting P vertices at fixed P.

Good sets having an odd number of vertices
correspond to NCFs
Given the k-cube representation of BFs in k[P], our claim is that
the P vertices (P odd) with output value 1 form a “good set” iff the
BF is a NCF.

Proof: Consider the logical expression of a NCF (Eq. 6) in a k[P]
set. The ith canalyzing variable xσ (i) determines which partition (of
the possible k − (i − 1) partitions, i − 1 variables having already
been fixed) of a (k − (i − 1))-cube into 2 vertex disjoint (k − i)-cubes
is to be canalyzed. Furthermore, the canalyzing input value ai (xσ (i)

= ai) fixes the outputs of the vertices of 1 of the 2 vertex disjoint
(k − i)-cubes to the value bi. Repeating the procedure recursively
over i ∈ [1, k] gives the arrangement of 1s and 0s for a NCF on a
k-cube. To obtain a NCF with a certain bias P, the i’s for which bi

= 1 have to be chosen appropriately so that P = ∑k
i=1 bi2k−i.

The above procedure of setting the output values of P vertices to
1s and 2k − P vertices to 0s on the k-cube is equivalent to obtaining
a good set of P vertices, setting their output values to 1 and then
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Fig. 5 Distribution of the network average sensitivity when using the list
of inputs from biological models but enforcing different types of BFs to
the nodes, namely EFs, effective and unate functions (EUFs), CFs,
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The right-most case is the distribution when using the actual BFs in the
biological models. This plot has been generated by keeping the
maximum width of each of the ‘violins’ fixed.

setting the output of the remaining 2k − P vertices to 0. This is true
because:

(1) The dimensions of the cubes whose vertices are to have the
output value 1 are the same in either case (i.e. the set of
exponents obtained by expressing P as a sum of powers of
2 is unique for a given P).

(2) When some i-cube is chosen to place the 1s, there is only
1 other i-cube, which (along with the chosen i-cube) con-
stitutes 2 vertex disjoint subsets of a (i + 1)-cube. In both
cases, this is an i-cube where the next set of 1s are placed.

Thus the P vertices with output value 1 in a NCF constitute a good
set and inversely any good set with P odd corresponds to a NCF.
Given Hart’s proof, NCFs must then have the minimum average
sensitivity among all BFs in k[P]. Figure 4 and Figure S6 (Supple-
mentary Material) provide a visual illustration.

The logic of the derivation can be extended to the case where
the good set has an even number of vertices: one then sees that
the resulting BFs have a hierarchical structure similar to the NCFs,
but with some variables ineffective (see Section 7 and Figure S7 in
Supplementary Material). If all ineffective variables are ignored,
one sees that a good set of even number of vertices leads to a NCF
with fewer variables.

Consequences for Network Dynamics of
Biologically Meaningful BFs
A natural question that emerges from our results is: what are the
implications of selecting these various types of BFs for the net-
work dynamics? To answer this, we exploit the indicator defined
in (22, 47) referred to as network average sensitivity. This quantity
is the mean, over all nodes of the network, of each node’s aver-
age sensitivity. Daniels et al. (47) found that by fixing the biolog-
ical network structure and selecting CFs over random BFs for all
nodes, the network average sensitivity s of the resulting Boolean
network is brought close to the critical value s ∼ 1. We extend this
approach to consider the effects of selecting for the different bio-
logically meaningful BFs, determining the distribution of network
average sensitivities over the 88 models (see Fig. 5). We then com-

pare these distributions to that of the biological case. By quanti-
fying the overlaps of these different distributions, we find that all
types of BFs except for the NCFs and RoFs have a substantial frac-
tion of their distributions lying outside the 95% CI of the distribu-
tion of the biological case (see Table S10, Supplementary Material).
For details of these computations of network average sensitivities
in 88 models and their randomized counterparts, see Section 8 in
Supplementary Material. Furthermore, we see that RoFs and NCFs
have rather narrow distributions that are peaked near s = 1 (see
Fig. 5).

Discussion and Conclusion
The first Boolean modelings of gene regulatory networks (10, 12)
were based on random logic, but subsequent works introduced
different types of “biologically meaningful” BFs, including effec-
tive (EFs) (38), unate (UFs) (39), canalyzing (CFs) (2), and nested
canalyzing (NCFs) (19). To those types we have here added the
RoFs (26) taken from the computer science literature. Further-
more, we show the relationships among these different types of
BFs in: (a) the space of all 22k

BFs, and (b) a reference dataset of
2,687 BFs compiled from published discrete logical networks (21,
48, 49) of biological systems.

One of our main conclusions is that these biologically mean-
ingful types of BFs represent a tiny fraction of the space of all BFs
(see Fig. 1), and yet we find that they cover nearly all BFs found in
our reference biological dataset (Fig. 2). Of course this dataset may
reflect some biases introduced by the researchers who built the
associated models but the diversity of groups involved in building
these models points to the solidity of our conclusions. A caution-
ary note nevertheless is that the Boolean framework is an idealiza-
tion of the continuous levels of the different biomolecular species.
The assumption that genes are either on or off is convenient but
it indeed can miss subtle effects associated with dosage depen-
dencies. As an example, suppose gene A turns on its target gene
B (respectively C) when its expression level is above the threshold
�B (respectively �C). If �B < �C, the regime where A turns on B but
not C cannot be handled within the Boolean framework. In view of
such caveats that are not specific to the present work, our results
should be anchored in their context, namely a coarse-grained con-
ceptual framework approximating reality.

Another major conclusion we reach is that RoFs and their sub-
set NCFs are specifically and strongly enriched in the reference
dataset. We remark that while the relative abundance of CFs and
NCFs in biological networks has been previously reported in sev-
eral publications (2, 19, 20, 43, 47, 50, 51), our work provides a sys-
tematic study of 7 different types of BFs in a large curated refer-
ence biological dataset. In fact, previous studies neither carried
out statistical tests nor assessed the relative enrichments in sub-
types, e.g. NCFs within CFs or RoFs, and in this respect, our study
is able to shed light on possible factors driving enrichment. The
specific enrichment of RoFs and NCFs can be tied to their mini-
mizing 2 measures of complexity namely, Boolean complexity (24,
30) and average sensitivity (22, 25). RoFs turn out to be the set of
BFs minimizing Boolean complexity. Furthermore, extending pre-
vious studies realizing that NCFs have low average sensitivity (23,
42, 52), we show that in fact NCFs achieve the theoretical minimum
of this complexity measure in their k[P] set, a result that was also
reported in a recent preprint (53).

In the reference dataset, we found occurrences of ineffective
BFs even though the corresponding models had been curated by
their authors. Most likely such cases are modeling errors. A pos-
sible way to handle an ineffective BF in such a biological context
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is by considering the truncated BF without its ineffective inputs.
We have confirmed that all our conclusions remain unchanged by
repeating the analysis starting with a modified reference dataset,
wherein every ineffective BF is replaced by its corresponding trun-
cated effective BF (see Section 9, Tables S11–S17, Figures S8 and S9
in Supplementary Material).

Buchler et al. (54) provide a biophysical model of how regulatory
logic schemes could be realized at any node in a gene regulatory
network. They recognize via their model that implementing the
XOR and XNOR logic is more complex than implementing AND
and OR logic. This is in concordance with what our complexity
measures furnish: the Boolean complexity and average sensitiv-
ity of XOR and XNOR functions are both greater than that of AND
and OR functions. Moreover, the XOR and XNOR functions have
no representation among the 687 2-input BFs in the reference bi-
ological dataset. Altogether, these observations support the use of
certain representations of BFs in the biological scenario, wherein
variables are connected by either conjunction or disjunction op-
erators, in contrast to other representations wherein say the vari-
ables are connected by the XOR operator.

The framework we use both supports and formalizes Kauff-
man’s (2) qualitative view in which “simplicity” should be a driver
of the regulatory logic in biological systems. Kauffman argued
that CFs were simpler than random functions, and therefore,
should be expected to arise quite frequently in biological sys-
tems (2, 50). Our use of an extensive curated dataset generated
from published Boolean models of biological networks enabled
us to compare different notions of simplicity, and thereby con-
front Kauffman’s view to real data in a well defined quantitative
framework. By identifying “simplicity” with minimum complexity
defined in terms of either Boolean complexity or sensitivity, NCFs
are the simplest of all BFs. We can, thus justify the much stronger
preponderance of the NCF type in comparison to the CF type con-
jectured by Kauffman.

We also note that sensitivity of BFs is directly related to their ro-
bustness to noise (6). With that correspondence, we can conclude
that NCFs for a given number of inputs k and given bias P have
the theoretically maximum robustness to noise in the inputs. It is a
posteriori natural to expect that average sensitivity as a measure
of both complexity and robustness will be particularly relevant to
Boolean models of gene regulatory networks.

As a caveat or at least as a subtlety to our minimum com-
plexity conclusion, it is appropriate to stress that NCFs minimize
average sensitivity within their k[P] set, that is at fixed bias P.
Since lowering bias P could lead to a lower average sensitivity,
one may ask why there are cases where P is large in the biolog-
ical reference dataset. We speculate that the answer has to do
with what function the biological network implements. To use a
parallel from electronics, it is possible for a circuit to implement
a function by using many simple components or by using fewer
but more complex components. The relative advantage of each
strategy depends on component “costs”. In the biological con-
text one may expect that having higher values of P allows one to
use fewer genes, thereby reducing protein and cellular machin-
ery costs. Tackling this question in a quantitative framework will
be very challenging and it is definitely beyond the scope of this
paper.

Lastly, our methods and results have implications for the prob-
lem of model selection within the Boolean framework (55, 56).
By model selection we mean the process of selecting Boolean
models from the ensemble of Boolean models which satisfy
given constraints such as having specified steady states. Dur-
ing model selection, the preferential use of NCFs or RoFs could

serve as a relevant criterion to constrain network reconstruction
(55, 57).
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