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Abstract
Objective: This study used machine learning algorithms to identify critical variables 
and predict postoperative delirium (POD) in patients with degenerative spinal disease.
Methods: We included 663 patients who underwent surgery for degenerative spinal 
disease and received general anesthesia. The LASSO method was used to screen es-
sential features associated with POD. Clinical characteristics, preoperative laboratory 
parameters, and intraoperative variables were reviewed and were used to construct 
nine machine learning models including a training set and validation set (80% of partic-
ipants), and were then evaluated in the rest of the study sample (20% of participants). 
The area under the receiver-operating characteristic curve (AUROC) and Brier scores 
were used to compare the prediction performances of different models. The eXtreme 
Gradient Boosting algorithms (XGBOOST) model was used to predict POD. The 
SHapley Additive exPlanations (SHAP) package was used to interpret the XGBOOST 
model. Data of 49 patients were prospectively collected for model validation.
Results: The XGBOOST model outperformed the other classifier models in the training 
set (area under the curve [AUC]: 92.8%, 95% confidence interval [CI]: 90.7%–95.0%), 
validation set (AUC: 87.0%, 95% CI: 80.7%–93.3%). This model also achieved the low-
est Brier Score. Twelve vital variables, including age, serum albumin, the admission-
to-surgery time interval, C-reactive protein level, hypertension, intraoperative blood 
loss, intraoperative minimum blood pressure, cardiovascular-cerebrovascular disease, 
smoking, alcohol consumption, pulmonary disease, and admission-intraoperative 
maximum blood pressure difference, were selected. The XGBOOST model performed 
well in the prospective cohort (accuracy: 85.71%).
Conclusion: A machine learning model and a web predictor for delirium after surgery 
for the degenerative spinal disease were successfully developed to demonstrate the 
extent of POD risk during the perioperative period, which could guide appropriate 
preventive measures for high-risk patients.
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1  |  INTRODUC TION

Postoperative delirium (POD) is an acute state of confusion caused 
by reversible changes in the central nervous system caused by an 
underlying systemic disturbance. The occurrence usually occurs 
between a few hours and a few days after surgery, and mainly 
manifests as a significant loss of functional ability, a decline in con-
sciousness, attention disorder, or thinking disorders.1 The total an-
nual healthcare costs associated with delirium and its complications 
are estimated to be more than $164 billion.2 Since delirium is highly 
preventable,3,4 interventions are increasingly targeted to reduce its 
complications and costs.

From the nineties of the last century up to today, spinal surgery 
continues to increase,5 but the occurrence of postspinal delirium is 
not uncommon.6 There is a paucity of studies on POD among pa-
tients undergoing surgery for degenerative spinal lesions,7,8 and 
early models of disease progression in these patients used a sin-
gle statistical method with limited predictive power.9–11 Using ma-
chine learning techniques to establish disease prediction models 
can enhance the predictive power of these models, as has been 
reported.12,13

Machine learning technology was used in the present study to 
extract the preoperative and intraoperative clinical data of 663 pa-
tients who underwent surgery under general anesthesia, and nine 
different predictive models for POD were developed. Finally, we 
compared these models and selected the optimal predictive model 
capable of assisting in detecting and diagnosing patients at high risk 
of POD. Additionally, to make the selected model more available, 
a website calculator was established to help clinicians in their daily 
application.

2  |  METHODS

2.1  |  Data source and extraction

This study was designed as a retrospective study, which was per-
formed in compliance with the STROBE Guidelines.14 We recruited 
patients who underwent surgery for degenerative spinal patholo-
gies, including cervical disk herniation, cervical spinal stenosis, lum-
bar disk herniation, and lumbar spinal stenosis, at the First Affiliated 
Hospital of Nanchang University from January 2018 to October 
2021. This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Nanchang University under the accreditation 
number (2022) YYL-K (4–013). All patient data were anonymized 
throughout the study. No identifiable data of patients were re-
corded. Given that this study was purely observational, written con-
sent was not required. We included patients that underwent surgery 

at our hospital as indicated by the inefficacy of conservative treat-
ment for degenerative spinal conditions. Patients with a history of 
severe psychiatric disease, preoperative delirium, severe traumatic 
brain injury, or severe organ damage within the last 12 months were 
excluded from the study.

The accuracy of the model was further validated by prospec-
tively collecting data from patients undergoing surgery for degen-
erative spine disease from December 2021 to February 2022 at the 
First Affiliated Hospital of Nanchang University.

2.2  |  Delirium assessment

Delirium was assessed using rigorous techniques. In this trial, the di-
agnosis of delirium was made by a multidisciplinary consensus panel 
based in accordance with the Diagnostic and Statistical Manual of 
Mental Disorders (Fourth Edition) criteria using several data sources, 
including the confusion assessment method,15 the Delirium Rating 
Scale-Revised-98 (DRS),16 digit span, a review of medical records, 
and family/nursing staff interviews. We judged this by the occur-
rence of delirium in the first 5 days after surgery.17 The evaluation 
of delirium was carried out by a qualified psychiatrist at the First 
Affiliated Hospital of Nanchang University who was blinded to both 
the patient's perioperative characteristics and the process of data 
entry and statistical analysis.

2.3  |  Model input features

We selected thirty-nine potential features, including basic patient 
characteristics: age, sex, weight, education, hypertension, diabe-
tes, history of pulmonary disease (PD), history of cardiovascular-
cerebrovascular disease (CCD), visual impairment, hearing 
impairment, history of alcoholism, smoking history, admission-to-
surgery time interval (ASTI), blood pressure on admission, history 
of previous surgery; preoperative laboratory data including blood 
group, white blood cell count, red blood cell count, red blood cell 
ratio, hemoglobin level, serum C-reactive protein (CRP), erythrocyte 
sedimentation rate (ESR), serum albumin, AST titer, ALT titer, serum 
creatinine, blood urea nitrogen, serum potassium, serum sodium, 
serum chloride, and serum calcium levels; procedure-specific in-
formation such as the American Society of Anesthesiologists (ASA) 
classification, volume of blood transfused, intraoperative minimum 
blood pressure (IMBP), admission-intraoperative maximum blood 
pressure difference (AIMBPD), number of operative segments, in-
traoperative blood loss (IBL), duration of surgery, and intraoperative 
cerebrospinal fluid leakage. Then, POD features were selected using 
the least absolute shrinkage and selection operator (LASSO).18

K E Y W O R D S
delirium, machine learning, model prediction, postoperative
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To obtain the best predictive performance, nine models, includ-
ing the eXtreme Gradient Boosting (XGBOOST) algorithm, Logistic 
regression (LR), RandomFofest (RF), AdaBoost, GaussianNB (GNB), 
ComplementNB (CNB), Multi-layer Perceptron (MLP), Support 
Vector Machine (SVM), and K-Nearest Neighbor machine (KNN) 
learning models, were built.

2.4  |  Sample size and statistical analysis

For the two-class prediction model, the sample size calcula-
tion was obtained as described in a previous study,19 as follows: 

N = exp
(

− 0.508+ 0.259ln(φ) + 0.504ln(P) − ln(MAPE)

0.544

)

. According to the above 
formula, the minimum sample size is estimated to be 480. To 
meet these requirements, we randomly split the study population 
(n = 663) into the training set, validation set, and testing set.

All analyses were performed using Python language. The normal-
ity of the distribution of continuous variables was tested using the 
Shapiro–Wilk test. Normally distributed continuous variables were 
expressed as the mean ± standard deviation (SD) and compared using 
the independent-sample t-test. Skewed continuous variables were pre-
sented as the median and interquartile range (IQR) and compared using 
the Mann–Whitney U test. Categorical variables were presented as 
frequencies and percentages and analyzed using either the chi-square 
test or Fisher's exact probability test. At last, the most important fea-
tures were filtered via LASSO regression analysis, and nine models 
were developed based on their set of features.

The selection of model hyperparameters used ten-fold cross-
validation on training datasets. Cross-validation guaranteed a better 
assessment of model performance by averaging metrics over mul-
tiple trials. The application of missing data imputation is described 
as follows: If the percentage of missing values was >20%, it was 
excluded from the final completed dataset, and if this percentage 
was <20%, the random forest regression method was used for 
imputation.

Discrimination and calibration were used to verify the predictive 
ability of the model. Clinical decision curve analysis (DCA)20 eval-
uated the clinical utility of the model. The AUROC and Brier score 
were the measurements of discrimination. After the best model was 
selected, the Shapley Additive exPlanations (SHAP) package21 in 
Python was used to show the relationship between the importance 
of each feature. Finally, the best model was applied to visualize pro-
spective validations.

3  |  RESULTS

3.1  |  Patient characteristics

A total of 663 patients were included in this study. Detailed in-
formation on the demographic characteristics of the study 
participants who underwent surgery for degenerative spinal pa-
thologies are shown in Table 1. The comparison of preoperative 

and intraoperative variables between POD group and non-POD 
group can be found in Table  2. Among those screened, the rate 
of POD was approximately 27.45%. The study variables, including 
preoperative CRP and preoperative serum albumin, had few miss-
ing values. The study population (n = 663) was randomly divided 
into training set and validation set, which were used to establish 
the predictive models. and testing set, which was used to further 
validate the predictive models. Our study participants were di-
vided into the POD group (n = 182) and non-POD group (n = 481) 
according to whether or not they experienced delirium within the 
first 5 days after surgery.17 The flowchart for patient recruitment 
is shown in Figure 1. There was no statistically significant differ-
ence between the patient characteristics in the training and test-
ing datasets.

3.2  |  Key variables

In the LASSO model, a vertical line was drawn at the value selected 
using the ten-fold cross-validation, where a suitable lambda resulted 
in 12 features with nonzero coefficients (Figure 2A,B). As expected, 
patients with advanced age, hypertension, history of smoking, CCD, 
PD, and history of alcoholism, longer ASTI, lower preoperative al-
bumin, and minimum intraoperative blood pressure, greater intra-
operative blood loss, higher preoperative CRP, and larger AIMBPD 
were more likely to experience POD.

3.3  |  Model performance

After identifying these 12 variables, machine learning models were 
used to predict POD after surgery. AUROC, Brier Scores, and DCA 
are important indicators used to evaluate prediction models. The 
XGBoost achieved a much lower and superior Brier score compared 
with the other models. The calibration plots of the nine models are 
shown in Figure  3. DCA indicated that the XGBoost model could 
serve as the best diagnostic tool for POD (Figure 4).

The XGBoost model also achieved a larger (better) AUROC 
compared with the other models (Figure 5). Based on the AUROC 
of the nine models, we made a forest plot of the AUC score of 
the multiple models. Nine models were seen after using 10 cross-
validations: the standard deviation SD of the AUC score of the 
XGBoost model is 0.019, which is smaller than the other eight 
models, indicating that the XGBoost model has the most stable 
performance. Based on the above aspects, we can conclude that 
the XGBoost model significantly outperformed eight other ma-
chine learning models (Figure 6). The values in the training data-
sets are found in Table 3. The values in the validation set are found 
in Table 4. According to the Youden Index, which is defined as sen-
sitivity + specificity − 1, the best cut-off of prediction probabilities 
of the XGBoost model was 29.53%. For the testing dataset, the 
data of 132 patients were collected to validate the performance 
of the established XGBoost model. The following values in the 
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testing group were found: XGBoost model (AUC  =  87.9%, 95% 
CI: 81.9%–94.0%), accuracy = 0.812, sensitivity = 0.909, specific-
ity = 0.770, F1 scores = 0.713.

The SHAP package was used to analyze XGBoost model, show-
ing the reflect the influence of each feature in the sample and also 
showing the positive and negative influences. The bar chart shows 
the relationship between the magnitude of the feature value and 
the predicted impact (Figure  7). Meanwhile, we did a sensitivity 
analysis using SALib, which is an open-source library for sen-
sitivity analysis based on python, and we found that the results 
were similar to those presented by the SHAP value (Table 5). The 
two-class prediction outcome was generated based on the opti-
mal cut-off value of the optimal model. For the application of the 
XGBoost model, the best cut-off of the prediction probability of 
the proposed model was 29.53%. If the model predicted a prob-
ability > 29.53%, then the patients who underwent surgery had 
a higher risk of developing POD. At this moment, nursing staff 
and doctors should pay closer attention to patients with these 
characteristics.

3.4  |  Application of the model

A typical patient's preoperative and intraoperative information 
was inputted into the model, for example, age: 76 years, albu-
min: 33.2  g/L, ASTI: 4 days, CRP: 2.00 mg/L, IBL: 200 ml, IMBP: 
115 mmHg, AIMBPD: 45 mmHg, smoking: No, alcohol: No, PD: Yes, 
hypertension: No, CCD: No. The model predicted that the risk of 
POD in this patient was 65.166%, indicating that the patient was 
at high risk of POD; indicating that medical staff should prepare 

for treatment and care in advance (Figure 8A). Using the preopera-
tive and intraoperative information of another patient in the model: 
age: 44 years, albumin: 36.5 g/L, ASTI: 4 days, CRP: 1.23 mg/L, IBL: 
100 ml, IMBP: 110 mmHg, AIMBPD: 41 mmHg, smoking: No, alcohol: 
No, PD: No, hypertension: Yes, CCD: No, the predicted probability 
of POD in this patient was 3.992%, indicating that the patient was at 
low risk of developing POD (Figure 8B). Furthermore, a web-based 
tool was established for clinicians to use the proposed model (avail-
able at: http://121.89.246.238/model/​predi​ction/​1).

3.5  |  Prospective validation

The data of 49 patients were prospectively collected for validation, 
among which 18.37% (9/49) experienced POD. The accuracy of the 
proposed model on the prospective dataset was 85.71%. The sen-
sitivity and specificity for the prospective validation sample were 
0.778 and 0.875, respectively. For two patients that experienced 
POD, the model predicted a negative outcome. The model predicted 
five patients who did not experience POD as positive, and the oth-
ers had probabilities of developing POD (3.18%–20.50%) that were 
lower than the cut-off value.

4  |  DISCUSSION

Few models are available for predicting delirium after surgery for 
patients with spinal degenerative disease.22–24 This study presents 
a novel approach using machine learning algorithms to predict 
delirium in these patients. The XGBoost machine learning model 

Variables All (N = 663)
POD group 
(n = 182)

Non-POD group 
(n = 481) p-Value

Age, median (Q1, Q3) 58 (49, 67) 68 (63, 75) 54 (46, 63) <0.001

Sex, n%

Female 274 (41.327) 69 (37.912) 205 (42.620) 0.272

Male 389 (58.673) 113 (62.088) 276 (57380)

Weight, median (Q1, Q3) 60 (54, 69) 60 (53, 65) 60 (54, 70) 0.043

Education degree

Illiteracy 22 (3.318) 13 (7.143) 9 (1.871) 0.008

Junior high school 
education and below

503 (75.867) 137 (75.275) 366 (76.091)

High school education 81 (12.217) 16 (8.791) 65 (13.514)

University degree and 
above

57 (8.597) 16 (8.791) 41 (8.524)

Blood group, n%

A 221 (33.333) 58 (31.868) 163 (33.888) 0.179

B 175 (26.395) 59 (32.418) 116 (24.116)

O 217 (32.730) 53 (29.121) 164 (34.096)

AB 50 (7.541) 12 (6.593) 38 (7.900)

Abbreviations: SD, standard deviation.

TA B L E  1  Demographic characteristics 
of the study participants who underwent 
surgery for degenerative spinal 
pathologies

http://121.89.246.238/model/prediction/1
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TA B L E  2  Comparison of preoperative and intraoperative variables between POD group and non-POD group

Variables All (N = 663) POD group (n = 182) Non-POD group (n = 481) p-Value

Hypertension, n% 260 (39.216) 126 (69.231) 134 (27.859) <0.001

Diabetes, n% 54 (8.145) 22 (12.088) 32 (6.653) 0.022

Pulmonary disease, n% 27 (4.072) 18 (9.890) 9 (1.871) <0.001

CCD, n% 53 (7.994) 37 (20.330) 16 (3.326) <0.001

Visual impairment, n% 1 (0.151) 0 (0.000) 1 (0.208) <0.001

Hearing impairment, n% 2 (0.302) 2 (1.099) 0 (0.000) <0.001

Alcohol, n% 25 (3.771) 18 (9.890) 7 (1.455) <0.001

Smoking, n% 51 (7.692) 32 (17.582) 19 (3.950) <0.001

ASTI, median (Q1, Q3) 4 (3.000, 5.000) 5 (3.000, 7.000) 3 (2.000, 5.000) <0.001

Blood pressure on admission, 
median (Q1, Q3)

130 (117, 141) 135 (125, 147) 127 (115, 139) <0.001

History of previous surgery, n% 181 (27.300) 67 (36.813) 114 (23.701) <0.001

WBC, median (Q1, Q3) 6.080 (4.990, 7.300) 6.120 (4.930, 7.220) 6.030 (4.990, 7.330) 0.831

RBC, mean (SD) 4.392 (0.541) 4.202 (0.536) 4.464 (0.526) <0.001

RBC ratio, median (Q1, Q3) 0.408 (0.378, 0.441) 0.393 (0.366, 0.423) 0.414 (0.383, 0.448) <0.001

Hemoglobin, median (Q1, Q3) 133 (123, 145) 128 (119, 140) 135 (125, 148) <0.001

CRP, median (Q1, Q3) 1.480 (0.580, 3.140) 2.600 (1.200, 5.320) 1.270 (0.480, 2.520) <0.001

ESR, median (Q1, Q3) 7 (4， 12) 9 (4， 18) 6 (4. 11) <0.001

Albumin, median (Q1, Q3) 40.400 (38.100， 42.700) 38.000 (35.300, 40.100) 41.300 (39.100， 43.500) <0.001

AST, median (Q1, Q3) 18 (13,28) 17 (12, 25) 18 (13, 29) 0.041

ALT, median (Q1, Q3) 20.000 (16.800, 25.000) 20.000 (17.000, 24.000) 20 (16.000, 26.000) 0.829

Cr, median (Q1, Q3) 66.700 (56.500, 78.100) 70.000 (61.200, 84.500) 65.900 (55.500, 76.600) <0.001

BUN, median (Q1, Q3) 5.640 (4.720, 6.960) 6.180 (5.040, 7.650) 5.510 (4.600, 6.710) <0.001

K+, median (Q1, Q3) 3.900 (3.690, 4.130) 3.870 (3.620, 4.150) 3.910 (3.710, 4.130) 0.220

Na+, median (Q1, Q3) 140.700 (139.300, 142.100) 141.000 (139.800, 142.900) 140.600 (139.300, 141.900) 0.004

Cl-, median (Q1, Q3) 104.900 (103.300, 106.640) 105.200 (102.900, 107.000) 104.830 (103.390, 106.480) 0.304

Ca+, median (Q1, Q3) 2.270 (2.200, 2.350) 2.260 (2.180, 2.340) 2.280 (2.210, 2.350) 0.196

ASA degree, n%

II 158 (23.831) 17 (9.341) 141 (29.314) <0.001

III 501 (75.566) 163 (89.560) 338 (70.270)

IV 4 (0.603) 2 (1.099) 2 (0.416)

Volume of blood transfusion, mean 
(SD)

43.881 (216.847) 102.775 (371.026) 21.550 (104.125) 0.004

IMBP, median (Q1, Q3) 100 (90, 105) 95 (85, 100) 100 (90, 105) <0.001

AIMBPD, median (Q1, Q3) 32 (19, 45) 40 (29, 53) 28 (16, 40) <0.001

Operative segments, n%

1 342 (51.584) 60 (32.967) 282 (58.628) <0.001

2 199 (30.015 64 (35.165) 135 (28.067)

3 100 (15.083) 43 (23.626) 57 (11.850)

4 and above 22 (3.318) 15 (8.242) 7 (1.455)

IBL, median (Q1, Q3) 200 (100, 350) 300 (200, 400) 200 (100, 300) <0.001

Duration of surgery, n% 160 (120, 205) 175 (135, 225) 150 (110, 200) <0.001

Cerebrospinal fluid leak, n% 17 (2.564) 7 (3.846) 10 (2.079) 0.199

Abbreviations: AIMBPD, admission-intraoperative maximum blood pressure difference; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; ASTI, admission-to-surgery time interval; BUN, blood urea nitrogen; CCD, cardiovascular-cerebrovascular disease; Cr, creatinine; 
CRP, C-reactive protein; IBL, intraoperative blood loss; IMBP, intraoperative minimum blood pressure; RBC, red blood cell; SD, standard deviation; 
WBC, white blood cell.
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F I G U R E  1  Model-making process and flowchart of the study procedure. (A) This figure shows how the data were obtained from 
electronic medical record systems, and the collection of data on all study variables, including demographic characteristics, laboratory 
indicators, and intraoperative information. Data on a total of 39 preoperative variables were collected, 12 of which were selected. The 12 
variables were used to establish the machine learning models. (B) Flowchart of our study procedure
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accurately predicted POD and showed greater discrimination and 
satisfactory specificity and sensitivity than the other models devel-
oped in this study.

Postoperative delirium occurs in 11%–51% of patients after sur-
gery.25 The incidence of POD in this study was 27.45%. The occur-
rence of POD is caused by a variety of factors, and the probability 

F I G U R E  2  A, B Demographic and clinical feature selection using the LASSO regression

F I G U R E  3  Calibration plots of nine 
models. The XGBoost achieved lower 
(better) Brier scores compared with the 
other models.
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of its occurrence may also be related to the type of surgery and 
perioperative intervention.26 Therefore, for patients with different 
diseases, there are certain differences in the occurrence probability 
of POD. In patients, around 30%–40% of delirium cases are thought 
to be attributable to modifiable risk factors and are therefore pre-
ventable.27 Prophylactic low-dose infusion of dexmedetomidine 
significantly reduced the incidence of delirium in elderly patients 
during the first 7 days of admission to the ICU after noncardiac sur-
gery.28 In deep anesthesia，the neurometabolic profile of isoflurane 
appears to be superior to that of propofol, which has been shown to 
impair the mitochondrial respiratory chain，isoflurane may therefore 
reduce neurological complications.29 Jie Zhang et al30 found that the 
composition of the gut microbiota was different between POD and 
non-POD mice and concluded that targets gut microbiota could pro-
vide a novel alternative for POD treatment.

Researchers have conducted a number of clinical studies to iden-
tify biomarkers accurately predicting PODs, such as the evaluation 
of plasma tau,31 the S-100β protein,32 amyloid,33 adiponectin34 lev-
els, and the level of PGRN in the cerebrospinal fluid.35 Researchers 
are also trying to determine how to reduce the prevalence of the 
condition. Although POD can be predicted relatively well by these 
biomarkers, due to the complex sampling methods required and 
high associated costs, they are difficult to use in the clinical setting. 
Therefore, disease prediction models may provide a solution for 
the identification of high-risk patients and the prevention of POD 
allowing clinicians to take measures to reduce the probability of its 
occurrence. Thus, the management of patients would be improved, 
and consequently, this would improve patient outcomes and reduce 
morbidity and costs. Thus, it is of great importance to predict POD 
and take appropriate measures immediately after surgery.36

F I G U R E  4  Decision curve analysis for nine machine learning models. The XGBoost model can serve as the best diagnostic tool for 
postoperative delirium.

F I G U R E  5  Receiver-operating characteristic curves for nine machine learning models. The XGBoost model achieved a larger (better) 
AUROC compared with the other models.
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There are many approaches to the construction of POD pre-
diction models; however, many mathematical terms are always in-
volved37 and are transformed into mathematical formulas, which 
limit the availability of prediction models. The model proposed in 
this study may help clinicians identify patients by predicting those 
at high risk of developing POD. To further enhance the simplicity of 
the model, this study also produced an online tool that will greatly 
improve the efficiency of the application of the model. It is expected 
that for each case of POD that is avoided, both the patient and fi-
nancial benefits achieved may be significant given the large number 
of patients undergoing spinal surgery.

Additionally, two examples were given to illustrate how the model 
was able to predict POD and evaluate the relative importance of each 
variable for the clinician. With millions of spinal surgeries taking place 
each year, the findings could help give surgeons information about 
respective probabilities to develop POD of patients after surgery.

Previous studies have reported that postoperative IL-632 and IL-
831 were associated with an increased risk of POD. However, pre-
operative and intraoperative information should be used to predict 
POD to define risk; to avoid the occurrence of POD on the night of 
surgery when it is too late to take action based on postoperative 
findings.

F I G U R E  6  Forest plot of the AUC Score of the nine models. The XGBoost model achieved a smaller (better) standard deviation (SD) 
compared with the other models.

TA B L E  3  Performance metrics for nine models in the training dataset

Model AUC (95%) CI Accuracy Sensitivity Specificity Youden Index F1 score

XGBoost 0.928 (0.907–0.950) 0.828 0.904 0.803 0.707 0.745

Logistic 0.833 (0.796–0.870) 0.743 0.827 0.716 0.543 0.64

RandomForest 0.925 (0.902–0.948) 0.827 0.872 0.84 0.712 0.761

AdaBoost 0.908 (0.882–0.934) 0.819 0.851 0.808 0.659 0.723

GNB 0.889 (0.861–0.918) 0.806 0.862 0.788 0.65 0.711

CNB 0.723 (0.678–0.768) 0.645 0.8 0.588 0.388 0.553

MLP 0.788 (0.745–0.830) 0.746 0.711 0.76 0.471 0.602

SVM 0.867 (0.835–0.899) 0.753 0.907 0.697 0.604 0.67

KNN 0.912 (0.889–0.934) 0.824 0.845 0.813 0.658 0.768

Abbreviations: CNB, ComplementNB; GNB, GaussianNB; KNN, K-nearest neighbor; MLP, multilayer perceptron; SVM, support vector machine; 
XGBOOST, eXtreme Gradient Boosting.
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In this study, we established a predictive model and incorporated 
the following 12 variables into its construction: age, preoperative 
serum albumin, ASTI, preoperative CRP level, hypertension, IBL, 
IMBP, CCD, history of smoking, history of alcohol consumption, PD, 
and the AIMBPD. The optimal predictive model was made available 
as a Web-based online tool. The use of online calculation models to 
estimate the risk of POD is a new concept finding greater application 
among clinicians. The XGBoost model performed well, with AUCs of 
92.8% and 87.9% in the training and testing datasets, respectively. 
The calibration of the XGBoost model showed good agreement be-
tween the predicted outcome and the actual observed outcome by 
using Brier scores. For the application of this model, the best cut-off 
of prediction probabilities of the proposed model was 29.53%. If this 
value was exceeded, patients undergoing surgery were at a higher 
risk of developing POD. This predictive model can be used as a tool 
to screen patients for POD. Therefore, targeted interventions can be 
carried out in advance for high-risk patients.

A total of 12 variables were included in the XGBoost model 
analysis. Studies assessing the risk of POD have also demonstrated 
the vital role of age and some basic systemic diseases in predicting 

TA B L E  4  Performance metrics for nine models in the validation dataset

Model AUC (95%) CI Accuracy Sensitivity Specificity Youden Index F1 score

XGBoost 0.870 (0.807–0.933) 0.774 0.861 0.773 0.634 0.673

Logistic 0.807 (0.725–0.888) 0.708 0.805 0.725 0.53 0.601

RandomForest 0.863 (0.798–0.927) 0.772 0.819 0.793 0.612 0.666

AdaBoost 0.850 (0.780–0.919) 0.763 0.821 0.754 0.575 0.656

GNB 0.850 (0.783–0.918) 0.753 0.870 0.731 0.601 0.656

CNB 0.714 (0.623–0.805) 0.615 0.787 0.596 0.383 0.518

MLP 0.770 (0.681–0.858) 0.704 0.712 0.746 0.458 0.561

SVM 0.829 (0.756–0.902) 0.708 0.904 0.660 0.564 0.624

KNN 0.778 (0.692–0.864) 0.747 0.762 0.711 0.473 0.641

Abbreviations: CNB, ComplementNB; GNB, GaussianNB; KNN, K-nearest neighbor; MLP, multilayer perceptron; SVM, support vector machine; 
XGBOOST, eXtreme Gradient Boosting.

F I G U R E  7  SHAP analysis of the XGBoost model. A visual representation of each feature of the XGBoost model, showing the relationship 
between the importance of each feature. The color represents the value of the variable, with red representing the larger value and blue 
representing the smaller value.

TA B L E  5  Sensitivity analysis of XGBoost model

Features Sensitivity Index 95% CM

Age 0.597310 0.015986

Albumin 0.011097 0.001418

Hypertension 0.060957 0.002611

IMBP 0.131188 0.004410

IBL 0.233050 0.007096

AIMBPD 0.003855 0.000158

CRP 0.018204 0.001480

ASTI 0.013549 0.000701

Smoking 0.001563 0.000076

CCD 0.001141 0.000231

Alcohol 0.000285 0.000176

PD 0.000096 0.000137

Abbreviations: AIMBPD, admission-intraoperative maximum blood 
pressure difference; ASTI, admission-to-surgery time interval; CCD, 
cardiovascular-cerebrovascular disease; CM, confidence measure; 
IBL, intraoperative blood loss; IMBP, intraoperative minimum blood 
pressure; PD, pulmonary disease.
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POD.1,38 Our findings were consistent with those of previous studies. 
Low preoperative serum albumin may increase the incidence of POD 
in patients, probably because albumin reflects their nutritional sta-
tus, and compared with patients having high nutritional status, these 

patients have difficulty in tolerating the shock of surgery and are 
more prone to POD. IBL and intraoperative hypotension were also 
associated with the development of POD, as confirmed by this study. 
Furthermore, this study also found other variables that increased 

F I G U R E  8  Cases of website usage. Entering the input value determined the POD requirements and displayed how each value contributed 
to the prediction. (A) Case 1 POD will occur; (B) Case 2 POD will not occur.
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the risk of POD, such as the time interval between ASTI, with a cut-
off value of 5.5 days. The participants of this study were patients 
scheduled to undergo surgery for spinal degenerative diseases. The 
patients were not under the pressures associated with emergency 
surgery. However, although the patients are experiencing pain, the 
long waiting time for surgery may increase the psychological pres-
sure they experience, which may predispose them to POD. At the 
same time, patients that developed POD were often confirmed to 
have more pre-existing diseases, and more preoperative-related ex-
aminations are associated with longer hospital stays.

It is believed that oxidative stress and neuroinflammation play 
a role in the pathophysiology of POD.25,39 According to this study, 
high preoperative CRP is a risk factor for POD; however, the preop-
erative ESR variable was excluded when we screened for important 
features in this study. However, as both CRP and ESR express the 
degree of inflammation, the ESR may only act as an indirect marker 
influenced by many factors such as the size, number, and shape of red 
blood cells. Conversely, CRP is a comprehensive marker of inflamma-
tion. It is a stronger inflammatory marker than ESR. According to 
the LASSO regression, the pulse pressure difference between the 
normal blood pressure and intraoperative minimum blood pressure 
is also a risk factor (in this study, the variable of normal blood pres-
sure was replaced by the blood pressure measured on admission). 
This may be due to either intraoperative hypotension or an excessive 
drop in blood pressure, acute alterations in cerebral perfusion and 
oxygenation may expose the brain to the subsequent risk of devel-
oping delirium.40 However, according to the results of the sensitiv-
ity analysis, the effect of PD on the prediction model is negligible, 
and even Smoking, CCD, and Alcohol had lower Sensitivity Index. 
Similarly, the results of the SHAP analysis of the XGBoost model 
show that these four features have very low weights. Considering 
that previous studies have identified those features may be potential 
risk factors for POD,1,41,42 combined with the conclusions of lasso 
regression, we finally included those features in the established 
model.

This study used a machine learning algorithm to build a pre-
dictive model to predict the risk of POD in patients with degener-
ative spinal disorders, which could suggest appropriate preventive 
measures for patients at risk, particularly by intervening early and 
correcting abnormal levels of controllable risk factors, and follow-
ing the multicomponent intervention guidelines to prevent delirium 
released by The Hospital Elder Life Program (HELP).43,44 This has 
implications for the patient's physical and mental health after sur-
gery, early recovery, and savings in healthcare costs and resources. 
Using machine learning technology to establish disease prediction 
and risk-assessment models can help clinicians better identify the 
factors that truly affect the prevalence and pathophysiology of dis-
eases.45 As future work, we have planned to develop an automated 
machine learning-based clinical scoring system based on our dataset 
and embed it into the clinical case system to provide clinicians with a 
more practical and easy-to-understand tool.

In this study, we developed a POD prediction model with high 
discrimination. Comparatively with other studies, its prospective 

validation was another advantage. However, our study had several 
limitations. First, delirium was divided into manic and silent types. 
Since this study was a retrospective study, the silent type of delirium 
is rarely detected or recorded, and the model was only established 
for those patients exhibiting delirium-manic manifestations. Second, 
the study sample was relatively small, and the predictive model 
requires a larger sample for verification. Third, all the data in this 
study were derived from the First Affiliated Hospital of Nanchang 
University. Because of this, other medical institutions may not 
achieve the same outcomes when using this model. Most probably, 
when used by another institution, the model may need to be reca-
librated, which may alter the exact weights of the features. Finally, 
this model requires an independent dataset to test the extrapolation 
and generalization of the model. In the future, we will collect suf-
ficient external validation datasets to further improve this model.

5  |  CONCLUSIONS

In this study, we developed nine different POD prediction models 
and calibrated them using the AUROC, Brier score, and DCA to 
select the best-performing model. The best machine learning algo-
rithm, which was practical and had a good performance, was cho-
sen. This model could achieve an individualized prediction of POD 
and minimize the cost and risk of delirium preventive measures. We 
recommend using this model to predict POD and instruct high-risk 
patients to take appropriate preventive measures. We believe this 
model is an important tool for screening patients at high risk of POD 
among those with degenerative spinal diseases.
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