Skip to main content
. 2022 Dec 30;17(12):e0279913. doi: 10.1371/journal.pone.0279913

Table 1. Multivariable regression modeling for global longitudinal strain among (a) whole group and (b) women with HIV.

a. Multivariable regression modeling for GLS among whole group
Whole Model R2 = 0.38, P = 0.0008
Covariate β-estimate β-SE P-value
HIV status (positive) -1.98 0.46 0.0002
ASCVD Risk Score (%) 0.02 0.13 0.87
b. Multivariable regression modeling for GLS among women with HIV
Whole Model R2 = 0.40, P = 0.0499
Covariate β-estimate β-SE P-value
CD4+ T-cell count (cells/mm3) 0.0009 0.002 0.60
HIV viral load (copies/mL) -0.02 0.01 0.12
Expression of HLA-DR on CD14+CD16+ monocytes (MFI) -0.0002 0.00007 0.02

In multivariable modeling among the whole group, HIV status remained an independent predictor of lower GLS even after controlling for ASCVD Risk Score. In multivariable modeling among women with HIV, the expression of HLA-DR on CD14+CD16+ (inflammatory) monocytes remained an independent predictor of lower GLS even after controlling for the HIV-specific parameters of CD4+ T-cell count and HIV viral load.

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; β-estimate, beta-estimate; β-SE, beta-standard error; CD4, cluster of differentiation 4; CD14, cluster of differentiation 14; CD16, cluster of differentiation 16; GLS, global longitudinal strain; HIV, Human Immunodeficiency Virus; HLA-DR, human-leukocyte-associated antigen-D Related; MFI, mean fluorescence index