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Intestinal barrier dysfunction is associated with the occurrence and development of sepsis. Further, aerobic glycolysis plays an essential
role in inflammation and cell death. This study is aimed at investigating the protective effect and mechanism of PFKFB3 inhibition on
intestinal barrier dysfunction in sepsis mice. Sepsis mouse models were established by cecal ligation and puncture (CLP) in wild-type
mice and Gsdmd ™" mice. The results showed that the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)
in the small intestines was significantly upregulated in sepsis. 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), the specific
inhibitor of PFKFB3, and Gsdmd gene knockout significantly inhibited the inflammatory response and cell death caused by sepsis,
thus alleviating intestinal damage and barrier dysfunction. 3PO was also shown to significantly inhibit oxidative stress and NLRP3/
caspase-1/GSDMD-dependent cell pyroptosis in the small intestines. The in vitro studies revealed that 3PO reduced NLRP3/
caspase-1/GSDMD-dependent cell pyroptosis by inhibiting ROS. Taken together, our results suggest that PFKFB3 is involved in
inflammation, oxidative stress, and pyroptosis during sepsis and enhances intestinal damage, which may provide important clues
about the potential targets to be exploited in this highly lethal disease.

Aerobic glycolysis is an important metabolic pathway con-
trolled by a variety of glycolytic enzymes. It plays an essential

Sepsis is a life-threatening organ dysfunction caused by a dys-
regulated host response to an infection and is a major cause of
admission and death in intensive care units [1]. The gut is con-
sidered to play a crucial role in the pathophysiology of sepsis
by functioning as the “motor” of the systemic inflammatory
response [2]. Intestinal barrier dysfunction leads to microbial
translocation, which plays a vital role in secondary infection
and sepsis [3, 4]. Therefore, exploring new effective therapeu-
tics against intestinal injury in sepsis is of great significance.

role in tumors and sepsis [5, 6, 7]. Among the PFKEB isoen-
zymes, PFKFB3 mainly relies on glycolysis to produce ATP,
regulating glycolytic flux and fructose-2,6-BP (Fru2,6-BP).
Fru2,6-BP is an effective allosteric regulator of the key glyco-
lytic enzyme phosphofructokinase 1 (PFK-1) [8]. PFKFB3 is
widely expressed in human tissues and has been shown to
affect the physiological and pathological activity of various tis-
sues. PFKFB3 has been shown to protect against diet-induced
insulin resistance and inflammation in adipose tissues [9].
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PFKFB3 is also involved in the regulation of glycolysis, cell via-
bility, and proliferation in tumor cells. Studies have found that
3PO, the specific inhibitor of PFKFB3, inhibits the production
of lactic acid by glycolysis and inhibits tumor growth [10, 11,
12]. In addition, aerobic glycolysis has also been shown to play
an essential role in sepsis. 3PO can reduce sepsis-related lung
injury, including acute lung injury (ALI), by inhibiting inflam-
mation and epithelial cell apoptosis [7]. Hence, PFKFB3-
dependent aerobic glycolysis may act as a key regulator in
the pathogenesis of intestinal barrier dysfunction in sepsis.

In the present study, we explored the role and mecha-
nism of PFKFB3 in sepsis barrier dysfunction using PFKFB3
small molecule inhibitor 3PO and Gsdmd™" mice.

2. Materials and Methods

2.1. Animals. To systematically compare the protective
effects of PFKFB3 inhibition and GSDMD knockout on
septic mice, we used GSDMD ™~ mice. Gsdmd”" mice of
C57BL/6 genetic background were purchased from Jiangsu
Jicui Yaokang Biotechnology Co., Ltd. Six-week-old C57BL/6
wild-type male mice were housed in standard environmental
conditions with a 12 h light/12 h dark conditions and fed with
standard commercial chow diet with free access to water. The
studies involving animals were reviewed and approved by the
Animal Ethics Committee of Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology.

2.2. CLP-Induced Sepsis Model. The sepsis model was estab-
lished by CLP as previously described. Briefly, all experi-
ments used 7-8-week-old male mice (22-26 grams). The
mice were anesthetized by an intraperitoneal injection of
sodium pentobarbital (40 mg/kg). The sham-operated mice
underwent the same procedure without CLP. Finally, the
mice were resuscitated by subcutaneous injection of sterile
normal saline (50 mL/kg).

2.3. Experimental Protocol. C57BL/6] mice were randomly
divided into five groups: (1) sham group, (2) CLP group,
(3) sham-3PO (50 mg/kg) group, (4) CLP+3PO (50 mg/kg)
group, and (5) CLP+Gsdmd™" group. The dose of 3PO was
selected based on a previous experimental study [13]. The
mice were euthanized 24 hours after the sham operation or
CLP surgery for subsequent experiments. Another group of
model animals was selected for treatment with CY-09
(TopScience, USA, T4164) at a dose of 20 mg/kg to reveal
the significance of NLRP3 in intestinal injury [14]. LPS
(1 pg/mL) was used to induce Caco-2 cell injury in establish-
ing an in vitro model of sepsis. Caco-2 was purchased from
the Cell Bank of Shanghai Institutes for Biological Science
(Shanghai, China). The intestinal epithelial cell line Caco-2
was cultured in Dulbecco’s modified Eagle medium (DMEM)
containing 5% fetal bovine serum (FBS), 100 U/mL penicillin,
and 100 pg/mL streptomycin at 37°C and 5% CO,. Caco-2
cells were incubated with or without 3PO at a dose of 2mM
for 30min before the model set-up. The Caco-2 cells were
incubated with NAC (10 mM) for 30 min before the model
set-up to clarify the role of ROS in injury. The in vitro doses

Oxidative Medicine and Cellular Longevity

of LPS, 3PO, and NAC were selected based on a previous
experimental study [7, 15, 16].

2.4. Western Blot Analysis. Intestinal tissues were homoge-
nized in a protease inhibitor cocktail containing radioimmu-
noprecipitation assay (RIPA) lysis buffer (Boster, Wuhan,
China). The protein concentration was quantitatively deter-
mined using bicinchoninic acid (BCA) protein kit (Boster).
The extracted protein was separated by 10% SDS-PAGE
and transferred to PVDF membranes. The membranes were
blocked with 5% nonfat milk and incubated with primary
antibodies (including PFKFB3, NLRP3, caspase-1, GSDMD,
IL-18, and IL-1f) (1:1000, ab, Abcam, USA) overnight at
4°C. After that, the membranes were incubated with rabbit
HRP-conjugated secondary antibody at room temperature
for 2 h, and the protein bands were visualized using chemilu-
minescent peroxidase substrate (Millipore, Boston, MA,
USA). GAPDH antibody was used as the internal control.
Densitometric analysis was quantified using the Image] soft-
ware (National Institutes of Health, USA).

2.5. Histological Examination. Intestinal tissues were fixed
overnight in 4% paraformaldehyde, embedded in paraffin,
and cut into 5um thick slices. After that, hematoxylin and
eosin (H&E) staining was performed. Histopathological
examinations were carried out using a microscope (RX51,
Olympus Optical Co., Ltd., Tokyo, Japan).

2.6. ELISA. The intestinal tissues were homogenized and
centrifuged at 3000 RPM at 4°C for 15 min, and the superna-
tant was collected. After dilution, the supernatant was placed
into the sample wells on the HRP plate. The absorbance was
measured at 450 nm using a microplate analyzer (Multiskan
Go, Thermo Fisher Scientific, Inc.). Levels of tumor necrosis
factor (TNF-a), interleukin- (IL-) 6, and IL-1/3 were deter-
mined by an ELISA kit (Shenzhen Dawei, China).

2.7. Measurement of Intestinal Permeability. Diamine oxi-
dase (DAO) levels were detected by ELISA (YM-S2959,
Shanghai Yuanmu Biotechnology Co., Ltd., Shanghai,
China). Serum D-lactic acid levels were determined by
enzyme coupling spectrophotometry (K667-100, BioVision,
California, USA). All experimental procedures were carried
out in strict accordance with the laid guidelines.

2.8. Immunofluorescence Staining. The sections were stained
overnight with rabbit polyclonal antibody against NLRP3
(1:200) at 4°C followed by incubation at room temperature
for 2h with a mixture of goat anti-rabbit CY5.5-labeled
secondary antibody (Abcam, Cambridge, UK) and DAPI
staining for 10 min. Images were then obtained by confocal
fluorescence microscopy (RX51, Olympus Optical Co.,
Ltd., Tokyo, Japan).

2.9. Oxidative Stress Assessment. The intestinal tissues were
homogenized and centrifuged at 3000 rpm for 10 min, and
the supernatant was collected. Reactive oxygen species
(ROS), malondialdehyde (MDA), and superoxide dismutase
(SOD) were measured using the ROS, MDA, and SOD test
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FIGURE 1: The expression of PFKFB3 was elevated in the intestinal tissues of septic mice. (a) The experimental design of this study. (b, ¢) The
expression of PFKFB3 was analyzed by Western blot at different time points after CLP. Experimental values are expressed as means + SD
(n=5 per group). Statistical analysis was performed using one-way ANOVA (c). **P <0.01 and ***P < 0.001.

kit assay kits (Nanjing Jiancheng Bioengineering Institute)
according to the manufacturer’s instructions.

2.10. Knockdown of GSDMD in Caco-2 Cells. To knock down
Gsdmd, Caco-2 cells were transfected with Gsdmd target
siRNA or control nonspecific siRNA (Ruibo Biotechnology,
China) according to the manufacturer’s protocol. The
sequences were as follows: si-GSDMD: GCAGGAGCTTC
CACTTCTA. After 8 h transfection, LPS (1 pg/mL) stimulated
the cells for 6h and then proceeded with the experiments.

2.11. Cell Viability Assay and LDH Detection. Cell viability
was assessed using the CCK-8 assay (Beyotime, China)
according to the manufacturer’s instructions. The absor-
bance was measured at 450 nm using Thermo Fisher Scien-
tific to evaluate cell viability. LDH was determined an LDH
Assay Kit (Beyotime, China) according to the manufactur-
er’s instructions.

2.12. Bioinformatic Methodology. To see if the gene is coex-
pressed and to what extent, MEM (https://biit.cs.ut.ee/mem/
index.cgi) was adopted, where the human A-AFFY-44 dataset
was selected for coexpression analysis of genes.

2.13. Statistical Analyses. All statistical analysis was com-
pleted using GraphPad Prism 8.0 (USA). Data were
described by means + standard deviations (SD). Normally

distributed data were determined by one-way analysis of
variance (ANOVA), followed by the Tukey post hoc test.
Not normally distributed data were analyzed with nonpara-
metric Wilcoxon tests. Survival data were analyzed using the
Kaplan-Meier method, and the survival curves were com-
pared using the log-rank test. Statistical significance was
defined as P value < 0.05.

3. Results

3.1. PFKFB3 Is Upregulated in the Small Intestines of CLP
Mice. PFKFB3 expression has been reported to be elevated
in the septic myocardium. Further, inhibition of PFKFP3
alleviates myocardial injury and acute lung injury in septic
rat models [7; 13]. Therefore, we hypothesized that PFKFB3
was upregulated in septic intestinal tissues. To test this hypoth-
esis, we developed a mouse model of sepsis (Figure 1(a)).
Western blot analysis showed that the expression of PFKFB3
was significantly increased in the intestinal tissue of mice at
24, 48, and 72 hours after CLP operation (Figures 1(b) and
1(c)). Thus, we hypothesized that PEKFB3 might contribute
significantly to CLP-induced intestinal injury.

3.2. Inhibition of PFKFB3 Improves Survival in CLP Mice.
MEM analysis showed that PFKFB3 and GSDMD were
coexpressed in some cases (Figure 2(a)). Deletion of the
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FIGURE 2: Inhibition of PFKFB3 and Gsdmd gene knockout can improve the prognosis of septic mice. (a) The coexpression of PFKFB3 and
GSDMD was analyzed by MEM. (b, ¢) The LPS-induced PFKFB3 expression was inhibited by 3PO in Caco-2 cells. (d) GSDMD and
GSDMD-NT expression in intestinal tissues of wild-type and Gsdmd”™ mice after sham or CLP operation. (e) Survival rates were
calculated in different groups. The values were shown as mean+ SD (n =5 per group in (d) and (e)). Statistical analysis was performed
using a t-test (e) and log-rank test (c). ***P < 0.001 versus sham group; “P < 0.05, *P < 0.01, and ***P < 0.001 versus CLP group.

Gsdmd gene has been reported to alleviate sepsis-induced
intestinal barrier dysfunction [17]. Therefore, we evaluated
the effect of 3PO and Gsdmd gene deletion on survival in
CLP-operated mice. The mice were divided into five
groups and monitored for eight days. The survival rate
in the CLP group (5 out of 24 mice, 20.8%) was signifi-
cantly lower than that of the sham-operated group and

sham+3PO group (10, 100% sham-operated group and
sham+3PO group, P <0.001). Interestingly, the CLP+3PO
and CLP+Gsdmd” groups had significantly increased sur-
vival rates at 60.9% (14 out of 23 mice, P < 0.01) and 52.7%
(10 out of 19 mice, P <0.05), respectively (Figure 2(c)). In
addition, a comparative analysis of the body weight in the
surviving mice showed that 3PO and GSDMD gene deletion
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Ficurk 3: Effects of 3PO or Gsdmd genetic deletion on intestinal histology and intestinal barrier function. At 24h after sham or CLP
operation, the histopathological alterations of gut tissues were measured using H-E staining (a) and analyzed by Chiu’s score (b). Scale
bar =100 ym. (c) Detection of DAO and (d) D-lactic acid levels in serum. The values were shown as mean+SD (n=7 per group).
Statistical analysis was performed using a t-test (b-d). ***P < 0.001 versus sham group; “**P < 0.001 versus CLP group.

significantly increased the body weight of the septic mice
(P <0.05 and P < 0.001, respectively) (Figures 2(d) and 2(e)).

3.3. The Effect of 3PO on the Intestinal Pathological Changes
and Permeability. Light microscopy showed that the villi in
the small intestinal mucosa of the sepsis mice were thinner,
shorter, and more disorderly arranged, with cell shedding at
the top of the villi, consistent with previous studies [17, 18].
The microvilli became thinner and shorter, and some micro-
villi were destroyed (Figure 3(a)). The results also showed
that 3PO and Gsdmd gene deletion significantly improved
the pathologic features of intestinal injury and decreased
Chiu’s score (P < 0.001) (Figure 3(b)). These results suggested
that 3PO and Gsdmd gene deletion could significantly
reduce the pathological manifestations of CLP-induced
intestinal injury.

Sepsis can lead to increased intestinal permeability in
mice, an important cause of bacteremia and septic shock
[2, 4]. D-lactic acid and DAO are important indicators for
intestinal damage, with reductions in D-lactic acid and
DAO indicating an impairment in the integrity of the intes-

tinal mucosa [19, 20]. The results of this study showed the
serum levels of D-lactic acid and DAO to be markedly
increased in mice after CLP operation. On the other hand,
3PO and Gsdmd gene deletion significantly reduced D-
lactic acid and DAO expression, suggesting that 3PO and
Gsdmd gene deletion could significantly improve the intesti-
nal permeability induced by CLP (P <0.001) (Figures 3(c)
and 3(d)).

3.4. The Effect of 3PO on Intestinal Inflammatory Cytokines.
Elevated inflammatory mediators in the intestinal tract are
an important cause of intestinal injury [4, 17]. According
to recent studies, 3PO is suggested to protect against acute
lung injury by reducing inflammation. Therefore, ELISA
was used to detect the levels of TNF-a, IL-6, and IL-1f in
each group. The results showed that TNF-«, IL-6, and
IL-1p3 levels in the intestine of the CLP group were signif-
icantly increased compared with the sham-operated group
(P <0.05). However, 3PO and Gsdmd gene deletion signifi-
cantly reduced the levels of TNF-a, IL-6, and IL-1 in intesti-
nal tissues of septic mice (P < 0.05) (Figures 4(a)-4(c)).
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###

P <0.001 versus CLP group. The values were shown as mean + SD (n=5). Statistical analysis was performed using a t-test (a—c).

***P <0.001 compared with the no-treatment group and P <0.01 compared with the CLP treatment group.

3.5. 3P0 Inhibits the Expression of NLRP3 in Septic Intestinal
Tissue. Based on the above results, we speculated that 3PO
could reduce intestinal barrier dysfunction by inhibiting
GSDMD-dependent pyroptosis. Then, we further explored
the effect of 3PO on cell pyroptosis. Activation of NLRP3
inflammasome is an essential pathway of cell pyroptosis
[21]. MEM analysis showed that PFKFB3 and GSDMD were
coexpressed in some cases (Figure 5(a)). Therefore, we
explored the effect of 3PO on NLRP3 expression. Both
fluorescence staining and Western blot indicated that the
expression of NLRP3 was significantly increased in the
intestinal tissues of septic mice. Furthermore, 3PO could
significantly inhibit the expression of NLRP3 (Figures 5(b)
and 5(c)). These results suggest that 3PO may alleviate intes-
tinal barrier dysfunction by inhibiting NLRP3-dependent
cell pyroptosis.

3.6. 3PO Protected against Sepsis-Induced Intestinal Injury
and Pyroptosis. To determine whether 3PO played a protec-
tive role by inhibiting NLRP3-induced pyroptosis, the CLP
mice were given 3PO in the model group and CY-09, an
NLRP3 inhibitor, as the positive control. IL-13 and IL-18
are the typical inflammatory cytokines released from the
pyroptotic cell. Western blot analysis showed that treatment
with 3PO and CY-09 significantly reduced cleaved caspase-1
and pyroptosis-associated inflammatory mediators, IL-1p3
and IL-18 (Figures 6(a) and 6(b)). In addition, GSDMD
(full-length GSDMD) and its cleaved and activated fragment
GSDMD-NT were significantly decreased in the 3PO and
CY-09 groups (Figures 6(c) and 6(d)). 3PO has been shown
to regulate many forms of cell death. We further inhibited
pyroptosis by knocking down Gsdmd in Caco-2 and estab-
lished the sepsis cell model with LPS to confirm the role of
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3PO in cell pyroptosis in intestinal tissues of CLP. The results
revealed that in the absence of 3PO, a knockdown of Gsdmd
also improved LDH release and cell viability (Figures 6(e)
and 6(f)). Caco-2 cells were transfected with si-GSDMD to
knock down the expression of GSDMD (Supplementary
Figure 1). There were no differences in cell viability and
LDH between the si-Gsdmd +3PO and si-Gsdmd
groups (Figures 6(e) and 6(f)). In conclusion, treatment with
3PO could inhibit the NLRP3-induced pyroptosis, one of the
primary cell death pathways in intestinal injury in sepsis.

3.7. Effect of 3PO on Oxidative Stress in Intestinal Tissues.
Aerobic glycolysis has been reported to be associated with
increased oxidative stress in cancer [22]. Therefore, we
investigated whether 3PO affects oxidative stress in intestinal
tissue. The results showed that the ROS and MDA levels
were decreased, while SOD levels were increased signifi-
cantly after treatment with 3PO (Figures 7(a)-7(c)).

3.8. 3PO Inhibits NLRP3/Caspase-1 Pyroptosis by Suppressing
ROS. Oxidative stress is another important cause of intestinal

damage and intestinal barrier dysfunction in sepsis. Numer-
ous reports have suggested that ROS is an important activator
of NLRP3 [14, 23]. Therefore, we stimulated Caco-2 cells with
LPS and intervened with NAC (an ROS scavenging agent) and
3PO. Results showed that LPS induced the upregulation of
ROS and LDH and decreased SOD and cell viability. However,
3PO can significantly reverse this change, and the effect is
similar to NAC (Figures 8(a), 8(b), 8(e), and 8(f)). In addition,
both LPS and H,O, induced activation of the NLRP3/caspase-
1/GSDMD pathway in Caco-2 cells, apparently reversed by
NAC and 3PO (Figures 8(c) and 8(d)). These results
demonstrate that 3PO protects against sepsis-induced intesti-
nal barrier dysfunction and damage by inhibiting the
ROS-NLRP3 pathway.

4. Discussion

Sepsis is a leading cause of death in noncardiac intensive
care units worldwide. It is characterized by rapid disease
progression and high mortality [1]. Intestinal mucosal dys-
function is considered a driving factor for multiple organ
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the released LDH were detected in C2C12 culture medium supernatant. (f) Cell viability was determined using the CCK-8 assay. The values
were shown as mean + SD (n =5). Statistical analysis was performed using a ¢-test (b, d-f). ***P < 0.001 compared with the no-treatment

###

group and

P <0.001 compared with the CLP treatment group. **P < 0.01 compared with the si-Con group and $$P < 0.01 compared with

the LPS+si-Con group. 3PO protected against CLP-induced intestinal injury by suppressing NLRP3/caspase-1/GSDMD.

dysfunction syndromes [2, 4]. Therefore, there is an urgent
need to explore new and potential therapeutic targets to
ameliorate or prevent the progression of this devastating dis-
ease. A growing number of studies have shown that PFKFB3
is enhanced in various inflammatory or immune-related dis-
eases, such as acute lung injury, myocardial dysfunction, and
cancer [7, 10, 13, 22]. In this study, the Western blot results

showed that PFKFB3 was significantly elevated in septic
mice with intestinal injury (Figure 1). To further investigate
the role of PFKFB3 in sepsis-induced intestinal dysfunction,
we established CLP mice and intervened with the PFKFB3
inhibitor 3PO. 3PO was shown to inhibit inflammation, oxi-
dative stress, and pyroptosis, thereby improving intestinal
dysfunction and alleviating sepsis.
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F1Gure 7: 3PO alleviates oxidative stress in intestinal tissues. (a—c) Oxidative stress was measured by ROS, MDA, and SOD. The values were
shown as mean + SD (n=7 - 9). Statistical analysis was performed using a t-test (a-c). ***P < 0.001 compared with the sham group and
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P <0.001 compared with the CLP treatment group.

Inflammation has long been recognized as an important
pathological mechanism leading to organ injury in sepsis. Pre-
vious studies have shown a complex relationship between
intestinal mucosal injury and immune homeostasis [24, 25].
PFKFB3 plays an important role in regulating inflammation
and cell death in a variety of inflammatory disease models
[7, 12, 13]. Recently, it was reported that the pyroptosis path-
way contributed to intestinal injury induced by bacterial sepsis
[17]. MEM analysis showed that PFKFB3 and GSDMD were
significantly coexpressed. Therefore, we explored the effects
of Gsdmd gene deletion and PFKFB3 inhibitor, 3PO, on intes-
tinal damage in sepsis. First, we found that Gsdmd gene dele-
tion and 3PO could significantly improve the nutritional
status and prognosis of sepsis mice. The HE staining showed
that 3PO and Gsdmd gene deletion could significantly
improve the intestinal mucosal injury caused by CLP. Further,
we explored the effect of 3PO on the levels of inflammatory
mediators in the small intestinal tissues. We found that
TNE-q, IL-6, and IL-13 were significantly increased in the sep-
sis group, offset by 3PO and Gsdmd gene deletion. These

results were consistent with previous reports [7, 26]. These
results indicate that 3PO could significantly reduce intestinal
inflammation.

Intestinal flora D-lactic acid and mammalian intestinal
mucosa high enzyme DAO are sensitive markers of intestinal
mucosal injury and barrier function. In this study, serum levels
of D-lactic acid and DAO in the sepsis group were signifi-
cantly higher than in the sham operation group, indicating
an impaired intestinal mucosal barrier function in sepsis rats.
The serum levels of D-lactic acid and DAO in mice treated
with 3PO and Gsdmd gene deletion were significantly
decreased, suggesting that 3PO and Gsdmd gene deletion
could enhance the intestinal barrier function. In sepsis, dam-
age to the intestinal mucosa and barrier dysfunction leads to
bacteria and toxins passing into the bloodstream, exacerbating
the condition. This study revealed that 3PO had a substantial
protective effect on the intestinal mucosal barrier.

Numerous studies have shown that cell pyroptosis, a
programmed cell death dependent on GSDMD activation,
is closely related to the systemic inflammatory response
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and intestinal barrier dysfunction caused by sepsis [17, 27,
28, 29]. Activation of the NLRP3 inflammasome leads to
pro-caspase-1 self-cleavage and the production of active
c-caspase-1, which in turn mediates the maturation and
secretion of IL-1 and IL-18. In addition, activated c-
caspase-1 cleaved GSDMD to produce GSDMD-NT with
pore-forming activity, leading to cell lysis and inflammatory
cytokine release [28, 29, 30, 31]. During bacterial infection,
GSDMD is necessary for cell pyroptosis, acts as a pathway

P <0.001 compared with the LPS treatment group.

for the release of danger signals such as IL-1 family cytokines,
and eliminates the replicative niche of bacterial [27]. However,
overactivity of GSDMD can aggravate inflammation, leading
to septic shock [28, 32, 33, 34]. Several studies have found that
GSDMD is an essential therapeutic target for reducing the
inflammatory response and organ dysfunction in sepsis [26,
27, 34, 35, 36, 37]. GSDMD is highly expressed in intestinal
epithelial cells, while caspase-1 and caspase-11 play an
important role in controlling intestinal pathogens [38, 39].
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FIGURE 9: Schematic model for the inhibition of PFKFB3 preserves intestinal barrier function in sepsis via preventing GSDMD-dependent

pyroptosis by inhibiting ROS production.

Furthermore, GSDMD contributes to NLRP9-dependent
pyroptosis in intestinal epithelial cells (IECs) in mice infected
with rotavirus [40]. A recent study reported that the pyropto-
tic pathway contributed to inflammatory intestinal injury
induced by bacterial sepsis [17]. A recent study has found that
inhibition of the trophoblast TLR4/NF-«xB/PFKFB3 signaling
pathway to correct glycometabolic reprogramming and
NLRP3 inflammation-induced pyroptosis may be a treatment
approach for preeclampsia [41]. In intestinal I/R injury
models, metformin inhibits TXNIP expression and TXNIP
interaction with NLRP3, protecting intestinal barrier destruc-
tion and pyroptosis [42]. However, whether 3PO can inhibit
pyroptosis in sepsis remains unclear. In this study, 3PO was
shown to significantly inhibit the overexpression of NLRP3/
caspase-1/GSDMD in intestinal epithelial cells induced by
CLP. These results suggest that 3PO protects against sepsis-
induced intestinal injury by suppressing NLRP3/caspase-1/
GSDMD-dependent pyroptosis.

Ogxidative stress plays a critical role in regulating various
biological processes, including cell death and immunity [43,
44]. Oxidative stress has also been reported to be an essential
initiator of pyroptosis and is closely related to septic organ fail-
ure [23, 45, 46]. Oxidative stress is also a key factor in intesti-
nal barrier dysfunction in patients with sepsis [47]. ROS and
MDA are often used as biomarkers for oxidative damage in
diseases. SOD is one of the most important biological enzymes
in the antioxidant system. This study found that ROS and
MDA were significantly increased while SOD activity was
low in the sepsis group. However, 3PO partially reversed this

phenomenon. This finding suggests a protective effect of
PFKFB3 inhibitor against intestinal oxidative stress.

ROS are a group of molecules that include peroxides,
superoxides, hydroxyl groups, and singlet oxygen [48]. As
a second messenger driving inflammasome activation, ROS
is considered a common NLRP3/caspase-1 complex activa-
tor that mediates pyroptosis [48]. Under normal circum-
stances, antioxidant enzymes can clear ROS during cell
metabolism, maintaining a balance between ROS production
and clearance. ROS accumulation may overwhelm the
endogenous antioxidant defense system and thus cell disor-
ders such as oxidative stress upregulation and cell death
[48]. Studies have shown that LPS can induce intestinal epi-
thelial cell damage through ROS production [45, 47, 49]. A
growing number of studies have found that ROS interacts
with NLRP3 inflammasome during sepsis and regulates
immune-inflammatory response [23, 44, 48]. A recent study
found that targeting PFKFB3 to block glycolysis alleviates
acute lung injury associated with sepsis by inhibiting inflam-
mation, ROS production, and apoptosis of alveolar epithelial
cells [7]. In this study, we found that LPS-stimulated NLRP3
inflammasomes significantly increased in a ROS-dependent
manner, inducing cell death. We also found that 3PO and
NAC inhibited ROS production, thereby reducing NLRP3/
caspase-1/GSDMD activation and thus alleviating cell dam-
age. However, H,O, reversed the protective effect of 3PO on
pyroptosis. These results indicate that 3PO mainly inhibited
cell death by inhibiting ROS production and thus played a
protective role in the intestinal tract (Figure 9).
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5. Conclusion

In conclusion, this study suggests that Gsdmd gene knock-
out has a protective effect on intestinal barrier function in
sepsis. The mechanism of this effect may be related to the
inhibition of inflammation and oxidative damage. The find-
ings of this study provide insights into the role of GSDMD
in regulating intestinal barrier function in sepsis and provide
a potential therapeutic target for the treatment of sepsis.
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