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Abstract
Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality
worldwide. For more than half a century, researchers have demonstrated that immunity plays an important
role in the development of hypertension; however, the precise mechanisms are still under investigation.
The current body of knowledge indicates that proinflammatory cytokines may play an important role in
contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-g), in particular, as an
important cytokine that modulates immune responses, has been recently identified as a critical regulator of
blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-g in
contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine
and described signaling mechanisms involved. We demonstrate a key role for IFN-g in hypertension through
global knockout studies and related downstream signaling pathways that IFN-g production from CD81 T cell
(CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating
hypertension. We discuss potential activators of these T cells described by the current literature and relay a
novel hypothesis for activation.
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Hypertension, a major cause of premature death, affects
roughly half of the US population and 1.3 billion people
worldwide (1,2). This condition has been subjected to
intensive study for more than half a century leading to
the development of a variety of classes of pharmaceuti-
cal options to lower BP; however, fewer than 50% of
patients achieve good BP control (3). Further confound-
ing clinical treatment of hypertension is the multifacto-
rial dysfunctional aspect of this disease, wherein an
estimated 90%–95% of treated patients present with
unclear origin (essential hypertension) (4), and an esti-
mated 20%–30% of cases are resistant to currently avail-
able treatment (resistant hypertension) (5). Thus, it is
important to investigate unknown mechanisms causing
essential hypertension and develop new therapeutic
strategies against hypertension (6). Years of intense
research have confirmed that the kidney plays a critical
role in regulating BP (7), for example transplanting
kidneys from hypertensive donors to normotensive
recipients transfers hypertension (8). Guyton and others
proposed that a physiologic defect in the kidney impairs
its salt handling, which contributes to the development
of hypertension (9,10). However, the exact identity of
this kidney defect is still under investigation. One poten-
tial suspect being investigated recently is disorder of
immunity, in particular adaptive immune cells, which
contribute to hypertension through several possible mech-
anisms (11), including dysregulation of natriuresis and
driving renal injury (12).

Published in the 1970s, Svendsen first demonstrated
the role of the immune system in the classic deoxycor-
ticosterone acetate (DOCA)1salt murine model of
hypertension (13). In this experiment, nude mice (lack-
ing thymus, immunodeficient) exhibited blunted BP
increase compared with haired wild-type (WT) mice,
along with fewer round cell infiltrations. When these
nude mice received a thymus graft—thereby restoring
mature immune cell production—the BP increase to
DOCA1salt was restored to normal levels. This study
identified a thymus-independent phase of BP elevation
followed by a thymus-dependent phase (13). The partic-
ular immune cells driving the thymus-dependent phase
of BP elevation had not been identified and became of
interest to researchers. In 2007, Harrison and colleagues
not only corroborated blunted BP elevation due to
immunodeficiency through the use of RAG12/2 mice
(immunodeficient mice that produce no mature T or
B cells) but also found that the adoptive transfer of
T cells—but not B cells—would restore the hypertensive
response to angiotensin II (AngII) (14). This landmark
study was limited, wherein other labs found RAG12/2

mice no longer showed blunted hypertensive response
to AngII in later studies (15,16), and a discussion of this
change and potential explanations were provided in an
excellent editorial from Madhur et al. (17). Many other
preclinical studies indicating the role of the immune
system have been published in the last 20 years. A few
highlights include the use of the immunosuppressant
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tacrolimus to ameliorate BP elevation in Dahl salt-sensitive
rats fed a high salt diet (12) and the use of the immunosup-
pressants dexamethasone and etanercept to reduce renal
fibrosis, albuminuria, T-cell infiltration, and NF-kB activation
accompanying AngII-infused double-transgenic rats (18). As
researchers began to characterize particular immune players
involved, Kamat et al. demonstrated the critical roles of
IFN-g in AngII-mediated hypertension, wherein global
knockout (KO) of the cytokine blunted BP elevation to this
pressor (19). Known producers of IFN-g include T cells, nat-
ural killer (NK) cells, monocytes/macrophages, neutrophils,
and dendritic cells (DCs), and each of these immune cells
have been implied as participating in the process of hyper-
tension (11,20–25). Certain T cells (Th17) and macrophages
have been specifically implicated to play a role through
sodium-driven proinflammatory responses as described
here (26); however, the purpose of this review is to highlight
current research describing the proposed immune cells con-
tributing to this “thymus-dependent” phase of BP elevation
and outline the elucidated mechanisms, and provide insight
into the particular role of IFN-g in the immune cell-mediated
stage of hypertensive development. For a comprehensive net-
work of IFN-g JAK/STAT signaling pathways, we refer the
reader to this 2018 review by Bhat et al. (27), and these reviews
for a discussion of IFN-g transcription regulation (28,29).

T Cells
The specific role of the T cell, and not B cell, in contribut-

ing to hypertension was first outlined by Guzik et al. in
2007, wherein adoptive transfer of T cells but not B cells to
RAG-12/2 immunodeficient mice restored the blunted BP
elevation of this model to AngII treatment. In that study,
the authors also determined that NADPH oxidase contrib-
uted to complete development of hypertension via affecting
T-cell infiltration (14). NAPDH oxidases (NOX)—particularly
NOX2—mediate release of reactive oxygen species (ROS)
alongside cellular mitochondria in a process termed
“oxidative burst” to aid in elimination of invading micro-
organisms (30,31). The role of NADPH oxidases and
T cell–aggravated hypertension has been connected to the
central nervous system in an AngII model of hypertension
(32,33). Of interest, IFN-g has been linked to upregulation of
NAPDH oxidase in exposed epithelial cells (34,35) to con-
comitant upregulation of NADPH and IFN-g in leukocytes
in sickle cell disease (36), and to CD81 enhanced ROS signal-
ing through an NADPH oxidase-dependent CD39 expres-
sion mechanism (37,38). From these studies, and others,
NAPDH oxidase activity within the immune cell has been
tied to IFN-g production and plays a role in cellular response
to IFN-g.
CD41 Th1 T cells may play a role in the development of

kidney damage in hypertension but not necessarily elevated
BP itself as indicated by T-bet KO mice showing reduced
renal damage but similarly elevated BP to WT mice in the
AngII model of hypertension (39,40), Sun et al. further indi-
cated the MR receptor on CD41 T cells contributes to hyper-
tension through regulation of IFN-g (41). Our laboratory
has found that CD81 T cells (CD8Ts) play a direct role in
the development of hypertension. After induction of hyper-
tension in the DOCA1salt model (Cat. M-121, 50 mg/pellet

in 21-day release formula and 1% NaCl drinking water) for
14–18 days, adoptive transfer of 13 107 splenocyte-derived
CD8Ts from these mice into uninephrectomized C57BL/6J
male mice results in salt-sensitive hypertension in the recip-
ient mice that can be alleviated through treatment with a
thiazide diuretic (42). We found that these T cells remain
within the kidney, directly interacting with the distal tubule
and continuing to promote NCC expression and activity
despite treatment with the diuretic (42). More recently, we
found that this mechanism of hypertensive-derived CD8Ts
interacting with the distal tubule thereby generating
salt-sensitivity in the recipient mice is via the IFN-g-
programmed cell death ligand 1 (PDL1) pathway (43). IFN-
g KO mice demonstrate blunted BP in either the AngII
model of hypertension (19) or DOCA1salt model (43). In
performing adoptive transfer of DOCA1salt-induced hyper-
tensive CD8Ts from WT or IFN-g KO mice to the alternative
strain (methods according to previously described laboratory
protocols) (42,43), only the WT CD8Ts were able to generate
salt-sensitive hypertension in the recipient mouse (Figure 1),
indicating that IFN-g from the CD8T itself is sufficient to
drive salt-sensitive hypertension.
Activation of T cells—characterized by elevated expression

of IFN-g and TNF-a among other cytokines—has been
linked to the development of salt-sensitive hypertension (44).
In agreement with clinical data finding increased human
hypertensive CD8T IFN-g production compared with nor-
motensive CD8Ts (45), we found that hypertensive murine
CD8Ts demonstrated enhanced capacity of producing
IFN-g—but not TNF-a—compared with sham mouse–
derived CD8Ts (43). This evidence, the ability of immuno-
suppressants to reduce BP in animal models of hypertension,
and our co-culture model showing activated CD8Ts pro-
moted greater NCC upregulation, sodium retention, and
PDL1 expression through IFN-g and the IFN-g receptor in
mouse distal convoluted tubular cells compared with na€ıve
CD8Ts further supports the hypothesis that activated CD8Ts
contribute to the development of hypertension. When we
knocked down PDL1 within the renal tubule, BP elevation
was blunted in both the DOCA1salt and CD8T adoptive
transfer models of hypertension (43). Renal specific targeting
of PDL1 may prove a promising clinical target in treating
resistant hypertension.
During full activation of na€ıve CD8Ts, clonal expansion

takes place after presentation of antigen, co-stimulatory fac-
tor, and a third signal (such as IL-12) wherein T-cell clones
that are specific for individual antigens proliferate (46–48).
Trott et al. performed a clonotype analysis of kidney CD81

T-cell receptor sequences and found 352261049 unique
T-cell receptor sequences in mice treated with AngII with
three shared specific clonotypes in Vb3, 8.1, and 17 families
from four of the five mice that were not present in multiple
sham mice; however, these clonal subtypes were not
observed in other organs (48). The conclusion of this study
suggested that rather than a single clonal population, an oli-
goclonal population of CD8Ts accumulate in the kidney
and contribute to hypertension and sodium retention (48).
The presence of more than one clonal population of CD8Ts
presents at least two potential explanations: either (1) multi-
ple unique antigens are being presented simultaneously
leading to CD8T accumulation in the kidney through a IFN-g-
dependent mechanism or (2) activation of these CD8Ts is
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occurring via nonantigen-specific mechanisms, leading to
IFN-g production.
Some antigen-specific activation evidence includes this

study by Rudemiller et al., wherein knocking down CD247
(responsible for coupling antigen recognition to intracellu-
lar transduction) (49,50) in Dahl salt-sensitive rats led to
reduced T-cell infiltration into the kidneys and reduced BP
(51). Blocking antigen presentation by DCs resulted in
blunted BP elevation in two murine models of hyperten-
sion (52). The study by Hevia et al. found that ablation of
CD11c1 antigen presenting cells prevented hypertension in
an AngII1 high salt diet murine model (53). A few pro-
posed antigens include isolevuglandin protein adducts
(54,55), heat shock protein 70 (56,57), and Toll-like receptor
(TLR) 4 or 2 activators such as C-reactive protein (58), uric
acid (59), and others (60).
Experimental evidence suggests that such molecules may

individually or collectively contribute to the role of T cells
in hypertension; however, the presence of more than 3000
unique T-cell receptor sequences in AngII-induced hyper-
tensive mice indicates that clonal expansion may not be
occurring due to antigen presentation and recognition.
Under certain conditions such as lymphopenia (61) or
exposure to both IL-6 or IL-21 and IL-17 or IL-15 (62–65),
CD8Ts can be activated without direct antigen presentation

(66). IL-7 has also been implicated in the activation of auto-
immune CD8Ts (62). In like manner, stimulation of T cells
with phorbol myristate acetate (PMA) and the calcium ion-
ophore ionomycin can bypass the T-cell membrane recep-
tor complex and activate the T cell, leading to elevated
expression of TNF-a and IFN-g (67,68). Further research is
needed to identify alternative pathways that may contrib-
ute to the activation of CD8Ts resulting in their infiltration
within the kidney and stimulation of sodium retention.

NK Cells
Group 1 innate lymphocytes, NK cells arise from the

same family as T and B cells (69) and have been implicated
in both AngII-mediated hypertension and pulmonary
hypertension. Depleting NK1.1 cells in WT C57BL/6 mice
before AngII treatment resulted in blunted vascular dys-
function. Through a mechanism involving IFN-g and T-bet,
Kossmann et al. described a mutual activation pathway
involving IL-12-secreting monocytes stimulating NK cells,
leading to increased IFN-g production and AngII-mediated
hypertension (70). This relationship between monocyte and
NK cell differentiation has been elucidated to involve TXb21
and IL-15R in a tumor environment (71). IL-12 driving NK
production of IFN-g has been described for some time (72).
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Figure 1. | Interferon -g contributes to CD8T-mediated salt-sensitive hypertension. (A) Radiotelemetry recording of systolic BP in recipi-
ent wild-type (C57/B6) mice (blue) and IFN-g knockout (B6 background) mice (red) after adoptive transfer of 13107 CD8Ts freshly isolated
from deoxycorticosterone acetate1salt-treated IFN-g knockout or wild-type mice. All mice were purchased from the Jackson Laboratory.
Data were recorded every 15 minutes and averaged to six time points a day; n55–6 mice per group. Statistical analysis was performed by
two-way ANOVA. Significance for interaction effect: P,0.001; time effect: P,0.001; and strain recipient: P50.02. (B) At the end point of
BP recording in (A), immunohistochemistry staining (DAB) of kidney sections was performed using CD3 specific monoclonal antibody
after the protocol we have published previously (42,43). In the quantification bar graph, each dot shown is the mean of four images taken
per sectioned kidney. **P,0.05.
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In a rat model of pulmonary hypertension, NK cells have
been proposed to play a protective role rather than patho-
logic (73); as such, the role of NK cells likely involves
environment-specific driven regulation. Such tissue specific
regulation has not yet been fully elucidated.

Monocytes and Macrophages
In addition to their role in promoting NK differentiation,

monocytes (in particular macrophages) have been described
as contributing to the pathogenesis of hypertension. An
excellent review was provided by Rucker and Crowley; as
such, we refer the reader to this publication for a thorough
description of the contribution of macrophages to hyperten-
sion (74). Macrophages have been discovered to infiltrate
and remain within the renal interstitium in the AngII model
of hypertension, correlating with elevated TGF-b and mono-
cyte chemotactic protein (MCP), even after cessation of
AngII (75). LysM1 monocytes have been described to contrib-
ute to—and be increased by—AngII-driven arterial hyperten-
sion through an experiment wherein depletion of LysM1

myelomonocytic cells reduced AngII-induced BP elevation
and blunted vascular dysfunction, nitric oxide bioactivity,
and vascular oxidative stress. Reconstitution with WT mono-
cytes but not neutrophils restored the AngII-mediated disease
phenotype (76).
Due to the ability of immunosuppressants to, at minimum,

reduce renal damage elicited in several animal models of
hypertension and the correlation between macrophage infil-
tration and inflammation in models of hypertension (77,78),
it would follow that at least a connection can be established
between proinflammatory macrophages and tissue inflam-
mation and damage in hypertension. Such a relationship was
discussed in the excellent review by Rodriguez-Iturbe et al.
(79) in reference to the studies by Bravo et al. (80) and Quiroz
et al. (81), wherein macrophage numbers and oxidative stress
were correlated in two different animal models of hyperten-
sion. The excellent review provided by Rucker and Crowley
described the elucidated role of TNF-a from macrophages
driving renal inflammation (74); as such, we will focus on the
relationship between IFN-g and macrophages in hypertension.
In addition to aiding in the transition from innate immu-

nity to adaptive immunity, IFN-g can influence its surround-
ings directly through actions such as local dilation of blood
vessels allowing for immune cells to localize at sites of
inflammation (21). However, of particular note is the effect
of IFN-g on macrophages. After release by other immune
cells such as NK cells or T cells, IFN-g stimulates macro-
phages and primes them for response by inducing a proin-
flammatory activation and stimulating the release of other
cytokines causing the M1 phenotype seen in macrophages
(82,83). The M1 phenotype name was derived to match Th1
release of IFN-g; however, various cytokines and stimuli can
affect the activation state of macrophages. Because stimula-
tion with a combination of factors or high salt can shift the
activation spectrum of macrophages, the classification of M1
and M2 phenotypes may become insufficient to distinguish
the activation status (82,83). Generally, this classic activation
by T cells through IFN-g leads to macrophage production of
inflammatory response genes and cytokines such as IL-12,
IL-23, and NO generating the proinflammatory macrophage

type (82,84). Macrophages also have the ability to secrete
IFN-g to the same extent as T cells via stimulation with cer-
tain cytokines such as through simultaneous activation by
IL-12 and IL-18 (24), leading to the potential of generating
IFN-g in an autocrine manner (24,85). Accordingly, macro-
phage activation by IFN-g is multifaceted in the source and
the activation state on the basis of other factors and cyto-
kines present.
Serum IFN-g levels have been clinically shown to be a

predictor of high systolic BP (86). With diastolic BP, there
was not only significance with IFN-g but also MCP-1
levels—after corrections for variables such as age and sex
(86). Within models of hypertension with IFN-g knocked
out, such as AngII mini osmotic pump implantation, some
labs have demonstrated a reduction in monocyte infiltration
within the aorta and a reduction in MCP-1 and other cyto-
kines such as macrophage inflammatory protein 1a, and
P-selectin ligand (75,87). Due to MCP-1’s role in recruiting
macrophages to tissues, this suggests a potential interaction
between hypertension, the renin-angiotensin system, and
macrophage activation and recruitment to tissue.
Within the kidney, macrophage infiltration with hyper-

tension has been noted by several research groups
(75,88,89). Infiltration not only occurs during high levels of
AngII but can also persist after AngII and systolic BP
return to the normal range with lingering MCP-1 and TGF-b
(75). Macrophages within the kidneys have been suggested
to be involved in kidney injury seen with hypertension.
For instance, depletion of macrophages with liposome-
encapsulated clodronate has been demonstrated to reduce
the kidney injury seen in Ang II-induced hypertension (88),
and a similar observation was also found in Dahl salt-
sensitive rats (88). Continuing to elucidate the ties between
hypertension and macrophages remains, including the forms
of activation macrophages may experience from IFN-g
release whether by other immune cells or other cytokines.
Additionally, further research to expand on the role of infil-
trating macrophages in the kidney and the damage induced
through inflammation during hypertension is also needed.

Neutrophils
In the innate response to bacterial infection (such as

Salmonella-induced colitis), neutrophils—phagocytic cells
from the innate immune system (90)—function as a critical
source of IFN-g production, and depletion of these cells
results in relief of many IFN-g-induced disease symptoms
(91,92). In contrast, depletion of neutrophils by administra-
tion of RB6–8C5 resulted in hypotension in WT C57BL/6
mice but not in IFN-g or iNOS deficient mice, indicating
neutrophils may also maintain physiologic BP via suppres-
sion of IFN-g-dependent iNOS expression (93). Neutrophils
play a role in the maintenance of homeostasis (93), and
disruption could lead to elevated inflammation and BP dysre-
gulation as evidenced by neutrophil/lymphocyte ratios func-
tioning as predictors of hypertension (94–96); however, the
specific relationship between neutrophil-derived IFN-g and
hypertension in an inflammatory situation is still unclear.
Additionally, WT monocytes, not neutrophils, restored the
AngII-mediated disease phenotype in LysM1-depleted mice
(76). This excellent review by Araos et al. further describes

KIDNEY360 3: 2164–2173, December, 2022 IFN-g and the Immune Mechanisms of Hypertension, Benson et al. 2167



the role of neutrophils in hypertension, and we refer the
reader here for further information (97).

Myeloid-Derived Suppressor Cells
Immature and heterogeneous myeloid cells have been

recently demonstrated to regulate the immune system
(77,98). Myeloid-derived suppressor cells (MDSCs) can be
identified by expression of CD11B and Gr-1 surface anti-
gens (99). In addition to playing a role in amino acid
metabolism and ROS production, it is known that MDSCs
are capable of downregulating immune-system facilitated
T-cell response in vivo and in vitro (99). This alludes to a
possible role of MSDCs in regulating BP. It had been previ-
ously observed in tumor models that the T-cell suppression
acts by a mechanism that is independent of traditional
MHC complex function—meaning there is no classic anti-
gen presentation by these cells (100). In a recent study uti-
lizing AngII-induced hypertension, it was discovered that
MSDCs undergo a phenotypic change after the onset of
hypertension; MDSCs harvested from hypertensive mice
lost the expression of their surface CD80 and MHC-II (77).
Concomitantly, these same cells exhibited increased expres-
sion of the IFN-g receptor, IFN-gR1 (77). Hypertension
results in an increase of CD81T-cells that express IFN-g
(43,45). This increase of T cells was attenuated by the pres-
ence of MDSCs (77). Further, antibody-mediated depletion
of MDSCs resulted in a great increase of IFN-g-expressing
CD4T and CD8T cells (77). Although the complete mecha-
nism of action of MDSCs remains unknown, there is evi-
dence to support that MDSCs might induce development
of regulatory T cells. These cells suppress immune response
by inhibiting T-cell proliferation and cytokine expression
(101). Although MDSCs may have other activities that have
still not been discovered, these promising results point to
the possibility that MDSCs are capable of inducing regula-
tory T-cell differentiation to suppress inappropriate T-cell
proliferation and attenuate its effects.

DCs
CD11c1 DCs have been demonstrated to play an impor-

tant role in hypertension, wherein blocking antigen presen-
tation by DCs via antagonizing CD80 and CD86 with
CTLA4-Ig or B7 deficient mice blunted BP elevation in both
the AngII and DOCA1salt models of hypertension (52).
Depleting DCs in the mice prevented the development of
hypertension in the AngII model, which could be restored
by adoptive transfer of WT CD11c1 antigen presenting
cells (53). DCs are found activated in hypertensive animals
to stimulate T-cell production of IFN-g and IL-17A
(102–104). However, the mechanisms regulating of DCs in
hypertension is still under investigation. For example,
sodium has been suggested to play a role in DC activation
through amiloride-sensitive channels and the
serum/glucocorticoid kinase 1 (105). Other evidence sug-
gest that isoketal-modified proteins (proteins oxidatively
modified by highly reactive g-ketoaldehydes that accumu-
late in DCs during hypertension) are responsible for DC
activation and subsequent T-cell activation in hypertension
(102), and more recently, using DC-specific KO of AT1R,

Lu et al. demonstrated a protective role of AT1 receptor on
DCs against hypertension and T-cell activation (106). Nev-
ertheless, how DCs are regulated in hypertension and what
are the antigen(s) they present to activate T cells to exacer-
bate hypertension are critical questions that need to be fur-
ther studied.

Limitations
The relationship between IFN-g and tissue damage and

fibrosis appears to be somewhat contextual, wherein block-
ing IFN-g signaling in AngII-infused mice can reduce car-
diac remodeling and immune cell infiltration (107,108), but
alternative models propose a protective role for IFN-g
(109,110). Further exploration is needed for delineation of
these effects. In addition, environmental exposure and sub-
sequent gut microbiota alterations play a role directing the
development of murine immune systems and host
response to various challenges; as such, laboratory mice do
not necessarily model clinical situations (111,112). The
microbiota, in particular, has become increasingly impli-
cated in regulating the murine response to hypertension in
many experimental models (113,114) and may contribute to
cardiovascular phenotypes in some immune-deficient mice.
To this end, the preclinical established link between the
immune cell activation and hypertension may involve gut
microbiome alterations that regulate immune responses in
such a way that are not inherently translatable to the clinic;
however, such gut microbiome dysregulations have been
described in clinical studies (115). We refer the reader to
this excellent review by Avery et al. for further discussion
of the gut microbiome and hypertension (116).

Clinical Translation
Clinical immunosuppression and hypertension have a

rather complicated relationship due to adverse drug effects.
In renal transplants, immunosuppressant calcineurin inhib-
itors have been linked to exacerbated BP (117), but BP post
renal transplant has been ameliorated through non-
nephrotoxic immunosuppression with mycophenolate
mofetil with or without rapamycin (118). Immunosuppres-
sion (excluding calcineurin inhibitors) has been shown to
be favorable in a clinical trial for patients with CKD (119).
In agreement, several proinflammatory factors have been
found to be upregulated in patients with treatment-
resistant hypertension cases of CKD (120). Further clinical
studies are needed to verify the efficacy of targeting key
immune players in hypertension (121).

In Summary
IFN-g plays a key role in the development and mainte-

nance of hypertension. Global KO of IFN-g results in
blunted BP elevation in both the AngII and DOCA1salt
models of hypertension. Potential mechanistic relationships
between IFN-g production and hypertension have been
noted with NK cells, neutrophils, macrophages, DCs, and T
cells (Figure 2). The source(s) of activation—particularly
for CD8Ts—driving elevated IFN-g production are still
being researched; nonetheless, a potential novel mechanism
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involving activators appears promising in light of the iden-
tification of an oligoclonal population of CD8Ts in the kid-
neys of hypertensive mice.
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