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Abstract
Accumulating evidence underscores the large role played by the environment in the health of communities and
individuals. We review the currently known contribution of environmental exposures and pollutants on kidney
disease and its associated morbidity. We review air pollutants, such as particulate matter; water pollutants, such
as trace elements, per- and polyfluoroalkyl substances, and pesticides; and extreme weather events and natural
disasters. We also discuss gaps in the evidence that presently relies heavily on observational studies and animal
models, and propose using recently developed analytic methods to help bridge the gaps. With the expected
increase in the intensity and frequency of many environmental exposures in the decades to come, an improved
understanding of their potential effect on kidney disease is crucial to mitigate potential morbidity and
mortality.
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Introduction
There is growing understanding of how the environ-
ment affects the health of individuals and communities.
Exposure to human-made and naturally occurring tox-
ins in the air, water, and soil can lead to accumulation
in organs, and contribute to morbidity and mortality.
Even transient events, such as extreme heat and natural
disasters, may contribute to adverse health outcomes.

Patients with kidney disease may be especially sus-
ceptible to the effects of environmental exposures, given
their innate frailty and high comorbidity burden. In this
review, we discuss the potential contribution of envi-
ronmental exposures to kidney disease and associated
morbidity (Figure 1). We also discuss the current limita-
tions in understanding and propose the use of recently
developed analytic methods that may help to bridge
some of these gaps. The intensity and frequency of
many environmental exposures are expected to increase
due to climate change while, at the same time, the global
burden of chronic kidney disease (CKD) is rising for all
countries, including those with limited resources (1).

Air
Particulate matter, an air pollutant that is a complex

mixture of small particles and liquid droplets arising
from the combustion of fossil fuels and biomass, has
come into focus for its adverse effects (2,3). Particulate
matter with an aero-diameter ,2.5 mm (PM2.5) can
travel through the respiratory tract and enter the
bloodstream after inhalation; its components include
sulfates, nitrates, ammonium, hydrogen ions, carbon,
volatile organic compounds, and trace metals. PM2.5 is
one of the six criteria pollutants regulated by the US
Environmental Protection Agency (4).

Cell culture and animal studies demonstrated that
both short-term (days) and long-term (months to years)
exposure to PM2.5 induces oxidative stress, inflamma-
tion, cell autophagy, and cell apoptosis (5–10), whereas
studies in humans demonstrated acute thrombus for-
mation and vascular dysfunction (11,12), which is pos-
tulated to eventually lead to clinical cardiovascular
events and mortality. Mechanisms of injury specific to
kidney disease are less clear. A recent study (13) of
healthy volunteers demonstrated that inhaled inert
gold nanoparticles, a model for PM2.5, entering the
bloodstream, are detected in the urine within minutes
after exposure. The nanoparticle model suggests PM2.5

can be filtered by the glomerulus and may thus lead to
indirect and direct kidney tissue injury.
Epidemiologic data about PM2.5 and kidney disease

can be divided into two categories: (1) PM2.5 as a risk
factor for kidney disease and progression of CKD to
end stage kidney disease (ESKD), and (2) PM2.5 con-
tributing to the morbidity and mortality of individuals
with CKD, including ESKD.
A recent systematic review (14) identified 40 epide-

miologic studies examining the association of PM2.5 and
adverse kidney function. Most of the studies (36 of 40)
observed that PM2.5 exposure was associated with
adverse kidney function. The assessment of kidney
function was clinically diverse, and included outcomes
such as glomerular filtration rate (GFR), albuminuria,
and glomerulonephritis. We point out some of the
included studies to highlight the heterogeneity: (1)
long-term PM2.5 exposure was associated with the rise
of a specific type of glomerular disease, membranous
nephropathy, in an 11-year series of.71,000 native kid-
ney biopsy specimens across China (15); (2) among
nearly 1 million US veterans, PM2.5 was associated with
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incident CKD and the progression of CKD to ESKD (16); (3)
among a community-dwelling cohort of middle-aged indi-
viduals, PM2.5 was associated with both increased urine
albumin and a decline in GFR (17); (4) modeling estimated 7
million incident cases of CKD annually are attributable to
PM2.5 worldwide (18); and (5) among a US national cohort of
kidney transplant recipients, PM2.5 was associated with
increased risk of 1-year kidney rejection post-transplant, graft
failure, and all-cause death (19).
Short-term PM2.5 exposure during wildfires (20), and

short- and long-term ambient PM2.5, is associated with a 5%

increased risk of all-cause and cardiovascular mortality
among patients receiving maintenance hemodialysis (21–23).
Short-term PM2.5 exposure is also associated with an in-
creased risk of hospital admissions and 30-day readmissions
among these patients (24).
In addition, limited evidence suggests an association

between tropospheric or ground-level ozone, which is formed
by photochemical reactions between volatile organic com-
pounds and nitrogen oxides in the atmosphere, and kidney
disease (25,26).

Water
A range of heavy metals, perfluorinated compounds,

pesticides, industrial hydrocarbons, and pathogens are
common water contaminants. Human exposure to these
agents occurs through drinking the water, consumption of
animals (especially fish and mollusks) living in the water,
or dermal/mucosal contact with the water.
Metals, including arsenic, cadmium, lead, mercury, and ura-

nium, are among the most extensively studied waterborne
nephrotoxins. Arsenic is a naturally occurring metalloid found
inmany parts of the world, especially in groundwater. Arsenic
can also be introduced into water via mining and metal smelt-
ing (27). Worldwide, .200 million people are estimated to be
chronically exposed to arsenic in drinking water at concentra-
tions above the World Health Organization provisional guide-
line value of 10 mg/L (27,28). Epidemiologic studies linked
high drinking water arsenic levels to increased CKD/ESKD
incidence (29,30), progression (31), andmortality (32).
Cadmium is released into water, soil, and air via (1) mining

and metal refining; (2) production and application of phos-
phate fertilizers; (3) burning of fossil fuels; and (4) waste
incineration, disposal, and recycling (33). Although drinking
water contributes only a small proportion of total cadmium
exposure in the general population, it can be an important
source of exposure for water in the vicinity of cadmium-
emitting industries (33,34). Historically, a major outbreak of
cadmium toxicity occurred in the Toyama Prefecture (Japan)
after contamination of the Jinzu River basin from a zinc mine
in 1912. Local inhabitants termed the resulting disease
“itai-itai” or “ouch-ouch” disease because of severe, diffuse
bone pain from vitamin D–resistant rickets with osteomala-
cia; other manifestations included proximal tubular dysfunc-
tion and hyperphosphaturia (35). Most studies of renal
toxicity associated with cadmium have measured exposure
via blood or urine levels and have linked exposure with sev-
eral molecular markers of kidney injury and CKD (33,36,37).
The most common source of lead in drinking water is

from leaching of plumbing materials, including lead service
lines and residential pipes, lead solder, and certain fixtures
(38). However, it can also result from runoff or dumping
from lead smelters, lead battery production or recycling
operations, and mining (38,39). In most countries, blood
lead levels are decreasing, but continue to be of concern
(40). Most studies investigating kidney effects related to
lead exposure assessed exposure via blood lead levels;
they identified associations with CKD incidence (41) and
prevalence (42,43), and increased serum creatinine (44) or
decreased eGFR (45,46). A recent study demonstrated that
high lead levels were associated with a higher prevalence
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Figure 1. | Multiple routes of environmental exposures and their
potential end-organ effects. Environmental exposures occur through a
variety of routes that can directly and indirectly influence kidney health.
Pollutants in the air, water, and soil may be ingested, inhaled, or
absorbed through the skin. To varying degrees, these pollutants cross
into the bloodstream, where they may travel to, and directly injure, the
kidneys. Some compounds will first be absorbed via the gastrointestinal
tract, undergoing first-pass metabolism in the liver before returning to
the bloodstream. Some exposures may also indirectly contribute to kid-
ney disease by causing conditions such as diabetes and hypertension—
well-established risk factors for incident or progressive CKD. DM, diabe-
tes mellitus.
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of anemia among patients with ESKD (47). Overall, lead-
induced kidney disease may be underdiagnosed or mis-
diagnosed as hypertensive kidney disease without accurate
assessment of lead exposure from patient histories.
Globally, artisanal and small-scale gold mining and coal

combustion are the primary sources of anthropogenic mer-
cury emissions (48). General population exposure to mer-
cury, primarily in the form of methylmercury, occurs
mostly through consumption of fish, shellfish, and marine
mammals from contaminated fresh- or seawater (48).
Although chronic exposure to mercury has been shown to
induce renal dysfunction, there is limited epidemiologic
evidence of an association specifically between methylmer-
cury and CKD (49). Methylmercury toxicity manifests
primarily in neurologic changes (Minamata disease) (50)
and less commonly in markers of kidney disease, such as
proteinuria (51).
For the general population, drinking water is an impor-

tant source of uranium exposure (52). Contamination of
ground- and surface water arises largely from redistribu-
tion of uranium and uranium progeny through the natural
erosion of rock and soil, although elevated levels can be
found near mining operations. Epidemiologic studies have
reported associations between uranium levels in drinking
water and molecular markers of renal dysfunction, with
stronger evidence from animal studies (52).
Per- and polyfluoroalkyl substances, known as PFAS, are

a large family of manmade, persistent chemicals widely
used in everyday products and widespread drinking water
contaminants. PFAS are used in firefighting foam, food
packaging, personal care products, nonstick cookware, car-
pet, upholstery, and many other applications. Two of these,
perfluorooctanoic acid and perfluorooctane sulfonate, were
manufactured and released into the environment for deca-
des, but are no longer produced or used in the United
States or most other industrialized countries (53). However,
they and the PFAS that replaced them continue to be found
in surface and groundwater sources. These legacy PFAS
have been associated directly with increased risk of CKD in
some (54–57), but not all (58–60), studies, and inversely
with GFR in several studies (56,61,62). The exact nature of
the association of PFAS and CKD is ambiguous because
serum concentrations of PFAS may increase with decreased
kidney function (63). PFAS exposure has also been linked
to obesity, diabetes mellitus, hyperlipidemia, and cardio-
vascular conditions that are direct and indirect risk factors
for kidney disease.
For the general population, the primary routes of expo-

sure to trichloroethylene and tetrachloroethylene, used as
industrial degreasers and in dry cleaning, are inhalation
from ambient or indoor air and ingestion of contaminated
drinking water (64,65). These chemicals have been shown
to have nephrotoxic effects in epidemiologic and animal
studies (64,65).
In addition to chemical pollutants often found in drinking

water, biologic contaminants, including the bacteria Lepto-
spira (66) and parasitic worms from the genus Schistosoma
(67,68), have been implicated in the pathogenesis of CKD.
Aristolochic acids, potent nephrotoxins produced by the
Aristolochia plant, were first identified in relation to Balkan
endemic nephropathy among individuals using Aristolochia-
based herbal remedies (69). A recent study demonstrated

the widespread presence and stability of aristolochic acids in
groundwater in Serbia (69); however, the prevalence and
levels of such groundwater contamination worldwide are
unknown.

Exposure to pesticides occurs through several routes,
including consumption of contaminated surface or well
water. Most studies examining pesticides and CKD have
been conducted among farmers or agricultural workers.
They have assessed exposure via self-report in terms of
applications, i.e., either direct from handling of the pesti-
cides or indirect from being in the vicinity of applications.
Pesticides that have been linked to CKD/ESKD in one or
more epidemiologic studies include the herbicides alachlor,
atrazine, butylate, glyphosate, metolachlor, paraquat, and
pendimethalin, and the insecticides methyl parathion and
permethrin (70–75). The organochlorine insecticides hexa-
chlorocyclohexane and endosulfan have also been associ-
ated with CKD (76,77). The herbicide dicamba has been
associated with reduced eGFR (76), whereas the organo-
chlorine insecticide dichlorodiphenyltrichloroethane (DDT)
and its primary metabolite have been linked to insulin
resistance and increased diabetes risk, which may indi-
rectly impair renal function (78).

Extreme Weather Events and Natural Disasters
An extreme weather event is defined as “time and place

in which weather, climate, or environmental conditions—
such as temperature, precipitation, drought, or flooding—
rank above a threshold value near the upper or lower ends
of the range of historical measurements” (79). Natural
disasters are weather conditions “… that have the potential
to pose a significant threat to human health and safety,
property, [and] critical infrastructure…” (80).

To date, the primary epidemiologic focus has been
extreme heat, especially in the context of CKD of unknown
etiology (CKDu) or CKD of nontraditional origin. CKDu/
CKD of nontraditional origin occurs among individuals
engaged in intense manual labor in hot environments. The
described kidney injury is tubulointerstitial, associated with
increased levels of urinary neutrophil gelatinase-associated
lipocalin (NGAL) (81–83) and urinary IGF binding protein
7 in some studies (82), and renal biopsy specimens demon-
strate acute tubular cell injury and chronic tubulointerstitial
nephritis (84). An increase in urinary markers of kidney
injury after physical work in the heat has been shown to be
exacerbated by longer work durations (85) and the magni-
tude of hyperthermia and/or dehydration (82). The kidney
injury may be exacerbated by the occurrence of muscle-
damaging exercise (83) and/or the intake of sugar-
sweetened beverages high in fructose (81) that are common
in these workplaces (86) and associated with increased uri-
nary neutrophil gelatinase-associated lipocalin. The National
Institutes of Health has started a multicenter study of CKDu
focused on hot-spot regions in Central America and India,
with the intent of characterizing CKDu clinical features and
identifying biomarkers for early disease, environmental
exposures, and other risk factors.

A recent study demonstrated an association of extreme
heat events, defined as temperature .95th percentile for
the day and location over 30 years, and hospitalizations
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and mortality for patients receiving in-center hemodialysis
in the northeastern United States (87).
A systematic review evaluated the effects of natural disas-

ters on dialysis populations in the Americas, assessing
15 original research articles published in the English lan-
guage from 2009 to 2019. They found that disasters have
immediate, direct effects related to the ability to receive
maintenance dialysis from loss of electricity and other infra-
structure, such as water. Additionally, the disasters exacer-
bate depression and post-traumatic stress disorder in the
long term (88). The effect of such extreme heat events and
natural disasters (e.g., hurricanes), is expected to increase in
the coming years because of climate change.

Mind the Gap
The current literature on the potential role of environmen-

tal exposures in kidney disease has important limitations.
First, national and international agencies have different
accepted levels for pollutants, preventing the establishment
of standard toxicity thresholds. Second, we rely either on
cell and animal models or on epidemiologic studies—each
with their respective challenges. Although in vitro and ani-
mal experiments can test highly specific exposures, quantify
outcomes, and control conditions, they may not replicate the
effects of exposures profiles (dose, duration) seen in the real
world. For example, an individual’s PM2.5 exposure is influ-
enced by both environmental and behavioral factors (e.g., air
filtration and duration of time outdoors) (89). Furthermore,
an individual’s potential effective exposure dose is governed
by particle deposition, clearance, and retention within the
respiratory tract and extrapulmonary tissues. In addition,

interspecies differences in toxicant uptake, metabolism, and
response may limit the utility of some animal models.
Observational studies often generate and test hypotheses,
but they cannot alone establish causation. Furthermore,
existing banked specimens from established cohort studies
have varying longitudinal follow-up, storage quality, and
assay repeatability.
Advances in the “omic” technologies and new study

designs may help address some of the limitations. Multiple
omic approaches may offer a better picture of the different
aspects related to the “exposome”—the measure of all
exposures across a person’s lifespan related to health (90).
Genomics encompass the study of the DNA structure and
its epigenetic regulation, and proteomics include the evalua-
tion of gene products and protein post-translational modifi-
cations (91). Metabolomics measure intermediate metabolic
chemical processes in biologic tissues and fluids (92). These
omic assays have been applied in studies of patients with
kidney disease and in healthy individuals (93) and, taken
together, they can analyze the flow of biologic information
from exposure to gene, protein, and function (and back).
New study designs include meeting-in-the-middle (MITM)

(94) and environment-wide association studies. As an exam-
ple, exposure to PM2.5 is associated with epigenetic changes
in DNA methylation (95,96), and exposure to PFAS is associ-
ated with plasma metabolites related to kidney injury (97).
Alone, these findings are suggestive of associations between
exposures and outcomes. MITM studies use advanced
regression techniques and mediation analysis to find overlap
between proteomic or metabolomic profiles resulting from
exposure and those that are predictive of disease (94). This
model is particularly useful in prospective cohorts with
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Figure 2. | Integration of epidemiologic data with metabolomic/proteomic analyses to bridge the information gap. Integrating large data-
sets from previously disparate fields, such as epidemiology and metabolomics, may be key to connecting environmental exposures to biologic
outcomes. In the proposed framework, epidemiologic data contribute to epigenome-wide association studies (EWAS), which identify putative
disease-associated exposures. Concurrently, metabolomic and proteomic studies can identify signals in biologic samples that are associated with
exposure to pollutants, are predictors of outcome, or both. Exposures identified via EWAS can then be compared with these signals, and candi-
date compounds tested in preclinical models to confirm causality.
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longitudinal sample collection, such that biologic samples are
available before disease onset. One such study examined the
relationship between exposure to PFAS during pregnancy
and fetal growth restriction (98), combining a metabolome-
wide association study of PFAS exposure with a
metabolome-wide association study of fetal growth to iden-
tify metabolites that were associated with both exposure and
outcome. This study identified altered amino acid and lipid
metabolism, linking exposure and outcome. Thus, incorpo-
rating the MITM approach can strengthen causal inference
from these data.
Studies examining multiple exposures present an oppor-

tunity to expand the scope of MITM studies. These studies
aim to identify environmental factors associated with the
disease of interest that are examined individually or as
combined exposures (99). Although few such studies are
related to kidney disease, recent work in the National
Health and Nutritional Examination Survey (NHANES)
identified that blood cadmium, lead, and volatile organic
compound exposures are associated with CKD (100). This
study used biomarkers and additional studies, using sur-
vey or geospatial data, are needed to complement these
findings.

By integrating multiple environmental exposures, MITM
designs could help make connections from environmental
exposure to intermediate markers, then to biologic effects,
and finally to clinical outcomes in a stepwise fashion. Metab-
olome- and proteome-wide association studies of environ
mental exposures can target metabolic pathways and iden-
tify biomarkers of exposure. These “exposure/early effect
markers” can then be evaluated for their association with the
outcome of interest (Figure 2). Although this type of study is
ambitious, the infrastructure to perform it now exists. Multi-
ple large cohorts (including participants with and without
kidney disease) would lend themselves to such investigations,
including NHANES, the Chronic Renal Insufficiency Study,
the Atherosclerosis Risk in Communities study, and the Cure
Glomerulopathy Network. Targets identified through these
analyses could then be investigated in existing preclinical
models to confirm their role in the pathogenesis of kidney dis-
ease. Such preclinical models already exist for exposures such
as PM2.5 and have helped to elucidate the mechanisms by
which particulate matter may directly affect kidney function
(101), illustrating how hypotheses generated by examining
exposures in observational epidemiologic studies may be
tested in vivo.

Table 1. Summary of environmental pollutants and their potential effect on kidney disease

Pollutants Source Kidney Effect

Particulate matter ,2.5 mm Air Associated with kidney function decline, and
with CKD and ESKD morbidity/mortality

Ozone Air Limited association with CKD
Heavy metals
Arsenic Water, soil, diet Associated with incident CKD and ESKD, and with

CKD progression and mortality
Cadmium Water, soil, air Bone disease (itai-itai), proximal tubular

dysfunction, AKI
Lead Water, soil, air Associated with incident and prevalent CKD, and

with anemia of ESKD
Mercury Seafood, air Limited association with CKD
Uranium Water Associated with markers of kidney injury

Per- and polyfluoralkyl substances
Perfluorooctanoic acid Water, diet Limited association with kidney disease
Perfluorooctane sulfonate Water, diet Limited association with kidney disease

Industrial degreasers
Trichloroethylene Air/water Both cause nephrotoxicity in animal studies,

limited association with CKDTetrachloroethylene
Organisms and plants
Leptospira Water Associated with CKD
Schistosoma Water Associated with CKD
Aristolochia Water, diet Chronic tubulointerstitial nephritis

Insecticides
Methyl parathion, permethrin,

hexachlorocyclohexane, endosulfan,
dichlorodiphenyltrichloroethane

Water, diet, dermal
contact

All associated with CKD,
dichlorodiphenyltrichloroethane specifically
associated with insulin resistance and increase
risk for diabetes

Herbicides
Alachlor, atrazine, butylate, glycophosate,

metolachlor, paraquat, pendimethalin,
dicamba

Water, diet, dermal
contact

All associated with CKD

Heat N/A Associated with CKD of unknown cause, and with
morbidity for patients with ESKD receiving dialysis

Natural disasters N/A Associated with increased morbidity for patients with
ESKD receiving dialysis

N/A, not applicable.
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Finally, we acknowledge that the health effects from pol-
lution and climate change are differentially distributed
among communities in the United States and the world
according to wealth/race/ethnicity (102), subjecting analy-
ses to potential confounding and bias, and often limiting the
ability to investigate associations in some subgroups. For
example, distance to major roads, a proxy indicator for expo-
sure to traffic-related air pollution and community wealth,
are inversely associated with estimated GFR (103). Adequate
attention to these issues and increased focus on vulnerable
communities are needed to better understand the synergy of
inequality and environmental exposures in the morbidity of
kidney disease.

Summary and Future Directions
Current evidence suggests that environmental exposures

may be important contributors to kidney disease morbidity
and mortality (Table 1). Some concrete steps may help us
bridge existing gaps: (1) regulatory agencies should adopt
international consensus data on thresholds of toxicity for
pollutants; (2) governments should consider funding an
international repository of in vitro, animal, and human data
on known environmental pollutants to facilitate pooling
and mining of the data; and (3) researchers should inte-
grate novel epidemiologic study designs with large biologic
datasets with omics biomarkers. The ultimate goal is to
inform individual-level action and public policies to poten-
tially mitigate the risks from these environmental pollu-
tants and reduce the burden of disease.

Disclosures
N. Franceschini reports serving on the editorial boards of Ameri-

can Journal of Physiology–Renal Physiology and Contemporary Clinical
Trials; and serving in an advisory or leadership role as a convener
for the National Heart, Lung, and Blood Institute TOPMed kidney
working group, as vice-chair of the Women’s Health Initiative
Ancillary Committee, and on the Women’s Health Initiative Publi-
cation and Presentation Committee. A.V. Kshirsagar reports hav-
ing consultancy agreements with Alkahest, Rockwell, and Target
RWE; serving on the editorial boards of American Journal of Kidney
Disease and Kidney Medicine; and having royalties with UpToDate
(as contributor). E.M. Zeitler reports receiving research funding,
via spouse, from Dexcom, Novo Nordisk, Rhythm Pharmaceuti-
cals, and VTV Therapeutics. All remaining authors have nothing
to disclose.

Funding
None.

Acknowledgments
The views expressed in the manuscript do not necessarily

reflect the views or policies of the US Environmental Protection
Agency.

Author Contributions
A.V. Kshirsagar and E.M. Zeitler conceptualized the manuscript;

A.V. Kshirsagar provided supervision and wrote the original draft;
and all authors reviewed and edited the manuscript.

References
1. GBD Chronic Kidney Disease Collaboration: Global, regional,

and national burden of chronic kidney disease, 1990-2017:
A systematic analysis for the Global Burden of Disease Study
2017. Lancet 395: 709–733, 2020 https://doi.org/10.1016/
S0140-6736(20)30045-3

2. Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD,
Dominici F: Association of short-term exposure to air pollu-
tion with mortality in older adults. JAMA 318: 2446–2456,
2017 https://doi.org/10.1001/jama.2017.17923

3. Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S,
Coelho MSZS, Saldiva PHN, Lavigne E, Matus P, Valdes
Ortega N, Osorio Garcia S, Pascal M, Stafoggia M, Scortichini
M, Hashizume M, Honda Y, Hurtado-D�ıaz M, Cruz J, Nunes
B, Teixeira JP, Kim H, Tobias A, �I~niguez C, Forsberg B,
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