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Magnetic anomaly inversion 
through the novel barnacles 
mating optimization algorithm
Hanbing Ai 1, Khalid S. Essa 2*, Yunus Levent Ekinci 3, Çağlayan Balkaya 4, 
Hongxing Li 1 & Yves Géraud 5

Dealing with the ill-posed and non-unique nature of the non-linear geophysical inverse problem via 
local optimizers requires the use of some regularization methods, constraints, and prior information 
about the Earth’s complex interior. Another difficulty is that the success of local search algorithms 
depends on a well-designed initial model located close to the parameter set providing the global 
minimum. On the other hand, global optimization and metaheuristic algorithms that have the ability 
to scan almost the entire model space do not need an assertive initial model. Thus, these approaches 
are increasingly incorporated into parameter estimation studies and are also gaining more popularity 
in the geophysical community. In this study we present the Barnacles Mating Optimizer (BMO), a 
recently proposed global optimizer motivated by the special mating behavior of barnacles, to interpret 
magnetic anomalies. This is the first example in the literature of BMO application to a geophysical 
inverse problem. After performing modal analyses and parameter tuning processes, BMO has been 
tested on simulated magnetic anomalies generated from hypothetical models and subsequently 
applied to three real anomalies that are chromite deposit, uranium deposit and Mesozoic dike. A 
second moving average (SMA) scheme to eliminate regional anomalies from observed anomalies 
has been examined and certified. Post-inversion uncertainty assessment analyses have been also 
implemented to understand the reliability of the solutions achieved. Moreover, BMO’s solutions for 
convergence rate, stability, robustness and accuracy have been compared with the solutions of the 
commonly used standard Particle Swarm Optimization (sPSO) algorithm. The results have shown that 
the BMO algorithm can scan the model parameter space more extensively without affecting its ability 
to consistently approach the unique global minimum in this presented inverse problem. We, therefore, 
recommend the use of competitive BMO in model parameter estimation studies performed with other 
geophysical methods.

The magnetic method has so far been used in a wide range of investigations at various  sites1–11. The most impor-
tant task of the magnetic method is to explore subsurface geology using minor changes in the geomagnetic 
field caused by magnetized masses. As with other geophysical methods, magnetic anomalies are assessed by 
making some assumptions and generalizations. Magnetized masses are commonly analyzed using some simple-
shaped source  structures12,13. However, these geometrically idealized source structures cannot be considered 
geologically perfect, but are used in the investigation of the magnetic anomalies to simplify modelling and 
interpretation  procedures14–17. In order to better interpret magnetized causative structures, many computational 
approaches have been proposed, such as matching  curve18,19, Fourier and Hilbert  Transforms20, characteristics 
points and  distances21, Least-squares  approximations22–24, Euler  Deconvolution25, simplex  algorithm26, correlation 
 techniques27, variance  analyses28, derivative-based and moving average-based  algorithms29,30, spectral analysis 
 techniques31, and local wave number  techniques32. In addition to these methodologies, the most frequently 
used tool for interpreting magnetic anomalies is the inversion approach. In geophysics, reconstructing the 
appropriate subsurface model using a set of observations is known as inversion or inverse problem. Owing to 
the well-acknowledged ill-posed and non-unique nature of magnetic inverse problems, estimations of the model 
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parameters of buried magnetized sources can be achieved through some challenging  processes33–37. Local and 
global search algorithms can be applied for the inversion  procedure21,38. Derivative-based local search algorithms 
using various regularization procedures have been routinely used for this task. Despite their very fast convergence 
characteristics, they have some serious disadvantages. These algorithms require prior information depending on 
geological conditions. Moreover, their success largely depends on the choice of initial guess and therefore they 
cannot scan the entire model space. They typically tend to reach a minimum in the vicinity of the initial model 
parameter set. Thus, these optimizers may reach any local minimum instead of the global minimum which is 
the deepest valley in the objective function surface topography. On the other hand, derivative-free global opti-
mization and metaheuristic algorithms use a random walk search to reach the minimum in the given model 
parameter space. They can effectively scan the entire model space and therefore do not require a well-designed 
initial guess. Additionally, they have the ability of escaping local minima in the complex nature of the error 
function topography. Because of these advantages, the use of such nature-inspired algorithms in geophysical 
inverse problems has become very popular over the last decade. In fact, the first applications of these intelligence 
algorithms date back to the years before 1940, which is called the pre-theoretical period when the studies were 
 informal39. The period between 1940 and 1980 is the early period, and these algorithms were formally studied 
during this period. In the method-centric period which is between 1980 and 2000 metaheuristic studies increased 
dramatically and numerous different approaches were introduced as an alternative tool to classical optimization 
 algorithms40. The period from the 2000s to the present is called the framework-centric period, and the idea of 
describing computational intelligence algorithms as frameworks rather than methods has  increased39.

Standard Particle Swarm Optimization (sPSO) and Genetic Algorithm (GA) are commonly used in geophysi-
cal  inversion41. Some comparative studies have verified that sPSO outperforms GA in terms of accurateness and 
better convergence characteristics for various  problems42–45. However, it should be noted that there is no optimal 
metaheuristic algorithm for solving all types of inverse problems. Therefore, new problem-specific global opti-
mization algorithms are still being developed. Accordingly, adaptations of new nature-inspired derivative-free 
algorithms for the inversion of magnetic anomalies have taken their place in the literature. In most cases, the 
outputs obtained were not compared with the results of another metaheuristic algorithm. Besides, in most stud-
ies, possible uncertainties in the model parameters obtained were not investigated. However, it is a well-known 
fact that global optimization and metaheuristic algorithms allow to perform uncertainty analysis which is an 
essential step in understanding the reliability of the solutions obtained. The difficulty of the inverse problem is 
increased when multiple-source structures are used to represent the resulting magnetic anomalies. Therefore, 
some of the anomaly peaks are not used in most studies, and the number of source structures is reduced and 
attempts are made to find a solution. In addition, it is an important deficiency that the possible regional magnetic 
anomaly effect is mostly ignored. Table 1 lists information about magnetic anomaly inversion studies carried out 
in recent years with global optimization algorithms and the presented study. It is clear that comparative tests, 
uncertainty analyses and regional effect investigations were not performed together in previous studies. In this 
study, we present a novel bio-inspired algorithm called Barnacles Mating Optimizer (BMO) for the inversion 
of magnetic anomalies. This optimization algorithm imitates the unique mating character of barnacles. Three 
theoretical cases with different scenarios were used to understand the proficiency of the proposed algorithm. 
Besides, three real data sets, including a chromite ore anomaly (India), an uranium ore anomaly (India) and an 
intrusive Mesozoic dyke anomaly (Brazil) were taken into consideration. Prior to the inversion experiments, we 
performed some modal analyses by mapping the surface topographies of the objective function for the model 

Table 1.  Magnetic anomaly inversion studies carried out in recent years with global optimization algorithms 
and the presented study.

Algorithm Inspiration Compared with Uncertainty analyses Regional analyses Magnetic anomaly

Ant-Colony Optimization (ACO)47 Strategies of ant colonies to find the shortest 
path PSO No No Six sources

Simulated Annealing Optimization (SAO)34 Metal annealing process None Yes No Single source

Genetic Algorithm (GA)48 Evolutionary procedures None No No Single source

Differential Evolution Algorithm (DEA)49 Evolutionary procedures None No No Two sources

Grey Wolf Optimization (GWO)50 Hierarchical behaviors of grey wolves for 
hunting PSO No No Four sources

Particle Swarm Optimization (PSO)51 Behaviors of foraging birds and fish None No No Two sources

Genetic Price Algorithm (GPA)52 Genetic random search procedure None No No Three sources

Whale Optimization (WO)53 Strategies of humpback whales seeking prey None No No Single source

Differential Search Algorithm (DSA)54 Superorganism migrations None Yes No Two sources

Adaptive Differential Evolution (ADE)55 Evolutionary procedures None No No Two sources

Bat Algorithm Optimization (BAO)56 Echolocation behaviors of microbats None No No Two sources

Manta-Ray Foraging Optimization (MFO)57 Intelligent behaviors of manta-rays PSO, SA, GA No No Two sources

Social Spider Optimization (SSO)58 Foraging strategies of social spiders None Yes No Two sources

Hybrid PSO-GA59 Behaviors of foraging birds and fish with 
genetic operators None No No Single source

Barnacles Mating Optimizer (BMO) Mating behavior of barnacles PSO Yes Yes Four sources
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parameter pairs. Thuswise the resolvabilities of model parameters and their effects on objective function were 
explored. Following the previous  works9,46 we also investigated the regional background effect through the sec-
ond moving average (SMA) technique. Consistency and credibility of the solutions obtained were assessed by 
performing some uncertainty appraisal analyses. Finally, the performances of the BMO and sPSO algorithms 
in our case were compared.

Methodology
Forward modeling. The magnetic anomaly equations for some idealized sources (Fig. 1) such as a  sphere60,61, 
an infinitely long horizontal  cylinder62, a thin  dyke23,63,64 and a thin  sheet63 are given below, respectively.

In the definitions given above, T is the total field magnetic anomaly, xi is the observation point on a profile, z0 
(m) represents the depth to the center of the buried magnetic source (spheres and cylinders) and the top of dykes 
and thin sheets, θ denotes the effective magnetization angle (degree), q represents the shape factor (dimension-
less), x0 defines the origin of the anomaly or the horizontal center coordinate of the magnetic source (m), and 
K denotes the coefficient of amplitude (nT ×  m2q−2), which is related to the model shape. The shape factors 2.5, 
2, 1, and 1 are used for spheres, horizontal cylinders, thin dykes, and thin sheets,  respectively12. On the basis 
of principle of superposition, composite magnetic anomalies of multiple-source are calculated easily using the 
following  definition12.

(1)T(xi) = K × z30

{[
2z20 − (xi−x0)

2
]
× sin θ + 3z0(xi−x0)× cos θ

[
(xi−x0)

2 + z20
]q

}
, i = 1, 2, 3... M,

(2)T(xi) = K

{[
z20 − (xi−x0)

2
]
× cos θ + 2z0(xi−x0)× sin θ

[
(xi−x0)

2 + z20
]q

}
, i = 1, 2, 3... M,

(3)T(xi) = K × z0

{
(xi−x0)× sin θ + z0 × cos θ[

(xi−x0)
2 + z20

]q

}
, i = 1, 2, 3... M,

(4)T(xi) = K

{
z0 × cos θ − (xi−x0)× sin θ[

(xi−x0)
2 + z20

]q

}
, i = 1, 2, 3... M.

Figure 1.  Illustrations of geometries and parameters of (a) a sphere, (b) an infinitely long horizontal cylinder, 
(c) a thin dyke, and (d) a thin sheet.
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where Tj and P are the magnetic anomaly of j-th source and the number of sources, respectively.

Undesired regional effect and local interruption. It is well-acknowledged that, due to the heteroge-
neity of the Earth’s interior, the measured residual magnetic anomaly of a certain shallow source is mostly cor-
rupted by undesired regional effects and some local interferences. The mathematical definitions of these effects 
are given as  follows9:

where Tgen(xi) denotes the composite anomaly, Tre(xi) is the undesired regional effect  (c0–c3 are predefined con-
stants), and Tlocal(xi) represents the local perturbations originated from interfering sources.

SMA method. A residual magnetic response of a shallow source can be calculated by removing the regional 
effect from the observed data set. A recent  study9 reported the efficiency of the SMA method to achieve this goal 
using the following definition:

where R2(x) is the approximated residual magnetic anomaly, and s (m) denotes the window length. Typically, in 
order to provide a reasonable estimate of the true model parameters we can simply use the mean output produced 
by delimiting the SMA magnetic anomalies, which is controlled by s values (window length).

BMO. BMO is a novel  algorithm65, which is used to simulate the special mating behaviors of barnacles for the 
optimization of some engineering problems. Barnacles are mostly hermaphrodites and live in shallow and tidal 
waters. These fantastic individuals can attach themselves temporarily to substratum or symbionts in the water. 
For this purpose, they mostly use whales, sea snakes or any other crustaceans. In order to survive, barnacle mat-
ing groups surround neighbors and potential competitors within reach of their penises.

The  reported65 satisfactory results of BMO in 23 challenging benchmark functions and power system analy-
ses motivated us to apply it to nonlinear geophysical problems. Applications with many different scenarios are 
presented to show how the proposed algorithm can reach the global optimum without suffering from the local 
optima entrapments and without being affected by the ill-posed nature of the magnetic inverse problem. The 
steps of the algorithm are given in brief as follows.

Initialization. In BMO, it is assumed that barnacles are the  solutions65. Thus, in the inverse problem presented 
here barnacles can be treated as the model parameters (K, θ, x0, z0, q). The matrix of population X is defined as 
follows:

where dim is the number of control variables (dim = 5 in this study) and N denotes the number of barnacles 
(population size). The Xi

j (the i-th control variable of the j-th barnacle. Here, i = 1, 2, 3... dim, j = 1, 2, 3... N) given 
above is subject to the upper and lower bounds [lbi, ubi]. The appraisal of X is terminated primarily, and the 
sorting process based on the obtained fitness values is carried out to detect the best solution (K, θ, x0, z0, q) at 
the top of X.

Selection process. BMO uses a different system compared to other evolution-based systems such as Genetic 
 algorithm66, Differential  Evolution67 etc. As the selection of two barnacles is relied on the length of their penises 
(pl) a simple case can be  presented65 to illustrate this special mating behavior assuming that the best solution 
is located at the top of X at a particular iteration and the maximum penis length of barnacles pl = 7. Therefore, 
barnacle #1 is only able to mate with one of barnacles #2 and #7 (selected barnacles are located within pl). Hence, 
the following simple mathematical forms to achieve the selection process is  proposed65:

where randperm(N) is a function that returns a row vector that contains a random permutation of the integers 
from 1 to N inclusive. The barnacled and barnaclem are the parents to be mated and they should locate within pl. 

(5)Tp(xi) =

P∑

j=1

Tj(xi),

(6)Tgen(xi) = Tp(xi)+Tre(xi)+Tlocal(xi),

Tre(xi) =

3∑

k=1

ckx
k
i +c0,

(7)R2(xi) =
6Tgen(xi)− 4Tgen(xi + s)− 4Tgen(xi − s)+ Tgen(xi + 2s)+ Tgen(xi − 2s)

4
,

(8)X =




X1
1 . . . Xdim

1
...

. . .
...

X1
N · · · Xdim

N


, Xi

j ∈ [lbi , ubi],

(9)
barnacled = randperm(N)
barnaclem = randperm(N),
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However, if one of them does not fulfill this requirement, the normal mating process is therefore postponed. The 
next generation is updated using the sperm casting process instead.

Reproduction. BMO’s reproduction progression differs from other evolution-based algorithms. There is no 
explicit formula for developing the reproduction of barnacles, so BMO produces offspring based on the principle 
of the Hardy–Weinberg68,69. The following expression is given for this procedure:

where p represents random numbers in the range of [0, 1], q = (1 − p), Xi
barnacled

 and Xi
barnaclem

 are selected par-
ents using Eq. (9). p and q denote the percentage of characteristics of the mating objects implanted in the next 
generation. The offspring, therefore, inherits the behaviors depending on the probability of the random number 
in the range of [0, 1].

In the BMO algorithm pl has an important impact on the exploitation (normal mating process) and explo-
ration stages. The exploitation process occurs if the selected barnacle to be mated is within the penis length of 
the male barnacle. If not, the sperm cast is implemented and considered as an exploration process of BMO as 
given below:

where rand() denotes random numbers between [0, 1]. Along with Eq. (11), the new offspring is formed by the 
female barnacle because the female barnacle retrieves the sperm from the water left by the other barnacles. As 
can be seen from the brief introduction to BMO, pl is the algorithm-based control parameter, which needs to 
be selected before employing BMO. The tuning process of pl will be discussed later. Figure 2 describes the basic 
workflow and pseudocode of BMO algorithm.

Objective function and stopping criterion. Basically, the BMO algorithm uses model parameters as 
search agents, and then quantitatively simulated specific matching behaviors guide these search agents to con-
verge iteratively. Finally, if the root-mean-square-error (RMSE) is minimized to a predefined small value or the 

(10)Xi
j_new = pXi

barnacled
+ qXi

barnaclem
,

(11)Xi
j_new = rand()× Xi

barnaclem
,

Figure 2.  Workflow and pseudocode of the BMO (modified from the original  study65).
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iteration number reaches the predefined maximum number (Iter_max), the iteration cycle is terminated. Sub-
sequently, the model parameter set (K, θ, x0, z0, q) obtained at the last iteration is considered to be the optimal 
solution. The definition of RMSE used in our case is given as follows:

where Tobs is the observed data, Tcal denotes the data calculated from the model solution, xi is the i-th data measur-
ing point along the profile aforementioned, and M represents the number of observed points. The relative error 
between the true and estimated parameter sets is determined by:

where abs() is an absolute function, Strue and Spre denote the true and the estimated model parameter set.

Synthetic applications
Model analysis of the objective function. The ill-posedness characteristics of the geophysical inverse 
problem makes the model parameter estimation process suspect and error-prone70,71. Hence, pre- and post-
inversion uncertainty appraisal studies play a crucial role in the detection of the ambiguities and consistencies 
in the obtained source  parameters36. Commonly used pre-inversion analyses in geophysical inverse problems is 
the study of the modal type of the objective function used. These analyzes allow us to make a preliminary assess-
ment of the mathematical solvability of the inverse problem of interest. We used the following definition as the 
objective function in the applications.

where Tp=4(xi) is the simulated magnetic anomaly generated by a multiple-source model, where its true param-
eter set (K, θ, x0, z0, q) is presented in Table 2. The following definition were used to generate the synthetic data set:

Synthetic magnetic anomaly was generated along a 400 m long profile with 10 m data intervals. We considered 
a range of values that are half and twice (50% perturbations) the true model parameter values to produce a wide 
search space for the modal analyses. Figure 3 shows the distributions of the cost function. The middle points of 
these surface topography maps locate the true values of the source parameter pairs (the global minimum). The 
distribution maps of θ − K, z0 − K and z0 − θ pairs clearly revealed that the global minima values are enclosed 

(12)RMSE =

√√√√
M∑

i=1

[Tobs(xi)− Tcal(xi)]
2

M
,

(13)Relative error =
abs(Strue − Sest)

abs(Sest)
,

(14)RMSE =

√√√√
M∑

i=1

[
Tp=4(xi)− Tcal(xi)

]2

M
,

(15)

Tp=4(xi) = 60× 83

{[
2× 82 − (xi − 30)2

]
× sin 60◦ + 3× 8× (xi − 30)× cos 60◦

[
(xi − 30)2 + 82

]5/2

}

+ 2000

{[
52 − (xi + 25)2

]
× cos 30◦ + 2× 5× (xi + 25)× sin 30◦

[
(xi + 25)2 + 52

]2

}

+50× 20×

{
(xi−120)× sin 10◦ + 20× cos 10◦[

(xi−120)2 + 202
]

}
+800

{
12× cos 50◦ − (xi + 100)× sin 50◦[

(xi + 100)2 + 122
]

}
.

Table 2.  True model parameters of the multi-source model. Parameter variation ranges are also given.

Spherical source
Horizontally-placed infinite cylindrical 
body Semi-infinite thin dyke Semi-infinite thin sheet

True parameters

K (nT ×  m2q−2) 60 2000 50 800

θ (degree) 60 30 10 50

x0 (m) 30 − 25 120 − 100

z0 (m) 8 5 20 12

q (dimensionless) 2.5 2 1 1

Variation range

30 ~ 90 1000 ~ 3000 25 ~ 75 400 ~ 1200

30 ~ 90 15 ~ 45 5 ~ 15 25 ~ 75

15 ~ 45 − 37.5 ~ − 12.5 60 ~ 180 − 150 ~ − 50

4 ~ 12 2.5 ~ 7.5 10 ~ 30 6 ~ 18

1.25 ~ 3.75 1 ~ 3 0.5 ~ 1.5 0.5 ~ 1.5
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with almost rounded contours and no local ones are situated, which indicates the uni-modal  feature72. In short, 
the parameter pairs are uncorrelated and can most likely be estimated individually by executing an efficient 
inversion code. However, some elongated valleys and basins with different flat bottoms representing the lowest 
error function regions displaying the multi-modal73 characteristics were observed in other maps (θ − x0, θ − q, 
z0 − q, q − x0, q − K, θ − K, and x0 − z0 in Fig. 3), which make the problem complicated, decrease the resolv-
ability characteristics of the source parameters, and increase the uncertainties in the solutions. This means that 
parameter pairs are correlated with each other. It is well-known fact that banana-shaped contours in objective 
function surface topographies around the global minimum make precise estimations almost impossible. In our 
case, we did not observe this kind of topographic features. Thus, model parameters of the non-linear inverse 
problem presented here can most likely be resolved. Based on these findings, it is clear that the objective func-
tion yields the composite  modality74 since the uni-modality and multi-modality exist together regarding all 
model parameter pairs. Error surface topographies of the objective function used indicate the characteristics of 
non-linearity, high dimensionality and various shapes in paired model spaces, which means that estimations of 
the model parameters are challenging. However, these difficulties can be overcome with a powerful inversion 
algorithm which has sufficient ability to approach the global minimum as close as possible without compromis-
ing its robustness in order not to be captured by the local minima.

Figure 3.  Modal analyses of the defined objective function for model parameter pairs.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22578  | https://doi.org/10.1038/s41598-022-26265-0

www.nature.com/scientificreports/

Parameter tuning process. The efficiency of the global optimization algorithm largely depends on fine-
tuned control parameters. However, the control parameters proposed by the developers for their own problems 
or reported ones in previous studies are commonly used for many types of optimization problems. It must be 
noted that there is no algorithm-based control parameter value that can be successful for all types of inverse 
problems. These optimal values may vary depending on the nature of inverse  problems49,70,75. Hence, a vital step 
of applying a metaheuristic effectively is to appropriately determine the best user-defined control parameter 
value/s. As already mentioned, pl plays a key role in defining the exploitation (normal mating process) and 
exploration stages (sperm cast process) of BMO. To understand the effect of pl values on the solutions a com-
posite noise-free magnetic anomaly due to a multiple-source model was inverted (model parameters are given 
in Table 2). The search space values used in modal analyses were considered. We used 30 independent runs to 
suppress the stochastic nature of the metaheuristics so that a more objective evaluation and estimation can be 
achieved. The optimization processes were performed using 140 iterations and N = 80. As the pl of the BMO var-
ies successively (from 0 × N to 1 × N), the obtained mean RMSE values are displayed in Fig. 4a. Figure 4b demon-
strates the variation of the standard deviations (stds) of the calculated RMSE values, indicating the uncertainty of 
inversion. The variations in the curves (Fig. 4a,b) obtained via various pl values clearly showed that an ill-defined 
pl value can reduce the performance of the BMO significantly in terms of affecting the solution correctness and 
the stableness of searching the true parameter values. Additionally, contrary to our expectations, both smaller 
(e.g., pl = 0 × N) and larger (e.g., pl = 1 × N) pl values caused insufficient performances. By this way, instead of 
making a random guess based on intuition, the importance of determining the optimum control parameter 
value/s for the problem of interest was revealed. By performing many trial-and-error tests, we determined that 
0.65 is the optimum value for the pl.

Inversion studies. We used three synthetic cases with different scenarios to investigate the performance 
of BMO. The first case discusses a residual magnetic anomaly originated from a multiple-source model given 
in Table 2. In the second case, we added a regional background effect using a 3rd order polynomial and a local 
anomaly caused by a near-surface interference (spherical source) to the first case anomaly. In the last case, the 
second case anomaly was contaminated with a certain degree of random noise (40%). The solutions obtained 
through the BMO algorithm were compared with those of the sPSO algorithm that uses the  suggested9,51 con-
trol parameters. Besides, we investigated the performance of the SMA operator in reducing the effect of the 
regional background. All experiments were conducted on a Windows 10 operating system with Intel(R) Core 
(TM) i5-6300HQ CPU (2.30 GHz) and 3.8 GB of RAM.

Case 1. The synthetic magnetic anomaly generated and the causative sources are shown in Fig. 5. We per-
formed 30 independent runs using 80 search agents and 140 iterations for both BMO and sPSO. Table 3 lists 
the model parameters search spaces and the solutions obtained. Note that the run-time of sPSO and BMO were 
74 s and 67 s, respectively. The magnetic anomaly responses calculated through the BMO and sPSO algorithms 

Figure 4.  Analyzing the effect of various pl values. (a) Variation behavior of the mean RMSE values obtained 
via the increment of pl, (b) uncertainties of BMO via the variation of pl.
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were compared with the residual magnetic anomaly (Fig. 6a). Figure 6b,c show the behaviors of the mean value 
and the std of the calculated RMSE values against the iteration number. Figure 6d shows the calculated relative 
errors of the model parameters recovered via BMO and sPSO approaches. As seen from Fig. 6 and Table 3, the 
application of BMO algorithm produced stable, accurate, and robust performance. Model parameters with larger 
error values were obtained with the sPSO application. On the other hand, sPSO showed a faster convergence rate 
when using large population of search agents. sPSO and BMO converged to global minimum within 20 and 60 
iterations, respectively. Although sPSO showed a faster rate of convergence, the resulting RMSE values showed 
that BMO better achieved an adequate trade-off to balance the exploration and exploitation stages.

Case 2. In this experiment we added regional and local effects to the synthetically generated magnetic anomaly 
using the following expressions:

where T2
gen(xi) denotes the composite anomaly, Tre(xi) is the regional background effect and Tlocal(xi) represents 

the local perturbation originated from a near-surface spherical interference. Figure 7 illustrates the subsurface 
magnetized sources and the resulting magnetic responses. BMO and sPSO were applied using 30 independent 
runs with 80 search agents and 140 iterations. The control parameters of both optimizers were kept unchanged, 
and applications were performed without using the SMA technique. Search space bounds consistent with the 
first case were used. After each iteration, the mean, std of RMSE values, and the relative errors of estimated 
parameters were recorded to observe the performances (Fig. 8). Table 3 stores the quantitative results of estima-
tions. The run-time of sPSO and BMO algorithms were 69 s and 66 s, respectively. It is clear that the mean RMSE 
value increased significantly with the final iteration. Moreover, the error values between the calculated and the 
true model parameters of four causative sources increased too. It is clear that both algorithms underperformed 
due to the presence of external effects incorporated. Subsequently, we experienced the effectiveness of the SMA 
technique in reducing the regional effects. Figure 9 illustrates the calculated SMA magnetic anomalies (red 

(16)T2
gen(xi) = T1

p=4(xi)+Tre(xi)+Tlocal(xi),

(17)Tre(xi) = 10−6x3i + 10−7x2i + 10−2xi − 20,

(18)Tlocal(xi) = 30× 53

{[
2× 52 − (xi − 160)2

]
× sin 120◦ + 3× 5× (xi − 160)× cos 120◦

[
(xi − 160)2 + 52

]5/2

}
,

Figure 5.  Simulated magnetic anomaly of multiple-source and the causative subsurface model.
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Without the implementation of the SMA technique

Case 1

Parameter set True parameters Search space PSO results Relative error BMO results Relative error

K (nT ×  m2q−2) 60/2000/50/800 30 ~ 90/1000 ~ 3000/25 ~ 75/
400 ~ 1200

67.157 ± 18.836/2194.3 
± 630.56/50.053 ± 19.53
7/766.41 ± 180.01

0.21731 ± 0.2215/0.2747 
± 0.0177/0.2998 ± 0.133
4/0.1770 ± 0.07898

63.058 ± 7.3722/2101.9 
± 245.79/52.549 ± 6.142
5/840.77 ± 98.298

0.1017 ± 0.0589/0.1017 
± 0.0589/0.1017 ± 0.058
9/0.1017 ± 0.0589

θ (degree) 60/30/10/50 30 ~ 90/15 ~ 45/5 ~ 15/25 ~ 75
64.14 ± 22.427/25.437 ± 
15.857/8.8022 ± 3.6846/
38.486 ± 18.097

0.2643 ± 0.2050/0.4561 
± 0.0437/0.2769 ± 0.205
6/0.3509 ± 0.16049

67.292 ± 5.124/33.647 ± 
2.5618/11.216 ± 0.8538
6/56.078 ± 4.27

0.1215 ± 0.0854/0.1215 
± 0.0853/0.1215 ± 0.085
3/0.1215 ± 0.0853

x0 (m) 30/− 25/120/− 100 15 ~ 45/− 37.5 ~ − 12.5/60 ~ 1
80/− 150 ~ − 50

30.69 ± 2.2587/− 21.693 
± 10.679/117.39 ± 9.949
2/− 110.11 ± 5.7627

0.0594 ± 0.0340/0.3564 
± 0.1345/0.0699 ± 0.016
0/0.1011 ± 0.0576

30.008 ± 0.4415/− 24.99
3 ± 0.3680/120.03 ± 1.76
42/− 99.975 ± 1.4717

0.0104 ± 0.0073/0.0104 
± 0.0073/0.0104 ± 0.007
3/0.0104 ± 0.0073

z0 (m) 8/5/20/12 4 ~ 12/2.5 ~ 7.5/10 ~ 30/6 ~ 18
6.4271 ± 0.1128/5.9484 
± 0.4432/21.301 ± 6.866
6/10.973 ± 4.8138

0.1966 ± 0.0141/0.1896 
± 0.0886/0.2363 ± 0.201
1/0.2861 ± 0.2215

8.0844 ± 0.2987/5.053 ± 
0.1864/20.211 ± 0.7461/
12.127 ± 0.4479

0.0251 ± 0.0246/0.0251 
± 0.0247/0.0251 ± 0.024
6/0.0251 ± 0.0246

q 2.5/2/1/1 1.25 ~ 3.75/1 ~ 3/0.5 ~ 1.5/0
.5 ~ 1.5

2.4683 ± 0.1031/2.4027 
± 0.2159/1.0848 ± 0.107
1/1.1085 ± 0.1109

0.035874 ± 0.0035773/0.
20137 ± 0.10795/0.0966
01 ± 0.090866/0.1085 ± 
0.11097

2.5871 ± 0.0354/2.0697 
± 0.0284/1.0348 ± 0.014
20/1.0348 ± 0.0142

0.0348 ± 0.0141/0.0348 
± 0.0142/0.0348 ± 0.014
2/0.0348 ± 0.0142

RMSE between the uncontaminated magnetic anomaly and the obtained 
residual responses 12.8836 ± 2.5283 5.3159 ± 0.2323

Case 2

K (nT ×  m2q−2)
54.578 ± 34.758/1194.9 
± 275.63/30.162 ± 7.300
5/444.88 ± 63.473

0.4096 ± 0.1278/0.4025 
± 0.1378/0.3967 ± 0.146
0/0.4439 ± 0.07934

66.914 ± 4.0545/1693.8 
± 143.63/55.618 ± 11.24/
675.77 ± 56.635

0.1152 ± 0.0675/0.1530 
± 0.0718/0.1589 ± 0.158
9/0.1552 ± 0.0707

θ (degree)
30 ± 0/30 ± 21.213/14.
145 ± 1.2094/41.359 ± 
23.135

0.5 ± 0/0.5 ± 0/0.4144 ± 0
.1209/0.3271 ± 0.2444

67.36 ± 13.165/24.475 ± 
9.178/11.321 ± 0.58428/
48.068 ± 7.3699

0.1551 ± 0.1734/0.2163 
± 0.2604/0.1320 ± 0.058
4/0.1042 ± 0.0546

x0 (m)
30.529 ± 0.9287/− 28.52
6 ± 0.5461/155.81 ± 12.1
13/− 75.298 ± 35.776

0.02189 ± 0.0249/0.1410 
± 0.0218/0.298 ± 0.1009/
0.2529 ± 0.3493

31.016 ± 2.3547/− 21.05
3 ± 6.1831/142.89 ± 14.6
3/− 93.811 ± 3.8708

0.0555 ± 0.0479/0.1748 
± 0.2232/0.1907 ± 0.121
9/0.0618 ± 0.0387

z0 (m) 8.5367 ± 4.8979/7.5 ± 0/
16.661 ± 9.4195/6 ± 0

0.4329 ± 0.0948/0.5 ± 0/0
.3330 ± 0.2361/0.5 ± 0

9.1818 ± 1.5044/5.103 ± 
0.5569/18.28 ± 0.88362/
10.437 ± 5.0416

0.1477 ± 0.1880/0.0787 
± 0.0291/0.0860 ± 0.044
1/0.2970 ± 0.1841

q
2.9844 ± 0.7070/2.8102 
± 0.2684/0.7169 ± 0.166
8/1.2422 ± 0.1495

0.2 ± 0.2740/0.4050 ± 0.1
342/0.2831 ± 0.1668/0.2
421 ± 0.1495

2.7649 ± 0.1359/2.2638 
± 0.1980/0.9693 ± 0.059
81/1.1929 ± 0.087333

0.1059 ± 0.05436/0.131
8 ± 0.0990/0.0422 ± 0.04
34/0.1929 ± 0.0873

RMSE between the contaminated magnetic anomaly and the obtained 
responses 40.9405 ± 0.0534 45.4893 ± 3.2635

RMSE between the uncontaminated magnetic anomaly and the obtained 
residual responses 37.4692 ± 14.9365 21.7046 ± 6.7316

With the implementation of the SMA technique (the calculated mean results using different s values are given)

Case 2

K (nT ×  m2q−2) 60/2000/50/800 30 ~ 90/1000 ~ 3000/25 ~ 75/
400 ~ 1200

58.534 ± 11.944/1816.7 
± 328.01/52.685 ± 8.699
7/797.78 ± 105.75

0.2365 ± 0.0746/0.2241 
± 0.0808/0.2053 ± 0.100
0/0.1786 ± 0.0878

60.623 ± 1.7993/2037.3 
± 74.326/48.386 ± 1.988
9/777.27 ± 43.932

0.0607 ± 0.0212/0.0638 
± 0.0373/0.0608 ± 0.025
8/0.0684 ± 0.0276

θ (degree) 60/30/10/50 30 ~ 90/15 ~ 45/5 ~ 15/25 ~ 75
63.913 ± 7.9871/31.838 
± 5.4413/10.933 ± 2.029
6/49.247 ± 9.219

0.2168 ± 0.0727/0.1842 
± 0.03944/0.1938 ± 0.09
39/0.1845 ± 0.0957

58.764 ± 4.401/28.553 ± 
2.3802/9.7616 ± 0.7982
2/48.119 ± 3.4934

0.0532 ± 0.0575/0.0772 
± 0.0568/0.0681 ± 0.051
3/0.0775 ± 0.0458

x0 (m) 30/− 25/120/− 100 15 ~ 45/− 37.5 ~ − 12.5/60 ~ 1
80/− 150 ~ − 50

30.041 ± 0.60487/− 24.4
32 ± 1.2435/115.59 ± 17.
989/− 98.297 ± 8.158

0.0199 ± 0.0119/0.0483 
± 0.0645/0.1867 ± 0.079
7/0.0672 ± 0.0707

29.965 ± 0.2545/− 24.80
1 ± 0.5644/120.37 ± 3.39
09/− 99.84 ± 2.0854

0.0193 ± 0.0080/0.0205 
± 0.0118/0.0273 ± 0.016
6/0.02417 ± 0.0109

z0 (m) 8/5/20/12 4 ~ 12/2.5 ~ 7.5/10 ~ 30/6 ~ 18
7.1768 ± 1.0318/4.7307 
± 0.7216/17.265 ± 2.312
9/11.51 ± 1.6127

0.2029 ± 0.0524/0.1721 
± 0.097/0.2195 ± 0.0881/
0.2103 ± 0.0602

7.9239 ± 0.4027/5.0283 
± 0.3071/19.856 ± 0.880
1/12.324 ± 0.578

0.0590 ± 0.0234/0.0791 
± 0.0329/0.0561 ± 0.024
4/0.056511 ± 0.02568

q 2.5/2/1/1 1.25 ~ 3.75/1 ~ 3/0.5 ~ 1.5/0
.5 ~ 1.5

2.4956 ± 0.0287/2.1173 
± 0.1719/1.0472 ± 0.086
1/1.0499 ± 0.10461

0.0166 ± 0.0076/0.0849 
± 0.0607/0.1906 ± 0.099
1/0.1164 ± 0.0629

2.5159 ± 0.0232/2.0363 
± 0.0286/1.0108 ± 0.019
4/1.011 ± 0.0212

0.0089 ± 0.0076/0.0210 
± 0.0135/0.0283 ± 0.022
7/0.0286 ± 0.0273

RMSE between the calculated SMA magnetic anomalies and the inverted ones 18.3725 ± 0.2184 15.8042 ± 0.5604

RMSE between the uncontaminated magnetic anomaly and the obtained 
residual responses 23.9215 ± 10.1662 5.5187 ± 0.8829

Case 3

K (nT ×  m2q−2)
64.628 ± 13.693/2251 ± 2
14.83/50.535 ± 5.3922/8
11.02 ± 205.46

0.2133 ± 0.0741 /0.2104 
± 0.0787/0.2299 ± 0.064
6/0.2368 ± 0.0511

60.135 ± 3.6594/2005.6 
± 168.49/50.706 ± 2.565
6/788.2 ± 63.652

0.0823 ± 0.0498/0.0760 
± 0.0312/0.0741 ± 0.019
9/0.0748 ± 0.0271

θ (degree)
66.58 ± 8.3505/31.9 ± 6.9
616/10.052 ± 1.3155/54.
51 ± 8.1819

0.2119 ± 0.0837/0.2022 
± 0.0979/0.1883 ± 0.093
5/0.2179 ± 0.0574

59.292 ± 3.9508/29.679 
± 1.3942/9.884 ± 0.2655
2/49.094 ± 3.2371

0.0618 ± 0.0380/0.0493 
± 0.0324/0.0408 ± 0.020
3/0.06890 ± 0.0390

x0 (m)
29.58 ± 0.68447/− 25.12
7 ± 1.1433/127.74 ± 21.4
6/− 91.905 ± 10.83

0.0277 ± 0.0219/0.0491 
± 0.0385/0.1754 ± 0.119/
0.0810 ± 0.1082

29.978 ± 0.5206/− 24.90
1 ± 0.7025/120.3 ± 3.157
/− 99.408 ± 0.4812

0.0217 ± 0.0082/0.0311 
± 0.0167/0.0302 ± 0.018
3/0.01188 ± 0.01176

Continued
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Table 3.  Inversion results of the pure residual and contaminated magnetic anomaly caused by multiple-
sources using BMO and PSO without and with the implementation of the SMA technique. The order of source 
structures is as in Table 2. Significant values are in bold.

Without the implementation of the SMA technique

Case 1

Parameter set True parameters Search space PSO results Relative error BMO results Relative error

z0 (m)
8.683 ± 0.6031/5.3544 ± 
0.7323/19.928 ± 2.6287/
11.909 ± 1.2843

0.1785 ± 0.0674/0.1855 
± 0.0517/0.1735 ± 0.082
0/0.1779 ± 0.05247

8.2001 ± 0.3039/5.0115 
± 0.2916/19.23 ± 1.3641
/12.113 ± 0.32479

0.0636 ± 0.0105/0.0704 
± 0.0345/0.0660 ± 0.054
8/0.0566 ± 0.0383

q
2.5001 ± 0.0561/2.0916 
± 0.1450/1.0016 ± 0.131
9/1.0419 ± 0.1449

0.0186 ± 0.0133/0.07448
1 ± 0.0449/0.15597 ± 0.0
725/0.1537 ± 0.0612

2.5211 ± 0.0486/2.0138 
± 0.0402/0.9876 ± 0.029
9/0.9944 ± 0.0207

0.0160 ± 0.0124/0.0188 
± 0.0097/0.0339 ± 0.022
1/0.02533 ± 0.0171

RMSE between the calculated SMA magnetic anomalies and the inverted ones 23.1848 ± 0.8570 21.2171 ± 0.4926

RMSE between the uncontaminated magnetic anomaly and the obtained 
residual responses 28.1128 ± 6.7413 7.0089 ± 2.5616

Figure 6.  Inversion results of case 1. (a) fittings between the simulated residual magnetic anomaly and the 
responses obtained via BMO and sPSO, (b) the variation behavior of the mean RMSE values against iterations 
after 30 runs, (c) the variation behavior of the std of RMSE values against iterations after 30 runs, (d) calculated 
relative errors of model parameter solutions using BMO and sPSO for four causative sources. Error bars are 
given in (a) and (d).
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lines) for some s values (0.7, 1.3, 1.6, 1.9, 2.2, and 2.5 × dx, dx equals the data spacing interval). Blue and black 
lines represent the calculated responses obtained through BMO and sPSO, respectively and are generally in well 
agreement with the red lines except for the anomalies generated from the interfering shallow spheric source. In 
this scenario, the running times of the sPSO and BMO algorithms are equal to the product of the times given 
previously and the s-values used, namely 69 s and 66 s. Hence, we will solely present the computational time 
considering the circumstance of delineating the residual anomaly. Outputs of this synthetic experiment and the 
detailed inversion results are shown in Fig. 10 and Table 3, respectively. It is clear that the SMA technique proved 
useful in eliminating the regional effect from the composite magnetic anomaly and therefore both algorithms 
yielded relatively agreeable results. However, examining the results in detail, it is seen that the mathematical 
nature of simulating the special mating behaviors of barnacles yielded lower fitness errors, more accurate model 
parameter values, and higher inversion stability than sPSO.

Case 3. In order to make the work of both algorithms more difficult, a noise content of 40% was added to the 
magnetic anomaly of case 2 by using the definition below:

where mean() is the average value of the input,  rand1() and  rand2() return an array containing pseudorandom 
values between [0, 1] of a given size. Using the same computation procedures, we inverted the synthetic magnetic 
anomaly through both algorithms. The SMA noisy anomaly and estimated SMA magnetic responses obtained 
by means of BMO and sPSO (blue and black solid lines) for different s values are demonstrated in Fig. 11. 
Figure 12 and Table 3 show the outputs of the optimization via both algorithm and detailed inversion results, 
respectively. Applications showed that the added 40% random noise only produced minor perturbations to the 
SMA residual anomalies (red lines in Fig. 11). Both algorithms produced satisfactory solutions, but the details 
revealed the superiority of BMO in terms of lower error values, more accurate model parameter values, and 
more stable optimization.

(19)T̃2
gen(xi) = T2

gen(xi)+0.4×mean
(∣∣∣T2

gen(x)
∣∣∣
)
× [rand1(M)− rand2(M)],

Figure 7.  Synthetic residual magnetic anomaly of the multiple-source model (case 2) superposed on a regional 
background and local interference, and the causative subsurface model.
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Post-inversion uncertainty appraisal analysis of synthetic case. As mentioned previously in the 
modal analysis section, the optimization problem presented here is mostly unstable and error-prone because of 
the extreme complexity of escaping massive local minima while effectively exploiting the unique global mini-
mum. Therefore, post-inversion uncertainty assessment analyses are crucial for understanding the credibility of 
the model parameters recovered. To practice the uncertainty appraisal studies, we used the solutions obtained in 
the first case experiment. Best model parameters obtained in each independent runs were listed and then sorted 
in ascending order of their misfit values. We assumed An as a variable in order to determine the number of 
sorted parameters. That we used to compute the final results by calculating the mean responses. We considered 
An as a variable to determine the number of parameters sorted. We then calculated the mean of each sorted 
parameter values. Lastly, the mean magnetic anomaly response was obtained with the mean model parameter 
set. Figure 13 exhibits that BMO showed low sensitivity to the increment of An, however, the performance of 
sPSO was significantly affected with the use of larger An values (pointed part A). Consistently, this phenomenon 
is correlated with the larger std values in the inversion results of sPSO. On the other hand, the superiority of the 
anomaly-fitting ability of BMO regardless the value of An is clearly observed in pointed part B (Fig. 13). These 
findings clearly revealed that BMO is more capable than sPSO in obtaining more robust solutions for this inverse 
problem presented.

Real data applications
The performance of BMO in the inversion of real magnetic anomalies was tested using three field cases from 
India and Brazil. These magnetic anomalies were considered as residual responses and were studied by some 
researchers using several data processing techniques. Based on this information, we initially treated these data 

Figure 8.  Inversion results of case 2 without the implementation of the SMA technique. (a) fittings between 
the pure residual magnetic anomaly and the responses obtained via BMO and sPSO, (b) the variation behavior 
of the mean RMSE values against iterations after 30 runs, (c) the variation behavior of the std of RMSE values 
against iterations after 30 runs, (d) calculated relative errors of model parameter solutions using BMO and sPSO 
for four causative sources. Error bars are given in (a) and (d).
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sets as residual magnetic anomalies and applied the BMO algorithm using pl = 0.65 × N. We applied sPSO using 
the same algorithm-based control parameters to obtain outputs for the comparison tests. In the experiments, 
both algorithms were run independently 30 times using 80 search agents and 140 iterations. We then applied 
BMO procedure to SMA anomalies to understand if these anomalies are contaminated by regional background 
effect and/or local interference. Finally, the model parameter solutions obtained were interpreted in an integrated 
manner with the known geological data and/or previous geophysical estimates given in Table 4.

Chromite Ore Anomaly, India. The studied chromite ores are located in Tangarparha, Odisha, India. 
According to prior information, the ore bodies in this area are known to have a pod-type structure that is more 
reminiscent of a sphere-shaped  source12. The magnetic anomaly  response12,76 of these magnetized sources is pre-
sented in Fig. 14a with pink circles. The data sampling interval is 40 m for this anomaly. This anomaly was stud-
ied previously by using Very Fast Simulated Annealing (VFSA) technique with various source assumptions such 
as single spherical-shaped body, cylinder, dyke, and  sheet12. This magnetic anomaly was interpreted to originate 
from three spherical source  bodies12. Model parameter solutions revealed in that study are given in Table 4. 
First, we considered this finding and applied the BMO and sPSO algorithms to estimate the model parameters. 
Search space bounds for model parameters are given in Table 5. Figure 14a displays the comparison between 
the observed data and the reconstructed mean responses. Figure 14b shows the calculated std values of obtained 
responses at each station. The mean value and std of RMSE against the iterations for 30 independent runs are 
shown in Fig. 14c,d. Table 5 lists the obtained model solutions (K, θ, x0, z0, q) and RMSEs. The run-time of sPSO 
and BMO were 65 s and 59 s, respectively. The inversion results indicated that the assumed three spherical bodies 
approximate the sources effectively. Despite the faster convergence rate of sPSO, BMO outperformed in terms 
of response-fitting and stability. In the next step, we applied BMO to the SMA anomaly (s = 0.5, 0.75, and 1 × dx, 
dx = 40 m). Figure 17a displays the SMA results (red lines) for various s values and obtained responses (blue 

Figure 9.  The calculated SMA magnetic anomalies of case 2 and estimated SMA magnetic responses using 
BMO and sPSO for different s values (0.7, 1.3, 1.6, 1.9, 2.2, and 2.5 × dx, dx = 10 m).
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lines). Notably, model parameters obtained using the SMA technique (Table 5) are in well agreement with the 
results accomplished from considering the acquired data as a pure residual response. This finding indicates that 
the observed magnetic response does not contain undesired structural information such as regional background 
and near-surface source effects, but may contain random noise. The solutions obtained here are relatively in well 
agreement with the ones achieved via VFSA (Table 5).

Uranium Ore Anomaly, India. The magnetic anomaly sampled at 8 m interval in the Beldih mine (Purulia, 
West Bengal, India) is caused from uranium ore  bodies77. Some previous studies revealed that the uranium ore 
bodies in this part can be represented with vertical thick-sheet-like structures as deciphered from spontaneous-
potential data  interpretation78–80. This interpretation was validated by drilling  results81, which disclosed that 
mineralization begins from the near-surface and extends to the depths of 10–20 m and which are approximately 
vertical and dipping northerly to  southerly12. Additionally, gravity and resistivity responses were also used to 
understand subsurface nature of the source  structures77,82,83. Lastly, this magnetic anomaly was  interpreted12 
using the VFSA technique considering dyke-like source as equal to thick-sheet-type source (Table 4). Similarly, 
we considered it as a residual response due to multiple dyke-like structures and implemented BMO and sPSO 
algorithms for reinterpretation. The model parameter ranges of assumed dykes and the results obtained are listed 
in Table 5. The run-time of sPSO and BMO were 54 s and 48 s, respectively. The comparison of the calculated 
magnetic responses with the observed one is illustrated in Fig. 15a. Figure 15b depicts the calculated std values 

Figure 10.  Inversion results of case 2 with the implementation of the SMA technique. (a) fittings between the 
pure residual magnetic anomaly and the responses obtained via BMO and sPSO, (b) variation behavior of the 
calculated RMSE values between the uncontaminated magnetic anomaly of case 1 and the residual responses 
obtained via BMO and sPSO for different s values, (c) variation behaviors of the computed RMSE values 
between the calculated SMA magnetic anomalies of case 2 and the estimated SMA magnetic responses of BMO 
and sPSO for different s values, (d) relative errors of the calculated average estimation of the obtained model 
parameters using BMO and sPSO for four causative sources from the SMA magnetic anomalies for several s 
values. Error bars are given in (a)–(d).
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of the obtained responses at each measurement point. Figure 15c,d demonstrates the mean value and std values 
of RMSE against the iteration number. It can be clearly seen that the anomaly of the assumed multiple dyke-like 
structures matches well with the observed one and BMO provides appealing results in terms of escaping local 
minima, fitting errors and stability of the inversion compared to those obtained via sPSO. Figure 17b illustrates 
the SMA anomalies (red lines) for s = 0.5, 0.75, and 1 × dx (dx = 8  m) and reconstructed responses via BMO 
(blue lines). An obvious difference between the calculated and the reconstructed responses is seen. Nevertheless, 
recovered model parameters given in Table 5 are correspond to the solutions obtained without the implementa-
tion of the SMA scheme. Thus, it was verified that the observed anomaly is most likely corrupted by the local 
interference effect and/or random noise.

Mesozoic dyke Anomaly, Brazil. Figure 16a shows a magnetic anomaly observed on a Mesozoic dyke 
that intruded into Paleozoic sedimentary rocks in the Parnaiba basin,  Brazil84. The data sampling interval is 
0.8 m. This anomaly was previously interpreted using different  approaches12,26,84,85 assuming a horizontal cylin-
der along with thin-sheet structure. Solutions reported in those studies are given in Table 4. Here, this magnetic 
anomaly was studied using BMO and sPSO algorithms, considering it the response of a cylindrical body. Model 
parameter search bounds used are listed in Table 5. The run-time of sPSO and BMO were 20 s and 18 s, respec-
tively. Estimated mean responses through BMO and sPSO are displayed in Fig. 16a, which closely match with 
the measured one (pink circles). However, the unsatisfactory performances of sPSO and BMO are observed at 
the pointed part shown in Fig. 16a. The possible explanation for this case is the presence of the local interference 
effect. Figure 16b demonstrates the calculated std values of obtained responses at each measurement station. Fig-
ure 16c,d display the mean value and std values of RMSE against the iterations. Table 5 gives the estimated model 
parameters. Findings showed that BMO yields better performance in terms of relatively lower misfit values and 
higher stability again. Figure 17c shows a comparison between the calculated SMA results for various s values 
(s = 0.5, 0.75, and 1 × dx, dx = 0.8 m), and regenerated responses using BMO. The estimated source parameters 
are listed in Table 4 along with misfits. Accordingly, it can be mentioned that BMO produced steady solutions 

Figure 11.  The SMA results of 40% random noise-corrupted magnetic anomalies of case 2 and estimated SMA 
magnetic responses via BMO and sPSO for different s values (0.7, 1.3, 1.6, 1.9, 2.2, and 2.5 × dx, dx = 10 m).
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with those delineated from considering the observed data as a pure residual response. Calculated anomalies 
of the BMO, however, revealed obvious differences most likely due to the existence of local interference effects 
and/or random noises. Thus, we concluded that the observed magnetic anomaly does not contain remarkable 
regional component, but may contain some amount of local perturbation and/or random noise.

Post-inversion uncertainty appraisal analyses of real data cases. The reliability of the model 
parameters obtained was investigated, as in the synthetic experiments on the basis of the solutions of 30 inde-
pendent runs for all real data cases. Figure 18 shows the variation characteristics of computed responses using 
different An values. It can be easily observed that the performance of the sPSO was affected with a larger An 
regarding the first two multiple-source model, especially in the pointed parts. This fact correlates with the large 
std values as discussed before. On the contrary, BMO is generally insensitive to a larger An, which indicates the 
superiority of the BMO in handling more complicated cases. Notably, as for the single structure model, only 
minor variations occurred in the responses of BMO and sPSO. However, when comparing the best performances 
of both approaches using An = 2 it is again apparent that BMO provided better fitting performance in these real 
data cases, since it offers sufficient opportunities to escape massive local minima while effectively exploiting the 
global minimum.

Figure 12.  Inversion results of case 3 with the implementation of the SMA technique. (a) fittings between 
the residual magnetic anomaly and the responses obtained via BMO and sPSO, (b) variation behaviors of the 
calculated RMSE values between the uncontaminated magnetic anomaly of case 1 and the residual responses 
obtained via BMO and sPSO for different s values, (c) variation behaviors of the computed RMSE values 
between the calculated SMA magnetic anomalies of case 3 and the estimated SMA magnetic responses of BMO 
and sPSO for different s values, (d) relative errors of the calculated average estimation of the obtained model 
parameters using BMO and sPSO for four causative sources from the SMA magnetic anomalies for different s 
values. Error bars are also given in (a)–(d).
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Conclusions
BMO, a novel nature-inspired derivative-free global optimizer, was presented for the inversion of magnetic 
anomalies. Modal analyses helped us understand the characteristic of the inverse problem. Finely-tuned control 
parameter increased the effectiveness of the optimizer. Satisfactory solutions were obtained in both synthetic 
and real data cases. SMA technique successfully suppressed the regional background effects. The effectiveness 
of BMO was compared with sPSO, the most widely used metaheuristic in geophysical inverse problems. The 
reliability of the results produced by both algorithms was tested with uncertainty analysis. Applications showed 
that BMO produced more stable and more robust solutions for the cases used in this study. It was also observed 
that BMO completed the optimizations in relatively less run-time than sPSO. Besides, the model parameters 

Figure 13.  Post-inversion uncertainty appraisal analyses. Calculated mean responses of both algorithms 
varying with An (case 1).

Table 4.  Reported results of the field cases.

Chromite Ore, Tangarparha, Odisha, India

Parameter set K (nT ×  m2q−2) x0 (m) z0 (m) θ (degree) q

Biswas (2018) − 118.93 ± 0.69/370.01 ± 05/− 1
43.22 ± 1.04

45.77 ± 0.57/825.20 ± 0.20/106
2.16 ± 1.22

150.36 ± 0.31/344.30 ± 0.70/26
1.43 ± 2.17

163.75 ± 0.34/0.00 ± 0.5/4.64 
± 0.39 2.5/2.5/2.5

Uranium Ore, Beldih Mine, Purulia, West Bengal, India

Biswas (2018) 779.86 ± 1.17/3183.15 ± 8.71/176
0.56 ± 10.80

110.74 ± 0.03/166.14 ± 0.21/25
5.71 ± 1.38

8.39 ± 0.02/34.26 ± 0.10/25.7
2 ± 0.67

57.95 ± 0.15/54.89 ± 0.37/− 2.
45 ± 4.83 1/1/1

Parnaiba anomaly, Brazil

Biswas (2018) − 1541.27 ± 16.05 0.57 ± 0.02 3.47 ± 0.03 59.24 ± 0.30 2

Tlas and Asfahani (2015) − 645.6 0 3.4 41.3 2

Abdelrahman and Essa (2015) – – 2.35 – 1.02

Asfahani and Tlas (2007) − 59.8 – 2.3 47.1 –

Asfahani and Tlas (2004) − 59.81 – 2.26 47.11 –

Abdelrahman and Sharafeldin 
(1996) − 58.6 – 3.5 33.3 –

Silva (1989) – – 3.5 – –
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obtained for the real data cases are in agreement with the available geologic and/or geophysical information. 
Based on these findings, we concluded that BMO is more efficient than sPSO in balancing global exploration 
(the ability to explore the search space extensively and escape the capture of massive local minima) and the 
local exploitation (intensively approximating the global minimum) processes in this type of inverse magnetic 
problem. The proposed optimizer quantitatively simulates the specific mating behavior of barnacles leads to a 
suitable trade-off between these two significant key processes. This study therefore represents an entirely new 
and competing tool for the efficient interpretation of causative sources from a variety of geophysical anomalies.

On the other hand, similar to other metaheuristic algorithms, one of the weaknesses of the BMO is that it 
uses an algorithm-based control parameter (pl) whose optimum value may change according to each inverse 
problem. Therefore, parameter tuning studies are needed for each inverse problem in order to get the most 
out of the algorithm. Another weak point is that it requires more run-time than derivative-based local search 
algorithms. In addition, the increase in the number of model parameters to be estimated or the studies in which 
dense anomaly equations are used increase the run-times even more. However, the use of powerful and capable 
computers produced in line with technological developments can easily reduce this disadvantage.

Figure 14.  Inversion results of the chromite ore anomaly, India. (a) fittings between the observed magnetic 
anomaly and the mean responses obtained via BMO and sPSO, (b) calculated std values of obtained responses 
at each station, (c) variation behavior of the mean RMSE values against iterations of BMO and sPSO after 30 
independent runs, (d) variation behavior of the std of RMSE values against iterations of BMO and sPSO after 30 
runs.
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Chromite Ore, Tangarparha, Odisha, India

Without the implementation of the SMA technique

Parameter set Search spaces PSO results BMO results

K (nT ×  m2q−2) − 124.88 ~ − 41.626/230.91 ~ 692.74/− 150.
15 ~ − 50.05 − 89.911 ± 0/532.39 ± 33.388/− 108.11 ± 0 − 83.456 ± 0.5482/460.69 ± 3.0421/− 100.

35 ± 0.6592

θ (degree) 80.154 ~ 240.46/0 ~ 0/1.2652 ~ 3.7957 156.14 ± 0.8431/0 ± 0/2.7927 ± 0.7742 158.86 ± 1.115/0 ± 0/2.5077 ± 0.017604

x0 (m) 24.259 ~ 72.777/477.53 ~ 1432.6/494.74 ~ 
1484.2

49.481 ± 0.9878/841.03 ± 56.92/1081.3 ± 
317.91

48.976 ± 0.1202/964.07 ± 2.3662/998.81 
± 2.4534

z0 (m) 112.4 ~ 337.21/254.18 ~ 762.53/103.96 ~ 3
11.89

181.3 ± 27.483/457.75 ± 129.73/272.66 ± 
2.5461

224.57 ± 1.906/507.82 ± 4.3115/207.7 ± 1
.7627

q 1.213 ~ 3.6391/1.2523 ~ 3.757/1.1962 ~ 3.588 2.4537 ± 0.0038/2.5574 ± 0.0048/2.8354 ± 
0.0289

2.43 ± 0.0042/2.5087 ± 0.0043/2.3961 ± 0
.0042

RMSE between the observed magnetic anomaly and the obtained residual responses 82.0409 ± 0.9173 29.6877 ± 0.6917

With the implementation of the SMA technique (the mean output of various dx)

K (nT ×  m2q−2) − 83.42 ± 0.2328/508.09 ± 1.3828/− 100.1
8 ± 0.2201

θ (degree) 160 ± 0.4774/0 ± 0/1.2748 ± 0.0046261

x0 (m) 38.92 ± 0.12763/968.77 ± 3.514/993.73 ± 
3.3938

z0 (m) 320.11 ± 1.6701/540.34 ± 2.2061/247.09 
± 1.1117

q 2.4318 ± 0.0187/2.5016 ± 0.0195/2.3785 
± 0.0197

RMSE between the calculated SMA magnetic anomalies and the inverted one 4.2777 ± 0.0010

Uranium Ore, Beldih Mine, Purulia, West Bengal, India

Without the implementation of the SMA technique

K (nT ×  m2q−2) 500.71 ~ 1502.1/1887 ~ 5660.9/761.75 ~ 2
285.2

1072.1 ± 174.09/3614.6 ± 1287.4/1934.5 ± 
293.66

1018.1 ± 1.5033/3836.9 ± 5.7627/1548.9 
± 2.2656

θ (degree) 18.261 ~ 54.783/30.131 ~ 90.393/− 1.8007 
~ − 0.600

40.125 ± 3.3586/61.178 ± 24.724/− 1.152
5 ± 0

36.585 ± 0.0702/60.365 ± 0.1153/− 1.198
4 ± 0.0023

x0 (m) 55.468 ~ 166.4/83.652 ~ 250.96/129.37 ~ 3
88.11

98.389 ± 26.253/165.61 ± 12.337/221.96 ± 
53.706

110.61 ± 0.2385/166.81 ± 0.3524/257.97 
± 0.5643

z0 (m) 6.97 ~ 20.91/16.086 ~ 48.258/5.8273 ~ 17.482 15.849 ± 5.9752/44.571 ± 2.4841/7.459 ± 0 13.957 ± 0.2744/32.21 ± 0.6317/11.669 ± 
0.22926

q 0.4635 ~ 1.3908/0.5155 ~ 1.5466/0.57816 
~ 1.7345

1.0296 ± 0.15337/1.0319 ± 0.0465/1.3087 
± 0.0335

0.9303 ± 0.0010/1.0346 ± 0.0012/1.1602 ± 
0.00125

RMSE between the observed magnetic anomaly and the obtained residual responses 262.6028 ± 63.7970 119.7986 ± 2.7188

With the implementation of SMA technique (the mean output of various dx)

K (nT ×  m2q−2) 1135.2 ± 5.4598/4474.1 ± 32.224/1402.1 
± 7.4276

θ (degree) 32.261 ± 0.1291/55.003 ± 0.1336/− 0.841
3 ± 0.0025

x0 (m) 111.21 ± 0.1963/168.96 ± 0.5606/259.28 
± 1.4854

z0 (m) 13.646 ± 0.0696/33.115 ± 0.1668/11.665 
± 0.0575

q 0.9786 ± 0.0012/1.0582 ± 0.0046/1.1005 
± 0.0036

RMSE between the calculated SMA magnetic anomalies and the inverted one 41.0148 ± 0.1821

Mesozoic dyke anomaly, Brazil

Without the implementation of the SMA technique

K (nT ×  m2q−2) − 2003.3 ~ − 1078.7 − 1195.3461 ± 160.9861 − 1518.7165 ± 4.3658

θ (degree) 41.468 ~ 77.012 41.7885 ± 0.1377 36.0851 ± 0.1544

x0 (m) 0.399 ~ 0.741 0.6333 ± 0.0131 0.6598 ± 0.0590

z0 (m) 2.429 ~ 4.511 4.5077 ± 0.0025 5.7835 ± 0.0166

q 1.4 ~ 2.6 2.0248 ± 0.0348 1.9700 ± 0.0030

RMSE between the observed magnetic anomaly and the obtained residual responses 7.8110 ± 0.0174 4.7079 ± 0.0442

With the implementation of the SMA technique (the mean output of various dx)

K (nT ×  m2q−2) − 1531.4377 ± 84.6412

θ (degree) 32.3969 ± 0.8404

x0 (m) 0.84221 ± 0.0061

z0 (m) 5.2524 ± 0.0488

q 2.1250 ± 0.0342

RMSE between the calculated SMA magnetic anomalies and the inverted one 1.0191 ± 0.0001
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Table 5.  Inversion results of the field magnetic anomalies using BMO and PSO without and with the 
implementation of the SMA technique. Significant values are in bold.

Figure 15.  Inversion results of the uranium ore anomaly, India. (a) fittings between the observed magnetic 
anomaly and the mean responses obtained via BMO and sPSO, (b) calculated std values of obtained responses 
at each station, (c) variation behavior of the mean RMSE values against iterations of BMO and sPSO after 30 
independent runs, (d) variation behavior of the std of RMSE values against iterations of BMO and sPSO after 30 
runs.
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Figure 16.  Inversion results of the Mesozoic dyke anomaly, Brazil. (a) fittings between the observed magnetic 
anomaly and the mean responses obtained via BMO and sPSO, (b) calculated std values of obtained responses 
at each station, (c) variation behavior of the mean RMSE values against iterations of BMO and sPSO after 30 
independent runs, (d) variation behavior of the std of RMSE values against iterations of BMO and sPSO after 30 
runs.
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Figure 17.  Inversion results of three field cases obtained via BMO with the implementation of the SMA 
technique, (a) the calculated SMA magnetic anomalies of the chromite ore anomaly, India and estimated 
response of BMO for different s values (0.5, 0.75, and 1 × dx, dx = 40 m), (b) the calculated SMA magnetic 
anomalies of the uranium ore anomaly, India and estimated response of BMO for different s values (0.5, 0.75, 
and 1 × dx, dx = 8 m), (c) the calculated SMA magnetic anomalies of the Mesozoic dyke anomaly, Brazil and 
estimated response of BMO for different s values (0.5, 0.75, and 1 × dx, dx = 0.8 m).
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