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Abstract

Neural, physiological, and behavioral signals synchronize between human subjects in a variety of settings. Multiple hypotheses have
been proposed to explain this interpersonal synchrony, but there is no clarity under which conditions it arises, for which signals, or
whether there is a common underlying mechanism. We hypothesized that cognitive processing of a shared stimulus is the source
of synchrony between subjects, measured here as intersubject correlation (ISC). To test this, we presented informative videos to
participants in an attentive and distracted condition and subsequently measured information recall. ISC was observed for electro-
encephalography, gaze position, pupil size, and heart rate, but not respiration and head movements. The strength of correlation was
co-modulated in the different signals, changed with attentional state, and predicted subsequent recall of information presented in the
videos. There was robust within-subject coupling between brain, heart, and eyes, but not respiration or head movements. The results
suggest that ISC is the result of effective cognitive processing, and thus emerges only for those signals that exhibit a robust brain–
body connection. While physiological and behavioral fluctuations may be driven by multiple features of the stimulus, correlation with
other individuals is co-modulated by the level of attentional engagement with the stimulus.
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Significance Statement:

Neural, physiological, and behavioral signals are synchronized between humans in a variety of settings. In this work, we show
that physiological synchrony requires only 2 things, namely, effective cognitive processing of a common stimulus, and a robust
coupling between brain activity and the physiological signal in question. We confirm this theory for heart rate, pupil size, gaze
position, and saccade rate, as positive examples, and respiration and head movements as negative examples. We show that the
strength of this correlation is co-modulated, i.e. correlation is modulated in unison for all signals in which correlation is detected.
We propose that this common modulation is the result of attentional engagement with the stimulus.

Introduction
It is well established that shared experiences can synchronize
physiological signals between individuals. This has been observed
for autonomic signals (1) including galvanic skin response, heart
rate (HR), body temperature, respiration, as well as other sig-
nals such as gaze position (2) and pupil size (3). Synchroniza-
tion of physiological signals between individuals has often been
attributed to physical or social interaction (4–7). However, the
simultaneous experience is not a prerequisite for physiological
synchronization, as a number of studies have shown that phys-
iological signals can be correlated between subjects even when
they engage individually with dynamic natural stimuli (3, 8–11).

Stimulus-induced correlation between individuals has been
studied extensively with neural measures including functional
magnetic resonance imaging (fMRI) (12), electro-encephalography
(EEG) (13), magneto-encephalography (MEG) (14), and functional
near-infrared spectroscopy (fNIRS) (15) in particular during pre-
sentation of film (2, 12), auditory narratives (16, 17), and music

(18). These studies show that subjects process narrative stimuli
similarly, and that correlation of brain activity is predictive of
memory of the narrative (17, 19). The cognitive state of viewers
has been shown to influence the intersubject correlation (ISC) of
neural activity. For instance, subjects that are attentive (20) and
more engaged have higher ISC (21). In total, these studies indicate
that perceptual and cognitive processing of the narrative are sim-
ilar across subjects and depend on cognitive state.

In the context of physiological or behavioral signals, ISC is of-
ten referred to as “interpersonal synchronization,” implying that
2 or more people are co-present in a given context. A variety of
mechanisms have been proposed to cause ISC such as social in-
teractions (1), physical interactions (4, 7, 22), shared emotions (9,
10), and it has been argued that the strength of synchrony is mod-
ulated by empathy (23, 24), arousal (4, 25), attention (26), and more
(1). The diversity of factors parallels the diversity of factors known
to affect physiological signals. For instance, HR fluctuations are
often discussed in the context of emotions, and pupil size in the
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Fig. 1. ISC of neural, physiological, and behavioral signals during passive video watching. (A) Signals for each of the modalities simultaneously
recorded during Experiment 1. The 2 subjects shown (green and orange) have the highest ISC values measured for each modality. The EEG signal is the
first component extracted from the 64-channel EEG using correlated component analysis. The gaze position signal is the horizontal gaze position. (B)
Pearson correlation matrix between all pairs of the 92 subjects for each of the modalities. Subjects are sorted by increasing average correlation values.
The correlation matrix for gaze position is the average correlation of gaze position in the horizontal and vertical direction. The correlation matrix for
EEG is the sum of the correlation values obtained for 9 components extracted with correlated component analysis. (C) ISC values are the average of
pairwise correlations for each subject, i.e. the mean over column of the correlation matrix in (B), excluding the diagonal, and averaged over the 3
videos presented (10 minutes total duration). Subjects are ordered by their ISC values (same as in B). Filled points indicate statistically significant ISC
values and nonfilled points indicate they are not statistically significant. Statistical significance is determined using circular shuffle statistics (10,000
shuffles and corrected for multiple comparisons with FDR of 0.01). Circular shuffle means that the signal of each subject is randomly shifted in time,
thus removing any intersubject relation.

context of arousal, although both are affected by a variety of other
cognitive factors (27–33). We hypothesize, instead, that the cogni-
tive processing of a shared stimulus is sufficient to induce ISC,
thus providing a more parsimonious explanation for the variety
of phenomena previously observed. We use the term “cognitive
processing” in its general sense of creation and manipulation of
mental representations, which includes stimulus perception (34).
The hypothesis predicts that ISC is co-modulated in different sig-
nals, and importantly, that it will emerge only for physiological
signals that exhibit robust coupling to the brain. If, instead, phys-
iological synchrony is driven by a variety of factors, we would not
expect a co-modulation of ISC nor would we expect signals with
robust brain–body coupling to necessarily synchronize between
subjects.

To test these opposing predictions we collected physiological,
neural, and behavioral signals while participants watched infor-
mative videos. Data was collected individually for each partici-
pant to rule out effects of direct social interactions. Additionally,
videos were selected to be engaging but not to evoke strong emo-
tions or arousal as in previous studies on HR synchronization (6,
8, 9). These controls can falsify alternative hypotheses that re-
quire social or physical interactions (1, 4, 7, 22) or strong emo-
tions or empathy (8–10, 23, 24). Our hypothesis also predicts that
ISC should be modulated by attention and predictive of memory
of the content in the video. To test for this, we used a secondary
mental task that distracts attention from the stimulus (20) and
subsequently probed for recall memory (35). We measured ISC for
each individual (12, 13), and resolved it on the group level also
across time and frequency.

As predicted, we found significant ISC between individuals only
for those signal modalities that exhibit a robust brain–body con-
nection, namely, gaze position, pupil size, HR, and saccade rate.
We did not find significant correlation for respiration or head ve-
locity, which indeed did not exhibit a robust coupling with brain
activity. Consistent with our hypothesis, the strength of ISC co-
varied across signal modalities, was modulated by attention and
was predictive of recall. These results suggest that ISC is modu-
lated in unison by the level of attentional engagement with the
stimulus.

Results
To establish the strength of ISC in different modalities we pre-
sented instructional videos while simultaneously recording neu-
ral, behavioral, and physiological signals. In the first experiment
with 92 subjects (Experiment 1) we recorded the EEG, HR, gaze po-
sition (gaze), pupil size (pupil), and respiration. We chose 3 instruc-
tional videos related to physics, biology, and computer science,
each 3–5 minutes long, with a total duration of 10 minutes. Signals
were recorded at different sampling frequency for each modality
but aligned in time across all subjects and modalities (Fig. 1A). For
each signal modality we computed Pearson’s correlation of these
time courses between all pairs of subjects (Fig. 1B). For gaze posi-
tion the correlation is computed separately for horizontal and ver-
tical position and then averaged. For the 64 channels of EEG, we
first extracted several components of the raw evoked potentials
that maximally correlate between subjects (36), computed pair-
wise correlation between subjects for each component, and then
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Fig. 2. ISC is co-modulated in different signal modalities. ISC computed here for multiple signals recorded on 92 subjects while they watched
instructional videos (same as in Fig. 1). Each point represents ISC between 1 individual and the group. The diagonal of the plot matrix is the histogram
of each modality. Significant Pearson’s correlation of ISC between each modality is indicated by a ∗ (P < 0.01, bonferroni corrected). Lines indicate the
linear least-squares prediction of vertical from horizontal axis (while points are the same in upper and lower triangles after flipping axes, prediction
lines are not).

took the sum of the correlation values. In each signal modality,
ISC is defined for each subject as the average Pearson’s correla-
tion between that subject and all others (Fig 1C).

The first observation was that ISC is statistically significant in
most subjects and modalities (black points in Fig. 1C), but also
quite variable across individuals. Significant correlation was de-
tected in all modalities except respiration. Comparing ISC across
modalities, the most robust correlation was found for pupil size
(ISCpupil: 0.06–0.51, mean M = 0.39, and SD = 0.09) and gaze posi-
tion (ISCgaze is in the range of 0.01–0.37, M = 0.29, and SD = 0.06).
They are significantly larger from chance values for all 92 subjects
tested. Robust correlation is also found for EEG (ISCEEG: 0.00–0.11,
M = 0.07, SD = 0.02, and 92/92 significant). We found that HR also
correlates between subjects, but to a lesser extent with several

subjects not exhibiting significant correlation (ISCHR: −0.01–0.10,
M = 0.04, SD = 0.03, and 61/92 significant). For respiration we were
not able to detect significant correlation between any participant
and the group (ISCresp: −0.01–0.01, M = 0.00, and SD = 0.00).

ISC co-varies across different modalities
Given the strong variation of ISC across subjects, we wanted to
determine if it co-varies in different signal modalities, i.e. if ISC
is high in 1 modality, is it also high in other modalities? To this
end we compared the ISC of different modalities across subjects
(Fig. 2). Subjects with high ISC in EEG, HR, gaze position, and pupil
size also showed high correlation in the other signal modalities.
Correlation of ISC across subjects between these 4 modalities was



4 | PNAS Nexus, 2022, Vol. 1, No. 1

0

0.1

0.2

0.3

IS
C

EEG

0.10 1 10
Frequency [Hz]

0

2

4

Po
w

er

0

0.04

0.08
Heart rate

0.10 1
Frequency [Hz]

0

0.5

1

1.5
0

0.1

0.2

0.3
Gaze position

-0.01

0

0.01
Respiration

0.10 1
Frequency [Hz]

0

200

400

600

0.10 1 10
Frequency [Hz]

0

20

40

60

0

0.2

0.4
Pupil size

0.10 1 10
Frequency [Hz]

0

5

10

15

**

�0.2

0

0.2

0.4

C
or

re
la

tio
n

ISCEEG vs. ISCHR

**

0

0.2

0.4

0.6

ISCEEG vs. ISCGaze

-0.5

0

0.5

ISCEEG vs. ISCResp

**

-0.2

0

0.2

0.4

ISCEEG vs. ISCPupil

A

B

C

Fig. 3. Time scales of signal fluctuations. (A) Frequency-resolved ISC: intersubject coherence spectrum computed by first band-pass filtering signals at
different frequencies and then computing ISC averaged over videos and subjects. Band-pass filtering used center frequency on a logarithmic scale and
a bandwidth of 0.2 octaves. Blue shading indicates SEM across N = 92 subjects. Significance of ISC values above 0 are established in each band using t
test, corrected for multiple comparisons using 1D cluster statistics (light gray area indicates P < 0.01, cluster corrected). (B) Magnitude of fluctuations
captured by the power spectrum, i.e. the power of the band-pass filtered signals. (C) Correlation between time-resolved ISC of EEG and time-resolved
ISC of different modalities computed separately for each subject. Time-resolved ISC is computed in 10-second time windows with 50% overlap. Each
dot is a subject. ∗∗ indicate P < 0.01 for a t test for nonzero mean ISC, uncorrected). The density is computed using kernel density estimation using a
Gaussian kernel. The box plot shows the median and 25th and 75th percentile. Data aggregated over ∼15 minutes of video of Experiment 1.

significant in all cases (r = 0.49–0.69, P < 0.01 bonferroni corrected,
and N = 92). However, we did not find any significant relation be-
tween the ISC of these 4 modalities and respiration (r = 0.04–0.25,
P > 0.1 bonferroni corrected, and N = 92). The observation that the
level of ISC of gaze position, pupil size and EEG co-varies across
subjects is perhaps expected as they may all be driven by the vi-
sual dynamic of the video. What is more surprising is that high
ISC in these modalities also coincided with high ISC of HR fluc-
tuations, which thus far has been mostly attributed to emotional
aspects of a stimulus 8 and would not be expected to be driven by
visual dynamics of the video.

Time scale of correlated signal fluctuations and
co-modulation across time
ISC captures whether subjects move their eyes in unison, whether
their HR increases or decreases together, whether their pupils
dilate or contract or whether they inhale and exhale simulta-
neously. Given that ISC is co-modulated between modalities, we
wanted to know if these correlated fluctuations were due to sim-
ilar entrainment with the stimulus. To investigate this, we re-
solved ISC by frequency band, i.e. the signals are band-pass fil-
tered prior to computing ISC resulting in a coherence spectrum.
These coherence spectra differed significantly between modali-
ties (Fig. 3A). Therefore, co-modulation is not likely to result from
entrainment to a specific frequency band, and instead may have
been driven by more complex properties of the stimulus. While
coherent fluctuations differed between modalities, they generally
were slower than 10 Hz and are strong in the frequency band

around 0.1 Hz. ISC might, therefore, be reliably measured on a
time scale of 10 seconds. We additionally analyzed the power
spectra, which quantifies the magnitude of fluctuations in dif-
ferent frequency bands (Fig. 3B). They differed significantly from
the coherence spectrum. Therefore, coherence was frequency-
specific and not just a result of the underlying dynamic. Given
this diversity, it is possible that each signal modality was mod-
ulated by something different in the stimulus across time. We,
therefore, asked whether ISC, from 1-time interval to the next,
changes together in different modalities. Indeed, time-resolved
ISC of brain signals computed on 10-second intervals correlate
significantly with time-resolved ISC of gaze position, pupil size,
and HR (with correlations in the range of r = −0.04–0.39), but not
with respiration (Fig. 3C). This correlation of ISC between modal-
ities over time was weaker than what we found across subjects.
This suggests that on a short time scale (less than 15 minutes),
ISC of different modalities may be driven by a diversity of fac-
tors in these video stimuli. Nevertheless, both across subjects and
across time, we found that ISC of different signal modalities are
co-modulated.

ISC is predictive of an individual’s memory
performance
We hypothesized that ISC is the result of cognitive processing,
and thus we expected that the level of ISC will be predictive
of memory performance. We, therefore, tested memory of the
material in the video after presentation with a set of multi-
ple choice questions (these data were available for 43 of the
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available only for a subset of 43 subjects. P-values are uncorrected.

92 subjects). Questions tested memory of the information pre-
sented in the video, which covered topics related to science,
technology, and math (STEM). Questions probed for recognition
and comprehension such as “What are stars made of?” or “How
can Single Nuclear Polymorphism be useful?.” First, to quantify
the common factor that is driving the co-modulation of ISC across
subjects, we used principal component analysis (after z-scoring
ISC values for each modality). The first principal component cap-
tured 52% of the population variance in ISC and the second com-
ponent only 22% (Fig. 4A). The modalities captured by this first
component were EEG, HR, gaze position, and pupil size (Fig. 4B),
consistent with the co-variation of ISC observed in Fig. 2. Whereas
the second principal component loaded mostly on respiration
(Fig. 4B). As predicted, we found a strong correlation of memory
performance with the first principal component of ISC (Fig. 4C)
(r(39) = 0.59, P = 5.7·10−5, gaze position data was missing in 2 of
the 43 subjects). In contrast, there was no significant correlation
with the second component and test taking performance (r(39) =
−0.23, and P = 0.14).

This result was confirmed when analyzing each modality in-
dependently (Fig. 4D and replicated for experiments 2 and 3 in
Figure S5, Supplementary Material). ISC of EEG was predictive of
students’ test taking performance (r(41) = 0.57, and P = 7.1·10−5)
as well as gaze position (r(39) = 0.60 and P = 3.2·10−5), and pupil
size (r(39) = 0.51 and P = 6.7·10−4). To a lesser extent this was also
true for HR (r(41) = 0.30 and P = 0.05). In contrast, ISC of respira-
tion did not correlate with memory performance (r(41) = 0.01 and

P = 0.94). We also analyzed the difference in ISC between men and
women and did not find any significant difference in the modali-
ties tested here (Figure S7, Supplementary Material).

Correlation with others depends on the
individual’s attention to the stimulus
The interpretation that cognitive processing of a common stimuli
is required for ISC to emerge is consistent with the observation
that it is modulated by attention for many of these modalities.
Specifically, when subjects are distracted from the stimulus, ISC
drops significantly for gaze position, pupil size, EEG as well as HR
(3, 11, 20). To compare these effects across modalities and deter-
mine their time scales, we performed a new experiment in which
N = 29 subjects watched videos while normally attending, and
then again while distracted by a mental arithmetic task. In this
Experiment 2, we used 6 instructional videos with a total dura-
tion of 31 minutes. We computed ISC again resolved by frequency
but separately for the attentive and distracted conditions (Fig. 5A
replicated for Experiment 3 in Figure S6, Supplementary Mate-
rial). We found that ISC is significantly weaker in the distracted
condition for all modalities (respiration was not measured in this
experiment). We also analyzed the power spectrum of these sig-
nals to determine if the attentional effects are reflected in the dy-
namic of these signals (Fig. 5B). We found generally weaker effect
sizes for the power spectrum (Fig. 5C). This suggests that atten-
tion does not strongly affect physiological dynamics, but rather,
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Fig. 5. Attentional modulation of ISC and Power resolved by frequency. Here, subjects watch instructional videos (31 minutes total duration,
Experiment 2) attending normally (blue) or distracted (purple) by performing a mental arithmetic task. (A) Coherence spectra measure ISC resolved by
frequency. The color shaded areas indicate SEM across subjects. Significant differences between attending and distracted conditions are established
for each band using a t test, corrected for multiple comparisons with 1D cluster statistics (gray-shaded frequency range indicates P < 0.01, N = 29, and
cluster threshold corrected). (B) Power spectra measure power of signal fluctuations resolved by frequency. Shaded areas as in B. (C) Effect size is
measured as Cohen’s d’ with variance estimated across subjects. ISC and power are computed on band-pass filtered signals (as in Fig. 3.) and averaged
over 6 videos.

fluctuations align in time across subjects when attending to the
stimulus and not otherwise. Finally, we analyzed traditional mea-
sures of arousal involving pupil size and HR (Figure S4, Supple-
mentary Material). Only HR variability (HRV) was meaningfully
modulated by attention.

ISC occurs only for physiological signals that are
coherent with brain signals
Given our hypothesis, we predicted that significant ISC in the
physiological signals occurs if, and only if the signal correlates
with brain activity within subjects during video watching. In this
view, when brains correlate, so will other physiological signals that
are driven by cognitive processing in the brain. The alternative hy-
pothesis is that the brain–body connection itself is modulated by
attention for these modalities. To test for this, we measured the
within-subjects coupling between EEG and HR, pupil size, and res-
piration (Fig. 6). Specifically, at each frequency band we extracted
a component of the EEG that best correlated with the respective
signals. Here, we report the strength of this correlation, which we
call within-subject correlation (WSC). We found that gaze posi-
tion, pupil size, and HR significantly correlated with brain signals
in some frequency bands (Fig. 6, and Figure S3 (Supplementary
Material) for distribution over the scalp). This is trivially expected
for gaze position due to saccade-evoked potentials (37), but this
has not been previously reported for pupil or HR. Importantly,
we found no correlation between brain potentials and respiration.
We found only minor differences between the attend and distract
conditions in these coherence spectra (for respiration we only
have data on the attentive condition). The picture that emerges,
therefore, is that the brain correlates with other subjects when it
engages with the stimulus, and that this carries over to physio-
logical signals as a result of an endogenous brain–body coupling,
which is relatively stable with regards to attentional state during
passive video watching.

Brain–body connection predicts ISC for novel
signals
Our theory, therefore, is that signals correlate between subjects,
but only if there is a robust coupling between brain signals and
the physiological or behavioral signal in question (Fig. 7A). We
tested this on 2 additional signal modalities that have indepen-
dently been proposed as markers of arousal. One is head veloc-
ity (38), following the basic notion of arousal as movement of the
body. The other is saccade rate, which has been recently linked
to effort and task engagement (39). First, we measured whether
either are coupled to the EEG (on data from Experiment 2), and
found this to be the case for saccade rate but not head velocity.
We, therefore, predicted that saccade rate and not head velocity
will be correlated across subjects and this correlation will be mod-
ulated by attention and predict memory. These predictions were
all confirmed by subsequent analysis (Fig. 7B and 7C), and indeed,
consistent with this theory, we found a co-modulation of ISC be-
tween all modalities across subjects (Figure S1, Supplementary
Material) and across time (Figure S2, Supplementary Material).
Note that correlated gaze position does not necessarily imply cor-
related saccade rate, as it only captures the number of saccade
per unit time. On the other hand, head velocity could have been
expected to correlate as large saccades tend to be accompanied by
corresponding reorienting of the head (40). Therefore, these posi-
tive and negative examples were not trivially anticipated without
the proposed theory.

Discussion
To summarize, during viewing of informative videos we found sig-
nificant ISC in all physiological signals that exhibited robust cou-
pling with the EEG. This was the case for HR, pupil size, gaze po-
sition, and saccade rate, but not respiration or head velocity. This
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least square fit of scalp electrode potentials with the respective signal modality (computed separately for each frequency band; see supplement for
variation across bands). (A) WSC computed by combining the 3 stimuli used in Experiment 1. Blue-shaded area indicates SEM over subjects.
Gray-shaded frequency-band indicates significant difference from 0 (P < 0.01, N = 92 subjects, and cluster corrected t test on test data). (B) WSC values
are computed separately for the attentive and distracted viewing conditions. WSC values are the average across the 5 stimuli used in Experiment 2
with N = 29 subjects, and the shaded area around the average WSC values is the SEM over subjects. Gray-shaded frequency range indicates a
significant difference between attending and distracted conditions (P < 0.01, paired t test N = 29, and cluster corrected).
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Fig. 7. Predictions and test for saccade rate and head velocity. Here, using data from Experiment 2 from 29 subjects we test predictions on saccade rate
and head velocity. (A) EEG has significant WSC with saccade rate but not head velocity, and neither difference with attentional state (attend: blue,
distract: purple). (B) Significant ISC is observed for all subjects for saccade rate (29/29) but only a subset of subjects for head velocity (8/29). (C) Saccade
rate, but not head velocity are predictive of memory performance across subjects. (D) Attention modulates ISC of saccade rate but not head velocity.
Saccade rate is computed similarly to HR. Head velocity is calculated as the magnitude of the Hilbert transform of head position, combining
horizontal, vertical, and depth directions with Euclidean norm. Significance established using the same methods as above.

is consistent with the theory that correlation between individuals
is the result of cognitive processing of a shared stimulus, but will
only be observed for those physiological or behavioral signals that
exhibit robust coupling with brain activity (Fig. 8). Importantly, the
strength of ISC was co-modulated across signals, was predictive of
an individual’s memory performance and was attenuated when
subjects were distracted from the stimulus.

The strength of ISC observed here as well as the modulation
with attention and correlation with memory performances are in
line with previous reports for HR (11), gaze position, pupil size (3),
and EEG (17, 20, 35). The novel finding is that ISC is co-modulated

in these signals across subjects and across time. We provide a
novel theory as to which signals do or do not correlate and confirm
this with saccade rate and head velocity as positive and negative
examples.

The co-modulation observed here is surprising given the di-
versity of factors that have been previously proposed to underlie
interpersonal physiological synchrony. Leaving out brain signals,
this includes emotions (HR (5–7, 10)), arousal (HR (4, 25) and head
velocity (38)), empathy (HR (6, 8, 24), skin conductance (23)), at-
tention (eye movement (3) and HR (25, 26)), auditory features (HR
and respiration (41, 42)), visual features (gaze position (43, 44)),
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Other?

Brain-body coupling

Cognitive processing

Inter-subject correlation

Co-modulationOther?

Subject 1 Subject 2

Fig. 8. Schematic summary of results and proposed common mechanism. A video stimulus is processed cognitively by the brain, similarly in different
subjects (dashed arrows—indicate cognitive processing encompassing perception and cognition; obviously signals enter the brain through eyes and
ears). This cognitive processing causes similar fluctuations in signals of the body that exhibit robust brain–body coupling (solid arrows). Therefore,
brain, physiological, and behavioral signals correlate between subjects (bold arrows). Subjects’ attention variably engages with the stimulus, such that
cognitive processing as a mediator of common fluctuations varies, across subjects and time. This variation results in a co-modulation of ISC in
different signals. Links indicated in blue have been measured in this study as correlation. Narrow arrows are hypothesized causal effects (note that
brain–body links may be bidirectional, which is obvious for the eyes and is discussed below for the heart as well).

physical movement (respiration (45, 46) and HR (22)), social inter-
action (HR (47)), and more. We argue more generally, that cognitive
processing of the stimulus is a minimum requirement to evoke
any of these constructs in a viewer’s mind, and indeed, it suffices
to explain the attention and memory effect we observed, namely,
without processing the information imparted in the stimulus it is
not possible to recall this information, and distracting the viewer
will disrupt processing and thus reduce ISC. If interpersonal syn-
chronization was really the result of the various factors as postu-
lated in prior literature, it is not clear how this diversity of factors
could have affected different modalities similarly, and even less
that they should have modulated ISC in unison across time and
across subjects. That said, the weak co-variation observed across
time suggests that a diversity of factors may drive signal fluctu-
ations differentially in each modality. Note that studies on inter-
personal synchrony are often conducted with subject interacting,
or at least co-present in the same space. These factors may have
additional synchronizing effects (5, 7). What we showed here is
that this is not a prerequisite for physiological synchrony.

An alternative interpretation of the present results is that low-
level stimulus features are the source of co-variation in ISC. For
example, visual dynamics may attract similar eye movement and
this affects ISC of brain signals. With the strength of visual dy-
namics itself varying over time this could cause a co-modulation
of ISC of the eyes and brain. There may be any number of stim-
ulus features that guide visual exploration and could cause such
co-variation in a bottom-up manner. However, this alternative in-
terpretation does not explain the co-modulation of ISC observed
across subjects. It also does not readily explain the co-modulation
in heart and eyes, nor the observation that ISC of the heart is pre-
dictive of memory, a phenomenon that persists for audio-only nar-
ratives (11). In contrast, the effects of attention and on memory
observed here are straightforward consequences of the cognitive
processing hypothesis, which in our definition includes perceptual
processing of the stimulus.

So, what might be the common factor that affects cognitive pro-
cessing of the stimulus, and co-modulates the strength of ISC? We
speculate that it is related to engagement with the stimulus. In
previous work, with EEG during passive exposure to narrative au-
dio and video we introduced the concept of “attentional engage-
ment” with the stimulus (13, 17, 35, 48). We demonstrated that
an objective behavioral measure of stimulus engagement corre-
lates with ISC of the EEG measured on time scales of 10 seconds
(49), presumably reflecting fluctuations of attention (20). In the
vision literature, “attentional engagement” implies not only at-
tracting attention (gaze) but also processing features of the tar-
get of attention (50–53). The notion that the ISC of EEG reflects
a level of engagement with the stimulus has been adopted by a
number of groups (21, 54, 55). The new finding here is that this
engagement may be a common factor that also modulates the
strength of fluctuations in HR, pupil size, saccade rate, and gaze
position.

Regardless of the interpretation, this co-modulation of physio-
logical responses is surprising for another reason—the dynamics
of each of these signal fluctuations and their underlying neural
control are quite diverse. For instance, neural control of HR and
pupil size are ascribed to different brain structures. While pupil
dilation has been most closely linked to activity in superior col-
liculus (SC) and locus coeruleus (LC) (29), HR is controlled by mid-
brain structures that are modulated by input from the amygdala,
cingulate, and insula (27), although the LC also projects to nuclei
involved in cardiac regulation (56). Additionally, the dynamics of
these signals, as we have seen in their power spectra, differ consid-
erably between modalities and the attentional effect on ISC man-
ifests in different frequency bands for each. We note that the cou-
pling between EEG and each of the signal modalities did not differ
significantly with attentional state. Note also that the effects of
attention on the power spectrum were generally small. Therefore,
cognitive processing does most likely not substantially change
the ongoing endogenous physiological dynamic within subjects.
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Instead, it appears to only time-align the existing dynamic to the
external stimulus.

Our theory led us to prospectively analyse the correlation be-
tween EEG and various physiological signals. While a correlation
of EEG with gaze position is well-established (in fact, it is consid-
ered a nuisance artefact (57)), to our knowledge this is the first
study to report a correlation of EEG with HR, pupil size, and sac-
cade rate. The theory also correctly predicted that saccade rate
would correlate across subjects, something that has not been re-
ported previously in the literature. Even less obvious was that this
correlation of saccade rate would be modulated by attention and
predict subsequent memory performance.

Here, we have focused on first-order correlation as we had no
specific hypotheses related to nonlinear interactions. Such inter-
actions can give rise to cross-frequency coupling in phase or am-
plitude and may warrant more complex analyses (58, 59).

We did not find ISC in breathing, which one might have ex-
pected. HR naturally increases when we inhale and decreases
with exhale. This is known as respiratory sinus arrhythmia (60).
Since HR synchronizes, we might have expected that breathing
also does. Alternatively, in moments of suspense, viewers might
be “holding their breath” in unison, which might have resulted
in synchronized breathing. Breathing seems to align to the tim-
ing of a behavioral task (61), but here participants were not asked
to do anything physical during viewing. Generally, studies that
show correlated breathing involve some concurrent physical ac-
tivity such as singing (46), speaking (62), or dancing (45) and cor-
relation is not observed during passive listening to speech (63),
though some effects have been found when listening to music
(41). We do not report results on breathing rate, as it was not ex-
pected to fluctuate much during rest and would have required
longer recordings. But we do not rule out that breathing rate may
synchronize.

The fact that gaze positions are robustly correlated between
subjects might not come as a surprise since eye movements are
heavily driven by the dynamic of visual stimuli (64). We delib-
erately chose stimuli with compelling visual dynamics, such as
animated graphics. A caveat of our analysis is that eye move-
ments contaminate EEG signals, and thus ISC of eye movements
could trivially result in ISC of EEG. However, we have previously
shown that this confound can be largely ruled out when remov-
ing the EOG artefacts as we have done here (20). Furthermore, the
co-modulation of ISCEEG with other modalities is present even
during audio-only narratives and in the absence of eye move-
ments (in preparation). Another well-known artefact in the EEG
is due to the heart beat itself. However, note that heart beat
does not actually synchronize between subjects and so this arte-
fact is not likely to contribute to the ISC of the EEG. Instead,
the synchrony we detected between subjects is in the fluctu-
ations of their HR. To our knowledge, the link we report here
between EEG and HR has not been reported previously in the
literature. One additional caveat is that at low frequencies (below
0.1Hz) the EEG may also include galvanic skin response from the
scalp, however we still find ISC of EEG and WSC for signals above
this frequency.

The pupil size is known to be affected by luminance, but also
higher level factors such as problem solving and cognitive effort
(31, 65), affective processing (33, 66), and attention (67). So, to
see the pupil size correlated across subjects might be expected.
That this pupil correlation should be modulated by attentional
engagement is consistent with the argument that task engage-
ment is reflected in pupil dynamics on similarly short time scales
(39). Our most recent work suggests that this phenomenon is not

contingent on luminance fluctuations as it appears also dur-
ing audio-only narratives (in preparation). That the ISC of pupil
should be co-modulated with ISC of HR was not expected from
the literature. We have not analyzed eye blinks, however, given re-
ports of a correlation of blinking across subjects during movies
(68), we expect that this will behave similarly to the other mea-
sures we have taken from the eyes. Given the coupling that has
been observed between EEG and gastric rhythms (69) we also pre-
dict that these will show significant ISC.

Pupil and HR have often been linked to arousal (see below), al-
though the term “arousal” has quite diverging definitions in the
literature. We expected that head velocity could serve as a marker
of physical arousal (38), and thus may also correlate. Correlation
may also be expected given the ISC of gaze position and the fact
that large eye movements tend to be accompanied by correspond-
ing head movements (40). We did not find significant ISC in head
velocity in our smaller datasets. Consistent with that, ISC of head
velocity did not significantly correlate with memory or attention,
nor did head velocity significantly correlate with brain potentials.
We did, however, find a weak ISC in the larger dataset of 92 sub-
jects (see Supplement), and therefore, one might be able to resolve
these effects on larger datasets. Indeed, our theory does not stip-
ulate an all-or-nothing effect. A weak brain–body link may lead to
similarly weak physiological ISC and related effects.

Correlation of HR between subjects has previously been linked
to emotional processing of video stimuli (8, 9), which may not have
been a main driving factor in our mostly informative videos. In so-
cial contexts, HR synchronization has also been linked to empathy
(70) and social bond (71). We propose that cognitive processing of
the natural stimulus is a requirement to infer the emotional va-
lence of the film (9), for an audience to bond with a performer
(4) or mother and child to interpret social cues (47). Thus, cogni-
tive processing of the external natural stimulus is the common
denominator, even for interpersonal HR synchrony. A caveat to
this conclusion is that we did not look for other factors that could
have driven the different modalities differently. All videos were
designed to communicate factual information related to science
and technology, and not, for instance, evoke suspense or strong
emotions (5, 6, 10, 72). So it is possible that we did not find other
factors simply because we did not manipulate other factors with
our experimental paradigm. Future work should consider varying
stimulus properties along different dimensions.

The cognitive control of HR is a crucial prerequisite for the
co-modulation observed here. Indeed, central control is well-
established and explains the effects of cognition on HR and HR
variability (27, 28). For instance, HRV correlates with neural activ-
ity measured with fMRI (73). There is also evidence for the op-
posite causal direction, whereby volitional control of breathing
affects HR and in turn neural activity (74). The heart beat itself
seems to affect saccade timing (75), evoke EEG (76), as well as
visual detection performance (77). Also, strong stressors can in-
crease HR and at the same time enhance the magnitude of evoked
responses in EEG (78). But none of these studies report a link be-
tween EEG and HR as we have found here, nor do they anticipate
that ISC is co-modulated in these modalities

A recent theory proposes a common drive to pupils and sac-
cades (39). The theory posits that this common drive is affected by
a variety of cognitive processes, in particular “task engagement“,
but authors distinguish this from ”arousal". This common drive
is postulated to be the activity in SC. Indeed, the SC along with
the LC are midbrain nuclei that mediate cognitive effects on the
pupil (29, 79). A common drive of pupil and saccades reconciles
the dependence of pupil dilations on arousal and effort as well
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as its fluctuations during a task. Consistent with this we find that
pupil size and saccade rate both behave similarly with attention
and memory and importantly the ISC in these 2 modalities are
co-modulated. Note that the LC also connects to midbrain struc-
tures that control cardiac function (80) and may mediate cognitive
effects on HR (56). Therefore, the LC is well-situated to mediate
cognitive effects on pupil size, saccades rate, and HR.

In conclusion, this work brings together 2 separate research
fields which have demonstrated correlation between subjects in
ecologically valid scenarios, namely, interpersonal physiological
synchrony (1) and ISC of neural activity (12). We postulate that
cognitive processing of a natural dynamic stimulus is required to
drive and coordinate behavioral responses of the body. Our ratio-
nale is that humans have evolved to quickly respond to the natu-
ral stimuli in their environment, and to do so, the brain processes
information and prepares the body to react. This leads to rapid,
but reliable fluctuations of HR, pupil size, gaze position, and oth-
ers on the scale of seconds. If the brain is not processing the stim-
ulus effectively, i.e. similarly across subjects, then the body will
not respond appropriately and these fluctuations will no longer be
guided by the stimulus. As the brain changes in attentional state
on time scales of 10 seconds or longer the correlation induced
across subjects is modulated for different modalities in unison.
Although our study here is only correlational, we do postulate a
causal effect of cognitive processing on physiological and behav-
ioral responses that is similar across subjects and modalities. Evi-
dently, there could be a bidirectional interaction. This is most obvi-
ous for eye movements, as our view can affect our cognitive state.
A bottom-up effect has also been hypothesized for heart signals
(74) and is the basis for some meditation practices that focus on
breathing (81). Establishing a causal direction of these effects will
be difficult but is a worthwhile topic for future research.

Materials and methods
Participants
A total of 158 subjects participated in 1 of 3 experiments, where
they watched informative videos. In Experiment 1, N = 96 partic-
ipated (51 Female, age 18–49, M = 25.33, and SD = 7.29; 4 sub-
jects were removed due to bad timing or bad signal quality). In
Experiment 2, N = 32 subjects participated (21 females, age 18–57,
M = 25.93, and SD 8.94 years; 3 subjects were removed due to bad
signal quality). Lastly in Experiment 3, N = 31 participated (19 fe-
males, age 18–50, M = 25.79, and SD = 8.13 years; 2 subjects were
removed due to bad signal quality).

Stimuli
A complete list of the video stimuli is provided in Table S1 (Supple-
mentary Material). These stimuli have been used in previous stud-
ies (3, 11, 35). For Experiment 1, we selected 3 videos from YouTube
channels that post short informal instructional videos, namely
“Kurzgesagt—In a Nutshell” and “Minute Physics.” The videos cov-
ered topics related to physics and biology with a short duration
(Range: 3–6.5 minutes and total duration 15.5 minutes). In Experi-
ment 2, we selected 6 videos from “Khan Academy,” “eHow,” “Its ok
to be smart,” and “SciShow,” which are popular online educational
channels on YouTube. The videos covered topics related to biology
and physics, with a short duration (Range: 4.5–6.5 minutes and to-
tal duration 31 minutes). In Experiment 3, we selected 5 informal
instructional videos again from YouTube, covering topics related
to physics, biology, and computer science with a short duration
(Range: 2.4–6.5 minutes and Average: 4.1 +/− 2.0 minutes). Data

on gaze position and pupil size for Experiment 2 have been previ-
ously analyzed (3), as well as data on HR from Experiment 3 (11).
All other data and analyses are new to this study, i.e. all of the data
from Experiment 1, EEG, HR, saccade rate, and head velocity from
Experiment 2, and EEG, pupil size, gaze position, saccade rate, and
head velocity from Experiment 3.

Procedure
All experiments were carried out at the City College of New York
with approval from the Institutional Review Boards of the City
University of New York. Documented informed consent was ob-
tained from all subjects at the start of the experiment. Subject
watched the videos on a 19” monitor while seated comfortably in a
sound-attenuated booth with white fabric walls and normal am-
bient LED lighting placed around the subject. Sound was played
through stereo speakers placed at 60◦ angles from the subject next
to the monitor, both at a distance of approximately 60 cm from the
subject.

In Experiment 1, subjects watched 3 instructional videos while
their EEG, electro-oculogram (EOG), electro-cardiogram (ECG),
respiration, pupillary responses, gaze, and head position were
recorded. In the second experiment, subjects watched 6 instruc-
tional videos while their EEG, ECG, pupillary responses, gaze, and
head position were recorded.

In all the experiments, subjects were instructed to watch
the videos normally as they would at home, while being re-
laxed and sitting still. We refer to this as the attentive condi-
tions (A). After they had watched the videos, subjects were given
a 4-alternative forced-choice questionnaire covering factual infor-
mation imparted during the video (11–12 recognition questions
per video; see Table S1, Supplementary Material). The videos and
question pairs were presented in random order. In Experiment 1,
subjects were not aware that they would be tested on the ma-
terial, whereas in Experiments 2 and 3 the test was anticipated.
After answering questions, in Experiments 2 and 3 subjects were
asked to watch the videos again, but this time to silently count
in their mind backwards in steps of 7 (starting from a prime
number picked at random between 800 and 1,000). The second
viewing with concurrent counting is referred to as the distracted
condition (D).

For segmentation of the physiological signals we used common
onset and offset triggers, in addition, a flash and beep sound was
embedded right before and after each video, which were recorded
using a StimTracker (Cedrus) to ensure precise alignment across
all subjects. To enable all modalities to be on the same time scale,
we used the lab streaming layer (LSL) protocol. In addition, triggers
were sent to both the eye tracking and EXG recording systems,
timestamps from each system were used in a linear regression
model to convert timestamp between each modality estimated
using the common triggers.

Recording and preprocessing of EEG
The EEG was recorded at a sampling frequency of 2,048 Hz us-
ing a BioSemi Active Two system. Participants were fitted with a
standard, 64-electrode cap following the international 10/10 sys-
tem with the ground electrode located next to POz. In addition,
the EOG was recorded with 6 auxiliary electrodes (1 located dor-
sally, ventrally, and laterally to each eye). The EEG and EOG data
is band-pass filtered between 0.016 and 250 Hz by the Active two
system prior to sampling. The signal was then digitally high-pass
filtered (0.05Hz cut-off) and notch filtered at 60 Hz to remove
line noise. To remove artefacts and outliers Robust PCA was used
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(82), and subsequently the signal was low-pass filtered (64 Hz
cut-off) and down-sampled to 128 Hz. Bad electrode channels
were identified manually and replaced with interpolated chan-
nels. The interpolation was performed using the 3D Cartesian co-
ordinates from the electrode cap projected onto a plane using
all surrounding “good” electrodes. The EOG channels were used
to remove eye-movement artefacts by linearly regressing them
from the EEG channels, i.e. least-squares noise cancellation (code
for robust PCA and EOG noise cancelling in EEG can be found in
https://www.parralab.org/isc/). In each EEG channel, additional
outlier samples were identified as values exceeding 4 times the
distance between the 25th and the 75th quartile of the median-
centred signal, and samples 40 ms before and after such outliers
were replaced with interpolated samples using neighboring elec-
trodes.

Recording and preprocessing of ECG
The ECG signal was recorded using 2 ECG electrodes placed below
the left collar bone and 1 on the left lumbar region with a BioSemi
Active Two system at a sampling frequency of 2,048 Hz. The ECG
signal was detrended using a high-pass filter (0.5 Hz cut-off) and
subsequently notch filtered at 60 Hz to remove line noise. Peaks in
the ECG corresponding to the R-waves were found using findpeaks
(built-in Matlab function). The instantaneous HR is computed for
each beat as the inverse of time intervals between subsequent R-
wave peaks as in (11). To ensure the same sampling frequency for
all subjects this instantaneous HR signal is resampled at a regular
sampling rate of 128 Hz.

Recording and preprocessing of gaze position,
head velocity, and pupil size
Gaze position, head movements and pupil size were recorded us-
ing the Eyelink 1000 eye tracker (SR Research Ltd. Ottawa, Canada)
with a 35 mm lens at a sampling frequency of 500 Hz. Subjects
were instructed to sit still while the experiment was carried out,
but were free to move their heads, to ensure comfort (no chin rest).
A standard 9-point calibration scheme was used utilizing manual
verification. Stable pupillary responses were ensured by adjusting
the background color of the calibration screen and all instructions
presented to the subjects to be the average luminance of all the
videos presented during the experiment. After each stimulus pre-
sentation, a drift-check was performed and the eye tracker was
recalibrated if the visual angular error was greater than 2◦. Blinks
were detected using the algorithm of the eye tracker. These arte-
facts, blinks and 100 ms before and after were filled with linearly
interpolated values. Head velocity is computed as the absolute
value of the analytic signal of the Hilbert transform (root mean
square summed over the 3 directions). Saccades were detected by
the algorithm of the eye tracker. Instantaneous saccade rate was
calculated as the inverse time interval between saccades and up-
sampled to a constant sampling rate of 2,000 Hz to match the
other eye tracking signals.

Recording and preprocessing of respiration
The respiration signal was recorded at a sampling frequency of
2,048 Hz on the BioSemi Active Two system using a SleepSense
1387 Respiratory Effort Sensors, which captures the tension on a
belt worn around the chest of the subject. The polarity of the sig-
nal was detected using peaks in the respiration signal and inverted
to ensure the correct phase of the signal.

ISC analysis of gaze position, pupil size,
respiration, HR, saccade rate, and head velocity
For each of the gaze position, pupil size, respiration, HR, saccade
rate and head velocity signals, the ISC was computed in the fol-
lowing 3 steps: (1) computing the Pearson’s correlation coefficient
between a single subject’s signal (each of the 6 modalities inde-
pendently) and that of all other subjects while they watched a
video. Correlation is computed by summing over all time points
of the video (with durations specified in Table S1, Supplemen-
tary Material) and then averages over all videos. (2) A single ISC
value for a subject was obtained by averaging the correlation
values between that subject and all other subjects. (3) The 2
first steps are then repeated for all subjects, resulting in a sin-
gle ISC value for each subject. For ISC of gaze position, we com-
pute the ISC in the horizontal and vertical gaze direction using
the procedure as described above separately. To obtain 1 single
ISCgaze value, we average the ISC for the horizontal and vertical
directions.

ISC of EEG
For the EEG signals ISC was computed using correlated compo-
nent analysis (36), with code available at http://parralab.org/cor
rca/. This method finds linear components of the EEG that are
most correlated between subjects. The components consist of sev-
eral projection vectors that linearly combine electrodes, on which
the data is projected. The ISC of each component is obtained by
computing the correlation coefficients of the projected EEG be-
tween each participant and all other participants. We only use
components that are significantly correlated above chance (cir-
cular shuffle on test set data, see below). This yielded 3–9 com-
ponents depending which of the 3 Experiments was analyzed. ISC
values are then summed over all significant components.

Statistical significance of ISC values per subject
To determine whether ISC values are significantly larger than 0
(Figs 1C and 7D), we determine the null distribution of ISC val-
ues on surrogate data obtained with circular shuffle statistics
(83). P-value (type I error rate) is then the fraction of shuffles
with ISC values larger than in the original unshuffled data. We
performed 10,000 circular shuffles estimating P-values down to
0.0001. For EEG, the ISC values are measured on components that
have been optimized to provide high ISC values. To avoid an up-
wards bias in ISC during statistical testing, components are opti-
mized on training data and significance is established for separate
test data (2 video clips are used for training and 1 for testing). Note
that all statistical comparisons of correlation values, here and
in the remainder, are performed by computing correlation val-
ues with the identical number of samples for the conditions to be
compared.

Frequency analysis of ISC (coherence spectrum)
We performed a frequency analysis to investigate at which time
scale the recorded signals correlated between subjects. Each sig-
nal from each subject was band-pass filtered using 5th order But-
terworth filters with logarithmic spaced center frequencies with a
bandwidth of 0.2 of the center frequency. The ISC was computed
for each subject in each frequency band for all videos. To obtain a
single ISC value per frequency band we average ISC values for all
videos and subjects.

https://www.parralab.org/isc/
http://parralab.org/corrca/
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Computation of d-prime (d’) effect of attention on
coherence and power spectrum
To determine the effect size of the attentional modulation for both
the frequency-resolved ISC and Power spectrum we compute the
d-prime statistics. For each frequency band (see section above) we
compute the ISC and power for each subject in the attending and
distracted conditions. We quantify the effect size between the 2
conditions as the difference of the means divided by the standard
deviation across subjects of the differences (paired Cohen’s d).

Cluster statistics for difference between attentive
and distracted conditions
To determine significant difference in spectra between attend-
ing and distracted conditions (for Figs 5A, 5B, 6B, 7A, and 7B), we
use cluster shuffle statistics as follows. Since different frequency
bands in the frequency-resolved ISC (and WSC) are not indepen-
dent, we use 1D cluster statistics including random shuffles to
correct for multiple comparisons following an established proce-
dure (84, 85). Briefly, this procedure involves 4 steps: (1) take the
difference between the spectrum in the attending and the dis-
tracted condition for each subject. (2) compute a one-sample t test
on this difference for each frequency band. (3) clusters are identi-
fied as consecutive frequency bands with P-values below 0.01. The
t-values within each cluster are then summed. (4) Run 10,000 per-
mutations in which we randomly change on half of the subject’s
the sign of difference between the spectra computed in step 1.
Steps 2 and 3 are then repeated while keeping the sum of t-values
of the largest cluster. Finally, we compare the clusters’ t-values ob-
tained in step 3 with the distribution of permuted cluster t-values
obtained in step 4. Clusters with larger than 99% (corresponding to
P-value < 0.01) of the permuted distribution were considered sig-
nificant after multiple comparison cluster correction. Note that
for the contrast in attention all data was used for optimization (of
components of the EEG) including attentive and distracted con-
ditions, so that any difference cannot be due to the optimization
procedure.

Cluster statistics for significant of intersubject
coherence spectra
To determine if frequency-resolved ISC (and WSC) values are sig-
nificantly different from 0 (Figs 3A, 3B, and 6A), we use a simi-
lar cluster statistic as above. For cases involving EEG (correlated
component analysis and regression), we use test data to avoid up-
wards bias due to optimization, which is performed on separate
training data. The shuffling and cluster correction procedure con-
sists of the same 4 steps as above, except that we divide subjects
in 2 equal size groups at random. The premise of this is that val-
ues around 0 will not differ significantly if placed at random in
2 different groups (84).

WSC analysis (brain–body coupling)
To determine the coupling between the brain and different sig-
nal modalities we compute WSC using ordinary least squares re-
gression, i.e. we measure how well each signal modality can be
predicted linearly from the multidimensional EEG signal. Specif-
ically, denote with xi(t) the EEG signal at time t for in channel i,
and with y(t) the signal of the modality of interest. The linear
prediction is then ŷ(t) = ∑

iwixi(t) and we find weights wi such
that

∑
t (y(t) − ŷ(t))2 is minimized. Linear projections of this sort

are conventionally referred to as components of the EEG (as in
principal component analysis, or correlated component analysis
used for the ISC). WSC is then the Pearson’s correlation of y(t) and

ŷ(t) extending over all stimuli. In the case where we differentiate
between the attend and distract conditions, we compute compo-
nent weights wi and WSC in each condition separately. For the
frequency-resolved WSC, we band-pass filter the signal modal-
ity and EEG in the same fashion as the time-resolved ISC, namely
using 5th order Butterworth filters with logarithmic spaced cen-
ter frequencies with a bandwidth of 0.2 of the center frequency.
To compute the WSC in the frequency resolved condition, we
find components for each band separately. WSC in all instances
was computed on test data using leave-one-subject out cross-
validation (i.e. regression parameters are estimated including all
subjects except for the test subject; WSC is then computed on
that test subject; this train-test process is then repeated for all
subjects.) Statistical significance is established in the same way
as for ISC as described in the 2 previous sections.

Common factor analysis of ISC
To find the common factor of ISC between signal modalities, we
first remove outliers of the ISC data that are larger or smaller than
4 times the interquartile difference of the data. This was done
since the standardization of the data is sensitive to outliers. We
then standardize the ISC (0 mean and unit variance) and compute
the principal components.
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