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Key Points
� We developed a model for automated kidney and liver volumetry in ADPKD to provide assistance with time-

consuming volumetry.
� The model works in both coronal and axial planes and was tested in the real-life setting using large multicentric

cohorts.
� The trained model is published along with the code to allow for further joint development and integration into

commercial software packages.

Abstract
Background Imaging-based total kidney volume (TKV) and total liver volume (TLV) are major prognostic factors
in autosomal dominant polycystic kidney disease (ADPKD) and end points for clinical trials. However,
volumetry is time consuming and reader dependent in clinical practice. Our aim was to develop a fully
automated method for joint kidney and liver segmentation in magnetic resonance imaging (MRI) and to evaluate
its performance in a multisequence, multicenter setting.

Methods The convolutional neural network was trained on a large multicenter dataset consisting of 992 MRI
scans of 327 patients. Manual segmentation delivered ground-truth labels. The model’s performance was
evaluated in a separate test dataset of 93 patients (350 MRI scans) as well as a heterogeneous external dataset of
831 MRI scans from 323 patients.

Results The segmentation model yielded excellent performance, achieving a median per study Dice coefficient of
0.92–0.97 for the kidneys and 0.96 for the liver. Automatically computed TKV correlated highly with manual
measurements (intraclass correlation coefficient [ICC]: 0.996–0.999) with low bias and high precision (20.2%64%
for axial images and 0.5%64% for coronal images). TLV estimation showed an ICC of 0.999 and bias/precision of
20.5%63%. For the external dataset, the automated TKV demonstrated bias and precision of21%67%.

Conclusions Our deep learning model enabled accurate segmentation of kidneys and liver and objective
assessment of TKV and TLV. Importantly, this approach was validated with axial and coronal MRI scans from 40
different scanners, making implementation in clinical routine care feasible.

Clinical Trial registry name and registration number: The German ADPKD Tolvaptan Treatment Registry
(AD[H]PKD), NCT02497521

KIDNEY360 3: 2048–2058, 2022. doi: https://doi.org/10.34067/KID.0003192022

Introduction
Autosomal dominant polycystic kidney disease
(ADPKD) is the most common hereditary kidney

disorder, with a genetic prevalence of approximately one
in 1000 (1). It is characterized by the development of mul-
tiple cysts in the kidneys, which progressively impair
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kidney function, leading to kidney failure in up to 75% of
patients by the age of 70 (2). In parallel to the kidney function
decline, ADPKD is characterized by a progressive increase in
kidney volume over time.
Total kidney volume (TKV) has become an important bio-

marker for assessing disease severity and can be used to
predict future loss of the eGFR (3,4). Assessing the risk of
future kidney failure is especially important at early disease
stages when renal function might not be impaired yet (5)
and can be achieved using the Mayo Imaging Classification
(6) on the basis of height-adjusted TKV measurement. This
tool identifies patients with a risk of rapid progression for
clinical trials and selects patients for treatment with disease-
modifying drugs. Importantly, TKV increase over time has
been widely accepted as a surrogate end point for the evalu-
ation of the efficacy of new pharmacologic therapies (7,8).
Polycystic liver disease is the most common extrarenal

manifestation of ADPKD. Liver cysts are typically present
in early disease stages and become increasingly common in
advanced stages, with a relative loss of liver parenchyma.
Liver function is usually preserved, but an increase in total
liver volume (TLV) is known to be associated with a lower
quality of life (9).
The current gold standard for measuring TKV and TLV

relies on manual tracing of the organ boundaries. However,
this approach requires a lot of time and is subject to intra-
and inter-reader variability (10). Recently, automated and
semiautomated approaches to kidney volumetry (11–14) as
well as joint kidney and liver volumetry (15,16) have gained
increasing attention and may provide a future solution to this
problem. Their practical utility is limited by the unknown
generalizability of the models across imaging data from dif-
ferent scanner manufacturers, which is a recognized problem,
especially for magnetic resonance imaging (MRI) data (17,18).
Convolutional neural networks have been responsible

for recent phenomenal advances in tasks like object classifi-
cation and image segmentation. U-Net (19) is arguably the
most successful deep learning architecture for semantic
segmentation, and its variants are currently the state of the
art for biomedical image segmentation (F. Isensee et al.,
unpublished data) (20,21).
The aim of this study was to develop a deep neural net-

work for fully automated volumetry of kidneys and liver
and to validate it in a large longitudinal cohort as well as
assess its generalizability in a multicenter, multiscanner,
multisequence setting.

Materials and Methods
Study Design
We analyzed MRI data from patients with ADPKD par-

ticipating in two different prospective studies: the German
ADPKD Tolvaptan Treatment Registry, University of
Cologne (UoC) and the Developing Intervention Strategies
to Halt Progression of Autosomal Dominant Polycystic Kid-
ney Disease (DIPAK1) study, a Dutch collaborative (8).
MRI scans of these patients were obtained in multiple cen-
ters in Germany and The Netherlands. Both studies were
approved by the respective local institutional review boards
(the Ethics Committee of the Medical Faculty UoC and the
medical ethics committees of all involved Dutch institutes).
The DIPAK1 study, a randomized, controlled trial, studied

whether lanreotide could ameliorate the rate of disease pro-
gression in patients with rapidly progressive ADPKD.
Patients were randomized 1:1 for lanreotide or placebo
treatment, which affected the natural progression of the dis-
ease, by means of kidney and liver volume growth.
A flowchart of the procedures for patient stratification,

model development, and validation is shown in Figure 1. We
trained a model for axial magnetic resonance (MR) images
using data from UoC (dataset A) and a model for coronal
MR images with data from the DIPAK1 study (dataset B).
Each model was trained on a subset of the dataset and tested
on a separate subset, including longitudinal data. The models
were externally validated on dataset C, which contained MRI
data from numerous outpatient centers in Germany. The cor-
onal model was additionally validated on dataset A.

MRI Data
The study workflow is depicted in Figure 1. A total of

126 patients with ADPKD with varying levels of disease
severity who underwent abdominal MRI in UoC between
October 2015 and May 2017 were included in dataset A. A
total of 71 patients had additional longitudinal data from a
follow-up examination performed approximately 1 year
after the baseline examination (median of 373 days; range,
297–600 days). Exclusion criteria were (1) unavailability of
imaging data, (2) severe imaging artifacts, (3) other diagno-
ses than ADPKD, and (4) unavailability of clinical informa-
tion. MR images were acquired with a 1.5-Tesla scanner
(Ingenia 1.5T; Philips Healthcare, Best, The Netherlands)
following a standardized scan protocol described in
Supplemental Table 1A. Four sequences, including axial T2
TSE, T2 spectral presaturation with inversion recovery
(SPIR), and T2 mapping as well as coronal T2 TSE, were
included in the analysis. A detailed flowchart of inclusion
and exclusion criteria for datasets A and C is shown in
Supplemental Appendix 2.
MRI data from 294 patients with ADPKD and a high

likelihood of disease progression enrolled in a randomized,
multicenter, controlled clinical trial (DIPAK1 [8,22]) were
included in our study as dataset B. MRI data were acquired
at baseline and at two follow-ups (after 120 and 132 weeks)
for longitudinal analysis. This dataset comprised data from
260 patients at baseline, 250 patients at the first follow-up,
and 239 patients at the second follow-up. Two sequences
were included: coronal half-Fourier–acquired single-shot
turbo spin echo (HASTE) and coronal T2 true fast imaging
with steady-state free precession (TRUFI). The MRI proto-
cols as well as inclusion and exclusion criteria have been
published previously (10) and are additionally described in
Supplemental Table 1B.
Additionally, 323 patients with ADPKD treated at UoC

who had MRI examinations performed externally in differ-
ent radiology outpatient centers between January 2016 and
March 2020 were used for external validation (dataset C).
Patients had data from 40 different MRI scanner models
and vendors acquired with a wide variety of image acquisi-
tion protocols. We decided to include all T2-weighted
images. Acquisition parameters of the most common
sequences included are presented in Supplemental
Table 1C, and inclusion/exclusion criteria are included in
Supplemental Appendix 2.
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Manual Segmentation and Preprocessing
In dataset A, kidney boundaries were manually traced in

axial T2 SPIR scans by an experienced board-certified radiolo-
gist using 3D-Slicer (23). Liver volume was not routinely mea-
sured in dataset A; however, a subset of 29 patients had TLV
measurements in coronal T2-weighted images performed
using manual tracing in 3D-Slicer. These patients as well as
TKV test cases from dataset A were additionally segmented
by a second reader to estimate inter-reader variability in TLV
and TKV, respectively. In dataset B, the kidney and liver
boundaries were manually traced in coronal images using
Analyze (version 11.0; Biomedical Imaging Resource, Mayo
Foundation, Rochester, NY). In dataset C, kidney boundaries
were manually traced by a radiologist using Intellispace Dis-
covery (Philips Healthcare). In each cohort, the readers were
blinded to patient information as well as previous tracing,
and the renal hilum for TKV and the gall bladder and main
portal vein for TLV were excluded from the organ outline.

For training, each individual MR image was cropped to
the region of nonzero values, and z-score normalization was
applied. The median image voxel size was 1.37 mm in plane
with a median slice thickness of 4 mm for training images in
dataset A and 0.84 mm in plane with a median slice thick-
ness of 5 mm for training images in dataset B. Because of
relatively large anisotropy, we trained separate models for
axial and coronal MRI scans and resampled the images to
the median voxel spacing of their respective planes.

Training Procedure
We experimented with models on the basis of two-

dimensional (2D) and three-dimensional (3D) U-Net net-
works and used an ensemble of them in our final model.
Every single network had an encoder-decoder architecture
with skip connections to effectively aggregate semantic
information while retaining high-resolution spatial

Training and model development

Dataset A - training, n=101 patients
(n=403 axial MRI scans)

2D and 3D U-Net models for joint
kidney and liver segmentation

Coronal U-Net ensemble model

Longitudinal testing

2D and 3D U-Net models for kidney
segmentation

Inter-reader variability assessment

Dataset C,
n=323 patients

n=485 axial
MRI scans

n=346 coronal
MRI scans

data from multiple MRI vendors
(Siemens, Philips, GE, Toshiba)

Dataset B - test, n=68 patients
(n=201 coronal MRI scans)

Dataset A, n=101 patients
(n=159 coronal MRI scans)

External multi-protocol testing

Dataset A - test, n=25 patients
(n=149 axial MRI scans)

Axial U-Net ensemble model

MRI sequences
(T2 TSE, T2 SPIR,
T2 mapping)

MRI sequences
(T2 HASTE, T2 TRUFI)

Dataset B - training, n=226 patients
(n=589 coronal MRI scans)

Figure 1. | Flowchart of the procedures for model development and testing. 2D, two dimensional; 3D, three dimensional; HASTE, half-
Fourier–acquired single-shot turbo spin echo; MRI, magnetic resonance imaging; SPIR, spectral presaturation with inversion recovery; T2,
T2-weighted sequence; TRUFI, coronal T2 true fast imaging with steady-state free precession; TSE, turbo spin echo.
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information. The models were trained using five-fold cross-
validation using the nnU-Net framework (F. Isensee et al.,
unpublished data), which is the current state of the art in
abdominal organ segmentation. The models used instance
normalization. Because of GPU memory limitations, train-
ing and inference were performed on patches, which were
subsequently aggregated to produce the final prediction.
The training procedure included the use of the Adam opti-
mizer with an initial learning rate of 33 1024 and early
stopping. The loss function was a combination of Dice and
crossentropy loss, as proposed by Isensee et al. (F. Isensee
et al., unpublished data). The whole training took 8 days on
a machine with two Nvidia Tesla V100 16-GB GPUs. At
inference, image patches were chosen to overlap half of the
patch size and were mirrored along the x and y axes. The
final model was an ensemble of 2D and 3D U-Net architec-
tures using the five networks trained in five-fold crossvali-
dation. Kidney and liver volumes were calculated from the
output segmentation.
A large variety of 2D data augmentation techniques

were used to prevent overfitting, including mirroring, ran-
dom rotation, random scaling, and random elastic defor-
mations. The augmentations were applied slice-wise in
plane for each sample during training for 2D and 3D
U-Nets. Additional details on the training and experiments
can be found in Supplemental Appendix 3, including
selected training hyperparameters in Supplemental Table 3.
The segmentation model and code can be found online at
https://github.com/pwoznicki/ADPKD.

Statistical Analyses and Evaluation
Baseline patient characteristics are reported as mean 6

SD for normal distributions and median (interquartile

range) for skewed distributions. Data were tested for nor-
mality using the Shapiro–Wilk test. Spatial overlap
between predictions and reference outlines was assessed
using the Dice coefficient, the Jaccard index, sensitivity,
precision, the Hausdorff distance, and mean surface dis-
tance, reported as median and 10–90 percentile range.
The segmentations were evaluated separately for each
MRI sequence as well as for each organ (right kidney, left
kidney, and liver). The P values for the statistical differ-
ence between our model and the human reader were
computed using the paired t test for normally distributed
data and the Wilcoxon signed-rank test for non-normally
distributed data. Agreement between TKV and TLV
obtained from automated segmentation and manual
tracing was assessed using linear regression and
Bland–Altman analyses. Both actual and percentage dif-
ferences were evaluated. We compared the Mayo risk
classes (6) calculated with the automated method with
the reference method. Statistical analyses were imple-
mented in Python (version 3.7.9; Python Software Foun-
dation, Wilmington, DE).

Results
Cohort Characteristics
Characteristics of the analyzed study cohorts are

described in Table 1. Dataset A consisted of 126 patients
with a mean age of 43612 years and a mean eGFR of
73628 ml/min per 1.73 m2. A total of 294 patients with a
mean age of 4867 years and a mean eGFR of 52612
ml/min per 1.73 m2 represented dataset B. Dataset C
included 323 patients with a mean age of 44613 years and
a mean eGFR of 67632 ml/min per 1.73 m2. Supplemental

Table 1. Patient cohort baseline characteristics

Parameter Dataset Aa Dataset Ba Dataset C

Patients in total 126 294 323
Training 101 226 0
Test 25 68 323

Patients with a single examination 56 30 323
Patients with one follow-up examination 71 73 0
Patients with two follow-up examinations 0 191 0
Age, yr 43.1612.2 48.367.4 44.3613.1
Men 55 (45%) 140 (48%) 134 (41%)
Women 71 (55%) 154 (52%) 192 (59%)
Height, m 1.7560.11 1.7760.10 1.7460.09
Weight, kg 83.5619.9 84.1616.7 80.1617.4
BMI, kg/m2 27.165.4 26.964.6 26.265.0
eGFR, CKD-EPI, ml/min per 1.73 m2 72.8628.3 51.6611.6 66.8631.6
Mayo Risk class
1A and 1B 37 (29%) 60 (20%) 81 (25%)
1C–1E 89 (71%) 234 (80%) 245 (75%)

Kidney volume, ml
Total 16026982 239961600 191761755
Left 8126507 12386827 9306944
Right 7906580 11616806 8426899

Liver volume,b ml 245761471 261761607 Not measured

BMI, body masss index; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration.
aParameters measured at baseline.
bIn dataset A measured in a subset of 28 patients.
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Table 2. Results of automatic kidney and liver segmentation for different magnetic resonance imaging sequences

Cohort, Organ, and
Magnetic Resonance
Imaging Sequence

No. of
Scans Dice Jaccard Sensitivity Precision Hausdorff

Mean Surface
Distance

Dataset A test
Kidneys

T2 SPIR ax 43 0.96 [0.90–0.97] 0.92 [0.82–0.95] 0.95 [0.91–0.97] 0.97 [0.89–0.97] 11.0 [7.0–18.8] 0.51 [0.28–1.33]
T2 ax 43 0.94 [0.89–0.95] 0.88 [0.80–0.91] 0.92 [0.89–0.95] 0.95 [0.89–0.97] 11.5 [8.0–15.9] 0.78 [0.52–1.39]
T2 map ax 38 0.92 [0.89–0.94] 0.85 [0.80–0.89] 0.92 [0.88–0.95] 0.93 [0.87–0.96] 7.2 [5.0–20.0] 0.46 [0.35–1.0]

Dataset B test
Kidneys

HASTE cor 182 0.97 [0.94–0.98] 0.93 [0.88–0.95] 0.97 [0.94–0.98] 0.96 [0.94–0.98] 10.0 [6.2–18.8] 0.36 [0.26–0.56]
TRUFI cor 18 0.96 [0.94–0.98] 0.93 [0.89–0.95] 0.96 [0.94–0.98] 0.97 [0.94–0.98] 10.3 [7.3–15.8] 0.35 [0.28–0.51]

Liver
HASTE cor 165 0.96 [0.94–0.97] 0.93 [0.88–0.94] 0.96 [0.93–0.98] 0.96 [0.93–0.98] 14.0 [8.6–22.6] 0.46 [0.36–0.72]
TRUFI cor 16 0.96 [0.95–0.97] 0.93 [0.90–0.95] 0.96 [0.92–0.97] 0.97 [0.95–0.98] 16.3 [5.9–29.3] 0.48 [0.39–0.68]

Values are reported as median and 10–90 percentile range (in square brackets). Hausdorff distance and mean surface distance are
measured in voxels. T2, T2-weighted sequence; SPIR, spectral presaturation with inversion recovery; ax, axial; T2 map, T2
mapping; HASTE, half-Fourier–acquired single-shot turbo spin echo; cor, coronal; TRUFI, coronal T2 true fast imaging with
steady-state free precession.
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Figure 2. | Examples comparing the automated segmentation of the kidneys and the liver with the ground truth, showing very high pre-
cision of the automated method. (A) and (B) correspond to patients from the dataset B test: (A) HASTE coronal and (B) TRUFI. (C) and (D)
correspond to patients from the dataset A test: (C) T2 SPIR axial and (D) T2 map axial. Red contours indicate the reference segmentation
(manual), and green and yellow contours indicate automated segmentation of the kidneys and liver, respectively. ax, axial; cor, coronal.
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Table 4 describes detailed characteristics for training and
test splits of datasets A and B.

Segmentation Performance
Automated segmentation results are summarized in

Table 2 and Supplemental Table 5. In test set A, automated
segmentation of kidneys achieved a median Dice coeffi-
cient of 0.94. Results were best for axial T2 SPIR images
(median Dice, 0.96) compared with axial T2 images (Dice,
0.94) and axial T2 mapping (Dice, 0.92). In test set B,
median Dice coefficients of 0.97 and 0.96 were achieved
for kidneys and the liver, respectively. Results were simi-
lar for coronal HASTE images (median Dice, 0.97 for

kidneys and 0.96 for liver) and coronal TRUFI scans
(median Dice, 0.96 for kidneys and the liver). Segmenta-
tion results were consistent for both right and left kidneys,
with a median Dice coefficient of 0.94 for both kidneys in
dataset A and of 0.97 for the right and left kidneys in data-
set B. Our model required between 2 and 4 minutes to seg-
ment a single MR scan from test datasets. Examples of
automated segmentation of kidneys and liver using differ-
ent MRI sequences are shown in Figure 2.

Internal Validation
Linear regression and Bland–Altman plots comparing

our method with manual tracing for TKV and TLV

Dataset A ax - kidneys

Dataset B cor - kidneys

Dataset B cor - liver
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Figure 3. | Internal validation of the model, showing high correlation with the ground truth as well as high precision and low bias of
total kidney and liver volumetry. (A, C, and E) High correlation and (B, D, and F) agreement assessed with Bland–Altman plots for (A–D)
total kidney volume (TKV) measurements and (E and F) total liver volume (TLV) measurements. LoA, limit of agreement.
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measurement are shown in Figure 3. The results are com-
pared with the inter-reader variability of the reference
method, as presented in Figure 4. For TKV estimation, the
bias of our method was 20.2% in dataset A and 0.5% in
dataset B, and precision values were 4% and 4% for data-
sets A and B, respectively. For TLV estimation, which was
evaluated in dataset B, bias was 20.5%, and precision was
3%. These results were comparable with inter-reader vari-
ability, with bias and precision of 0.3% and 3%, respec-
tively, for kidneys and of 22% and 4%, respectively, for
liver volume estimation. In test set A, only one of 25
patients was reclassified into another Mayo risk group
(Supplemental Table 6).

Longitudinal Validation
Supplemental Table 7 presents the absolute and percent-

age growth in TKV and TLV during follow-up. No signifi-
cant differences were found between the automated and
manual volumetric methods for kidneys and liver. Figure 4
shows Bland–Altman plots for agreement between the
growth rate of TKV and TLV from baseline to follow-up.
For TKV growth estimation, bias and precision were 20.
6% and 2% for dataset A (Figure 4A), respectively, and 0%
and 4% for dataset B (Figure 4B), respectively. TLV growth
demonstrated bias of 0.4% and precision of 5% in dataset B
(Figure 4C).

External Validation
Figure 5 shows Bland–Altman plots comparing the dif-

ference between TKV and TLV for external data, which

included dataset C and coronal images from dataset A.
Because of high variability in acquisition protocols and
scanners in dataset C, we calculate TKV in this cohort as a
median of TKVs calculated across all included MRI sequen-
ces. We observed that in dataset A (Figure 5, D and E), the
results were relatively good, with bias and precision of
24% and 6%, respectively, for TKV and 22% and 4%,
respectively, for TLV. In dataset C (Figure 5, A–C), bias
was 21% and precision was 7% when sequences in both
axial and coronal orientations were included, and it was
more precise than TKV calculated from images in either
orientation separately.

Multiscanner Validation
Performance of the automated TKV estimation in MR

images from dataset C, grouped by scanner manufacturers
and models, is evaluated in Table 3. We report the total
number of patients and scans as well as correlation and
TKV difference from the reference standard. The correla-
tion between automated and reference TKV varied from
0.990 for Siemens Amira to 0.999 for Philips Intera, Philips
Ingenia S, and Toshiba scanners and .0.999 for Philips
Achieva and Achieva dStream. Across the scanners, bias
was in the range of 22% to 3%, and precision was in the
range of 3%–11%.

Discussion
In this study, we developed a deep neural network for

fully automated joint kidney and liver segmentation and
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validated it on multiple MRI sequences in longitudinal as
well as external datasets. We obtained high accuracy for
automated kidney and liver segmentation as well as high
agreement between automatically calculated TKV and TLV
and human readers. Importantly, our method enables accu-
rate kidney segmentation in both axial and coronal image
orientation.
Our method was validated on independent test sets and

a large heterogeneous external dataset, which represented
variable organ morphology, intensity distribution, and
extensive range of TKV (range, 296–18,153 ml). Predicted
segmentation masks were slightly more accurate for the
coronal model, which was trained to jointly segment the
kidneys and the liver, than for the axial model, which only
segmented the kidneys (median Dice coefficient, 0.97 ver-
sus 0.94). Liver cysts can be challenging when measuring
TKV because the distribution of cysts between the liver and
the right kidney can be indistinguishable. It is possible that
labeling the liver helps in differentiating the origin of
unclear cysts in the MR image. We also observed that

ensembling 2D U-Nets with a larger field of view and 3D
U-Nets, which aggregate information along the z axis, was
beneficial for segmentation performance.
The average time of manual kidney volumetry in MRI was

reported to take between 32 and 90 minutes (5,10,11,13,24).
Several different methods have been suggested for estimating
TKV, which require less time than manual tracing, including
midslice and ellipsoid methods (5). These approaches use
standardized kidney measurements to calculate the estimated
volume using approximation equations. Consequently, these
methods are relatively imprecise, achieving bias and preci-
sion of 5% and 8%, respectively, for the midslice method and
1% and 9%, respectively, for the ellipsoid method (10).
To address this problem, more recent studies introduced

automated or semiautomated polycystic kidney segmenta-
tion in MRI. The semiautomated Sheffield TKV Tool (11)
showed high accuracy, with bias and precision of 20.3%
and 4%, respectively, but it was subject to inter-reader vari-
ability and took around 4–7 minutes per measurement.
These issues were eliminated by the fully automated
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approaches of Kline et al. (13), externally validated by van
Gastel et al. (15), which reported performance at a level
comparable with inter-reader variability. Another recent
study (14) has reported automated TKV in T2-weighted
MRI studies with bias and precision of 3% and 3%, respec-
tively, for external validation and 4% and 6%, respectively,
for prospective validation. However, this analysis was
externally validated only on a dataset of 20 patients. We
further expand on these studies, proposing a new architec-
ture and extensive multisequence validation for TLV mea-
surement in particular, as there have been few publications
to date about the automated TLV estimation in the litera-
ture (15,25). With our method, kidney and liver volumetry
takes around 2–5 minutes on a computer with a single Nvi-
dia 1080Ti GPU.
Our established deep learning model adds important

new evidence and features to currently available
approaches. First, the model works on both axial and coro-
nal sequences for TKV, and the coronal model was also val-
idated for TLV. Second, the approach shows excellent bias
and precision in several cohorts, including images from
many different scanners without using standardized MRI
sequences. In the internal validation, our method performs
on par with the radiologist for estimating TKV (automated:
0.2%64% and 0.5%64% versus radiologist: 0.3%63%) and
TLV (automated: 20.5%63% versus radiologist:
22%64%). Similarly, high accuracy is achieved for the esti-
mation of TKV and TLV growth in time. The highest Dice
coefficient, signifying the highest segmentation accuracy, is
achieved for coronal HASTE and TRUFI as well as axial T2
SPIR sequences, which were more accurate than axial T2
and T2 map sequences. We believe that this could be

explained by the high robustness of HASTE and TRUFI
regarding imaging of the upper abdomen with the known
risk of motion artifacts due to insufficient breath holding as
well as the higher contrast between the hyperintense kid-
ney parenchyma and the surrounding hypointense perire-
nal fat tissue for the fat-saturated T2 SPIR compared with
the regular T2 sequence. The T2 map sequence is especially
sensitive to motion artifacts, which might have affected the
distinction of the renal parenchyma and the surrounding
tissue slightly. We suggest that the minimal acquisition
mode for an accurate kidney and liver volumetry could
include a single fat-saturated T2 sequence in the coronal or
axial plane.

The external TKV validation in the highly heteroge-
neous dataset C was visibly less accurate (21%67%),
probably owing to varying MRI protocols and hence, the
ensuing lack of standardization (an overview of perfor-
mance in subgroups of scanners/sequences is provided
in Table 3). In this regard, bias and precision are only
slightly better than the reported values for the ellipsoid
equation. However, it is highly likely that the past stud-
ies strongly overestimated the clinical performance of
the ellipsoid equation due to the availability of standard-
ized MRI sequences and limited numbers of trained
readers. This does not reflect the current clinical stan-
dard of care in most settings, in which MRI data are
much more heterogeneous and measurements are
obtained by many different radiologists not specifically
trained. Also, even the ellipsoid equation requires man-
ual measurements and is not provided on a routine basis
by all radiologic practices. Both concerns are addressed
using an automated model.

Table 3. Performance of our model in total kidney volume estimation in magnetic resonance images from dataset C, grouped by
scanner manufacturer and model, as compared with reference manual tracing

Manufacturer
and Model

No. of
Patients

No. of
Scans Correlationa

Total Kidney
Volume Difference,b ml

Total Kidney
Volume Difference, % P Valuec

Siemens
Aera 43 109 0.991 2676185 21.969.9 0.16
Avanto 41 113 0.992 2476160 21.967.8 0.07
SymphonyTim 29 72 0.991 2526200 21.368.7 0.58
Avanto fit 12 23 0.995 2296306 1.365.8 0.37
Amira 8 25 0.990 2681 0.565.0 0.84
Other models 43 92 0.994 2636167 21.967.1 0.01

Philips
Ingenia 26 68 0.998 2416105 1.465.8 0.37
Intera 31 80 0.995 21166550 22.366.3 0.07
Achieva 24 66 .0.999 2566134 21.163.9 0.05
Ingenia S 14 40 0.999 239675 2.064.6 0.17
Achieva dStream 7 20 .0.999 210627 0.363.1 0.69
Panorama HFO 8 20 0.997 2526281 2.5611.1 .0.99

GE
Multiple models 29 73 0.997 2316108 20.965.8 0.001

TOSHIBA
Multiple models 5 12 0.999 1496378 20.1611.0 0.81

High correlations and consistently small differences from reference volumetry can be noticed for the automated method across all
of the models.
aPearson correlation coefficient.
bTotal kidney volume difference was calculated between automated and manual methods.
cCalculated with the Wilcoxon signed-rank test.

2056 KIDNEY360



This study has a few limitations. First of all, the worse
performance in the external dataset C, compared with data-
sets A and B with standardized MRI protocols, warrants fur-
ther investigation into possible causes and ways to bridge
this important gap. Furthermore, the subgroups of individ-
ual scanner types of different manufacturers are too small to
allow for a final conclusion regarding the performance in
direct comparison. The axial model does not perform liver
segmentation because the manual segmentation data for the
liver were not available for axial MRI studies in dataset A.
Another limitation is the short time between baseline and
follow-up for dataset A. Observation over a longer time
period would enable quantifying more substantial disease
progression. Our algorithm would not be able to distinguish
patients in Mayo class 2 from patients in class 1. This step
still requires the assessment by a radiologist/nephrologist
but is much less time consuming than volumetry itself.
Arguably, volumetry is much less important in patients in
Mayo class 2 considering that this class is associated with
slow disease progression. Finally, the proximity between the
kidneys and the liver and the ambiguities inherent to MRI
may lead to misclassification of cysts at the organ border.
That is why the visual inspection is needed.
In conclusion, we developed a deep learning model for fully

automated joint kidney and liver segmentation in patients
with ADPKD and evaluated it in the largest multicenter cohort
to date, including longitudinal and external data. We proved
that our method is an accurate and robust tool for TKV and
TLV estimation as well as their growth rates. Our approach
was evaluated extensively on both axial and coronal MR scans
obtained from 40 different MR scanners, promising future
applicability in the routine clinical setting. The trained model
is published along with the code used for development to
allow for further joint development and usage by other cen-
ters. We hope that this may help enable the translation of the
tool to routine clinical care and facilitate its incorporation in
established medical imaging software solutions.
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