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Abstract

Purpose: Genotype-phenotypic correlation of KCNH1 variant remains elusive. This
study aimed to expand the phenotypic spectrum of KCNH1 and explore the correla-
tions between epilepsy and molecular sub-regional locations.

Methods: We performed whole-exome sequencing in a cohort of 98 patients with
familiar febrile seizure (FS) or epilepsy with unexplained etiologies. The damaging ef-
fects of variants were predicted by protein modeling and multiple in silico tools. All
reported patients with KCNH1 pathogenic variants with detailed neurological pheno-
types were analyzed to evaluate the genotype-phenotype correlation.

Results: Two novel KCNH1 variants were identified in three cases, including two pa-
tients with FS with inherited variant (p.lle113Thr) and one boy with epilepsy with de
novo variant (p.Arg357Trp). Variant 1le113Thr was located within the eag domain, and
variant p.Arg357Trp was located in transmembrane domain 4 of KCNH1, respectively.
Two patients experienced refractory status epilepticus (SE), of which one patient died
of acute encephalopathy induced by SE. Further analysis of 30 variants in 51 patients
demonstrated that de novo variants were associated with epileptic encephalopathy,
while mosaic/somatic or germline variants cause isolated epilepsy/FS. All hotspot var-
iants associated with epileptic encephalopathy clustered in transmembrane domain
(S4 and S6), while those with isolated epilepsy/seizures or TBS/ZLS without epilepsy
were scattered in the KCNH1.

Conclusions: We found two novel missense variants of KCNH1 in three individuals
with isolated FS/epilepsy. Variants in the KCNH1 cause a spectrum of epileptic disor-
ders ranging from a benign form of genetic isolated epilepsy/FS to intractable form
of epileptic encephalopathy. The genotypes and variant locations help explaining the
phenotypic variation of patients with KCNH1 variant.

Mao-Qiang Tian and Ren-Ke Li contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.

270 wileyonlinelibrary.com/journal/cns

CNS Neurosci Ther. 2023;29:270-281.


www.wileyonlinelibrary.com/journal/cns
mailto:﻿
https://orcid.org/0000-0003-3090-3801
http://creativecommons.org/licenses/by/4.0/
mailto:drmaoqiang@126.com

TIAN ET AL.

-Wi LEYJﬂ

CN'S Neuroscience & Therapeutics

KEYWORDS

epilepsy, KCNH1 gene, status epilepticus, Temple-Baraitser syndrome, Zimmermann-Laband

syndrome

1 | INTRODUCTION

KCNH1 gene (OMIM* 603305), mapping to 1g32.2, encodes po-
tassium voltage-gated channel subfamily H member 1 (KCNH1).
KCNH1 is a protein with 989 amino acids, containing an eag domain
in N-terminal, which is composed of a Per-Arnt-Sim (PAS) domain
and a PAS-cap domain, whereas the C-terminal region contains
a cyclic nucleotide-binding homology domain (CNBHD), which is
connected to the pore through a C-linker domain. Besides, KCNH1
exhibits a typical Kv membrane topology with six transmembrane
domains (51-56).12 KCNH1 is highly expressed in human brain, being
essential for brain development (www.proteinatlas.org/ENSGO
0000143473-KCNH1).>* Clinically, variants in KCNH1 have been
associated with Temple-Baraitser syndrome (TBS, OMIM# 611816)
and Zimmermann-Laband syndrome (ZLS, OMIM# 135500), two
forms of neurodevelopmental disorder charactered by intellectual
disability (ID), developmental disorder (DD), coarse face, gingival
overgrowth, hypertrichosis, digital/toe anomalies, and seizures.>™?
Although epileptic seizures were usually observed in these syn-
dromes, the genotype-phenotypic associations of KCNH1 are not
fully understood, as pathogenic KCNH1 variants have been identi-
fied in uncharacterized patients exhibited a part of the above pheno-
types, including isolated epilepsy could be ascribed neither to a TBS
nor to a ZLS. Here, we reported three cases harboring novel variants
in the KCNH1 gene suffering from epilepsy/febrile seizure (FS) and
refractory status epilepticus (SE), but otherwise presenting distinct
clinical features of TBS or ZLS, broadening the phenotypic spectrum
of KCNH1. We also analyzed all previously reported patients with
KCNH1 variant, focusing on the correlations between epilepsy and
molecular sub-regional locations.

2 | MATERIALS AND METHODS

2.1 | Subjects
Patients with unexplained epilepsy or familial FS were recruited
from Department of Pediatrics, Affiliated Hospital of Zunyi Medical
University between July 2017 and March 2021. The studies adhered
to the guidelines of the International Committee of Medical Journal
Editors with regard to patient's consent for research or participation.
This study was approved by the ethics committee of the Affiliated
Hospital of Zunyi Medical University. We obtained written consents
for genetic testing and publication of data for all patients.

Detailed clinical information of the patients was collected,
including age, gender, epileptic types and frequencies, general

and neurological examination results, family history, response to

anti-seizure medicines (ASMs), results of brain magnetic resonance
imaging (MRI), and video-electroencephalography (EEG). Epileptic
seizures or epilepsies were diagnosed according to the criteria of the
Commission on Classification and Terminology of the ILAE.1*12 Fs
is defined as seizures triggered by fever during aged 6 months to
5years without a history of an unprovoked seizure or concurrent
central nervous system infection.’®>'* SE is defined as convulsions
persisting for >5 min. Refractory SE is defined as clinical or electro-
encephalographic seizures lasting >60min despite treated with at
least one first-line ASMs (e.g., benzodiazepine) and one second-line
ASMs (e.g., phenytoin, phenobarbital, or valproate). Super-refractory
SE is defined as SE that has persisted or recurred for 24 h after the
onset of general anesthesia treatment.**>"Y” Epilepsies with acquired

causes were excluded.

2.2 | Trios-based WES

Blood samples were obtained from the probands and their parents
to determine the origin of the identified genetic variants. Genomic
DNA was extracted from peripheral blood using a QuickGene DNA
whole blood kit (Fujifilm). Exome captures were performed using the
IDT xGen Exome Research Panel with paired-end read sequences
generated on NovaSeq 6000 sequencing. Sequences were aligned
to Human reference genome GRCh38/hg38. The variants were
then annotated through AnnoVar'® and evaluated according to al-
lele frequencies, pathogenicity prediction, and protein function.
Pathogenic variants related to clinical phenotypes will further be

verified by Sanger sequencing.

2.3 | Mutation analysis

Aiming to evaluate the genotype-phenotype correlation, we exhaus-
tively searched KCNH1 pathogenic variants on the PubMed up until
Mar 2022 to identify studies published in English using the follow-
ing terms: KCNH1, epilepsy, seizure, TBS, ZLS, Temple-Baraitser,
Zimmermann-Laband. All pathogenic variants in patients with de-
tailed neurological phenotypes were analyzed.

Molecular modeling analysis was performed to show the vari-
ations in protein structure. The human_KCNH1 model was down-
loaded in the AlphaFold dataset.’” UCSF Chimera software was used
for three-dimensional protein structure visualization and analysis.
DUTE server (http://biosig.unimelb.edu.au/duet/) and Grantham
scores?® were used for prediction of protein stability changes. The
changes of the protein stability were assessed using the free energy

stability change (DDG, kcal/mol) value.


http://www.proteinatlas.org/ENSG00000143473-KCNH1
http://www.proteinatlas.org/ENSG00000143473-KCNH1
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3 | RESULTS % o .
5 2z 8
3.1 | Identification of KCNH1 variants g 9 630 é &
° g g 2 5
A total of 98 patients were recruited; among them, two missense q% ﬁ E “E Z>
KCNH1 variants were identified in three cases (Table 1; Figure 1A,D), g o= jl_’ § %
including one inherited variant (c.338T>C; p.lle113Thr) and one g é g % % g
de novo variant (c.1069C>T; p.Arg357Trp). The three cases had 8 g 2 9 g
no other pathogenic or likely pathogenic variants. Two variants of 9
KCNH1 were annotated based on the transcript NM_172362 and ° g
confirmed by Sanger sequencing (Figure 1B,E). - 2 o E
The amino acid residues of the two missense variants are highly = Lr: % ?J EJ
conserved in various species (Figure 1C,F). The two missense vari- E % % é’ TE“ g
ants were suggested to be damaging/disease-causing/conserved by g é <Z‘: § g
at least three silico tools (Table 2). The two variants are not present ) %
in gnomAD database (Table 2). Variant p.Arg357Trp was predicted Tg“ <§ . § E
to have more severe effects than variant p.lle113Thr (101 vs. 89) o g g ED § g Eﬂ %
according to Grantham scores. g é ° o <z( § o %
Q
c
(0]
: .8
3.2 | Clinical information e S 3 P
9
(9]
The three patients showed infancy or childhood-onset seizures ‘% g E
(8 months-1.5years). The main clinical features of the cases B | ?ﬁ
are summarized in Table 1. Three patients were all born to non- o o 3 + s %
consanguineous parents after an uneventful pregnancy. § E § G 3 9{ g § E’E
Case 1 and case 2 harbored variant p.lle113Thr. Case 1 was a g ﬁ § % 5 E ;:Ljo g g
4-year-old boy. He developed simple FS at frequency of 1-2 times \5'-_’ Z g % bl g E’ § w g},
yearly since age of 1 year. Psychomotor development was normal. 3 g § ® é ggo é a:a £
EEG and brain MRI were unremarkable. He experienced febrile- _§ v‘l” 20 ;I_ E 5 & 8 g
induced SE at age of 4, his seizures, which lasted for 1 h, ceased after 0| o o o “é )
the administration of intravenous continuous infusion of valproate - é E E
(1.5 mg/kg/h). He was comatose, despite the disappearance of the 8 ‘g' » g 5 :; 5
seizures. His Glasgow Coma Scale score was 6/15 (E2+V2+M2). He <°(° 5§ 2 : 0% ﬂ {a';
developed refractory SE 2days after admission, as his seizures were % . G >~ .“,E _§
unresponsive to standard use of diazepam, intravenous valproate, E w3 % S g % i
and phenobarbital. Super-refractory SE was diagnosed because = § g% " 2 E% L 58
seizures remained uncontrolled 24h after initiating continuous 3 S ; = % g0 =0 é g
intravenous use of midazolam and propofol. No dysmorphic fea- _52 N . C ‘_8‘ '*§_
tures were observed. Except for obvious intracranial hypertension % E 'g o g o é %
(310mmH,0), no abnormality was found in cerebrospinal fluid tests. Tg <°,:° ;'? ke o & a §
Routine blood testing results were unremarkable. EEG revealed dif- E - ° % %
fuse slow waves, and subclinical seizures lasted for 10 min originated E § 9 TE" L :E ﬁ
from bilateral temporal were present (Figure 2A). Brain MRI (5th day % 6 = >3 E %
of seizure onset) showed bilateral hemisphere cerebral edema char- “utS7 S = = g Lé
acterized by diffuse subcortical white matter lesions. Bright tree ap- s § 5 5 § %’
pearance (subcortical white matter hyper-intense signal) in diffuse § 5. o ° |§' g ::»
weighted images and low-intense signal in apparent diffusion coeffi- % % ;‘1 5 ,7\ g ; f;,
cient were observed on MRI (Figure 2B). Subsequently, diagnosis of £ ‘2 A Ay & <>(°—° Z £
acute encephalopathy after SE was made based on his clinical and : g § § § s g E
neuroimaging features. Despite aggressive therapeutic strategies w = N § §
were given, the patient eventually died 20days after this seizure n_nl g §
onset due to uncontrollable seizures and severe brain damage. |<—'< - . ” 2 §
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FIGURE 1 Genetic data on the patients with KCNH1 variants. (A, D) Pedigree of the two families. The filled symbol with arrows identifies
the probands. (B, E) The variants ¢.338T>C and c.1069C>T were identified through whole-exome sequencing and confirmed by Sanger
sequencing. The SNVs were shown in gray shadows, c.338T>C was inherited from his mother, and c.1069C>T was de novo. (C, F) The variant

amino acids in our patient were conserved from multiple species.

Case 2, the mother of case 1, is currently 32years old. She had
4-5 times of FS since the age of 1.5, and she did not have seizure
after the age of 5. Neither neuroimaging nor EEG were performed.
Her neuropsychology is normal at present.

Variant p.Arg357Trp was identified in case 3. This boy experienced
FS (generalized or focal) since age of 8 months. Subsequently, he expe-
rienced frequently seizures triggered by low-grade fever or hot-water
bath, which led to a diagnosis of Dravet syndrome. Brain MRl and EEG
were normal at age of 1 year. At age of 1 year and 2 months, he had
short-duration but frequent (>10 times/h) seizures triggered by fever,
which were resistant to multiple ASMs, including diazepam, valproate,
phenobarbital. Subsequently, his seizures stopped until continuous
intravenous infusion of midazolam (0.24mg/kg/h). EEG showed dif-
fuse slow waves and drug-related fast waves (Figure 2C). He became
seizure-free with treatment of valproate (22mg/kg/day) till the last
follow-up at age of 2years even when the body temperature was as
high as 40°C. Mild developmental delay was observed. He can walk
without support at age of 1 year and 7 months and can speak 3-4
words at age of 2years. Gesell Developmental Observation-Revised
screening was performed, and the results showed a mild delay in
gross motor development, language, and social-emotional responses.
No any dysmorphic feature or malformations was observed, including
hypoplasia of the nails, coarse face (Figure S1).

3.3 | Structural alteration of KCNH1 protein

As shown schematically in Figure 3A, KCNH1 contains eag domain
and CNBHD located in cytoplasmic and six transmembrane domains
(S1-S6). Structural model of KCNH1 indicated variant p.lle113Thr
was located within the eag domain, and variant p.Arg357Trp was
located in S4.

DUET server was used to analyze the effects of missense
variants on protein stability. Results showed destabilizing for
the residues' changes. Variant p.lle113Thr and p.Arg357Trp
were predicted to be least stable with DDG value of -3.159
and -0.448kcal/mol, respectively. Both variants changed the
hydrogen bonds (Figure 4A,B). Residue lle113 originally formed
one hydrogen bond with residue Asn93. The missense variant
p.lle113Thr results in an additional hydrogen bond with residue
Asn93. Residue Arg357 originally formed hydrogen bonds with
residue Lys354 and residue Arg 360, respectively. When argi-
nine was replaced by tryptophan at residue Arg357, a new hy-
drogen bond with residue Leu304 was formed. We also analyzed
the previous reported five reported hotspot variants (p.Arg357,
p.Leu489, p.Ala492, p.Leud94, and p.Gly496) and found that
all variants changed numbers or distances of hydrogen bonds
(Figure 4B-F).
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TABLE 2 Genetic features of the individuals with KCNH1 variants

Grantham
scores

Mutation
taster

Protein

cDNA change

PhyloP

GERP++
C(5.22)

Polyphen2_HDIV

PD (0.99)
PD (1.00)

CADD

SIFT

MAF-EAS

AF

M

change

(NM_172362)

Position

Cases

89
101

C(8.93)

D (26.30)
D (34.00)

D (0.09)

DC (1.00)
DC (1.00)

p.1le113Thr

Chr1:211090663  338T>C

Chr1:210920033

1,2

C(4.26)

C(5.48)

D (0.00)

p.Arg357Trp

1069C>T

Abbreviations: B, benign; C, conserved; CADD, combined annotation dependent depletion; D, damaging; DC, disease-causing; Chr, chromosome; MAF, minor allele frequency from Genome Aggregation

Database; MAF-EAS, minor allele frequency from East Asia population in Genome Aggregation Database; NA: not applicable; PD, probably damaging.

3.4 | Genotype-phenotype correlation of
KCNH1 variants

We analyzed genotype-phenotypic associations in all reported
KCNH1 pathogenic variants with detailed neurological pheno-
types. Previously, 28 KCNH1 variants in 48 patients have been

d,4>921-37 including the present data, a total of 30 variants in

reporte
51 patients. Forty-two out of 51 patients had epilepsy. Thirty-eight
patients harbored de novo variants, 13 patients harbored non-de
novo variant (inherited, mosaic or unknown origin; Figure 3B). Forty-
nine out of 51 patients harbored missense variants. Among the only
two nonsense variants,>*%” variant p.R535* was also found in clini-
cally unaffected father and sister; the patient carrying variant p.R745*
also harbored another epileptic encephalopathy-related, pathogenic
variant, CACNA1A (c.2134G>A; p.Ala712Thr), this variant has been
reported as a pathogenic variant in epileptic encephalopathy pa-
tients.®® Clinical and molecular details of patients with epilepsy are
listed in Table 3, and patients without epilepsy were listed in Table S1.

We further analyzed the sub-regional locations of all variants
demonstrating that 83% (35/42) variants in patients with epilepsy/
seizures were located in the transmembrane domains. De novo
variants associated with epilepsy have obvious spatial clustering
properties, five hotspot/recurrent variants including p.Arg357
(eight patients), p.Leu489 (four patients), p.Ala492 (three patients),
p.Leu494 (five patients), and p.Gly496 (seven patients) were ob-
served and all located in the transmembrane domains. Except for
p.Arg357 located in S4, all other hotspot variants are located in Sé
(Figure 3A).

Among the 42 patients with epilepsy, more than half of patients
(58%, 20/34) were pharmaco-responsive, of which 10 patients be-
came seizure-free. 21% (9/42) of patients had SE. We also found that
patients with inherited or mosaic/somatic variants have a more mild
phenotypes than patients with de novo variants, specifically: later
age of seizure onset (2.1 vs. 2.7 years of age), fewer incidences of
ID/DD (40%, 4/10 vs. 100%, 41/41), and higher rate of seizure-free
(63%, 5/8 vs. 19%, 5/26).

4 | DISCUSSION

Present study provided a clinical description of three individuals
with two novel missense variants of KCNH1 with FS/epilepsy and
refractory SE without features of TBS/ZLS. One patient had mild ID
with drug-responsive Dravet syndrome and finally got seizure-free.
In the familial cases of FS, one patient died of super refractory SE.
Both variants had no allele frequency in the gnomAD. The two vari-
ants affected residues conserved through evolution and invariantly
observed among vertebrates. The two variants were predicted to be
damaging by multiple in silico tools and altered the protein confor-
mation. Taking together the evidence that KCNH1 gene is predomi-
nantly expressed in brain and associated with neurodevelopment
and neural excitability,>* the two variants of KCNH1 were suggested
to be the pathogenic gene of the current cases.
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FIGURE 2 EEG and neuroimaging results in the cases with KCNH1 variants. (A) EEG of case 1 detected diffuse slow waves, and subclinical
seizures originated from bilateral temporal (red box indexed the seizure onset). (B) Brain MRI showed bright tree appearance in DWI, and

low-intense signal in ADC. (C) EEG of case 3 indicated diffuse slow waves and drug-related fast waves. (DWI, diffuse weighted images; ADC,
apparent diffusion coefficient)
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FIGURE 3 Schematic diagram of variant sites and phenotypes/genotypes characteristics of the patients reported to date. (A) Schematic
diagram of the transmembrane structure. The CNBHD, C-linker, and EAG domains were shown in the picture. The S1-S4 segments act as
voltage-sensor domains. The KCNH1 channel shows the location of the residues affected in individuals with (orange square) or without (blue
square) epilepsy. Most of them were de novo variants (blue text), and few were inherited or not known (red text). Variants in our patients
were highlighted with red boxes. (B) Showed the clinical phenotypes, and genetic characteristics of the patients reported to date

We analyzed the largest cohort of 51 patients with KCNH1 vari- However, the seizure types, severity, and response to ASMs var-
ants to date and found that epilepsy/seizures were present in 82% ied widely. Patients with inherited or mosaic/somatic variants have
individuals suggesting a direct role of KCNH1 in epileptogenesis. milder phenotypes than patients with de novo variants, including
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FIGURE 4 Changesin KCNH1 protein structure. (A-F) The protein changes including our variants and five hotspots (p.Arg357, p.Leu489,
p.Alad492, p.Leud94, and p.Gly496). The wild-type protein structures were shown in the top row, and the mutant structures were in the row
below. Hydrogen bonds are represented by red dashed lines and the distances are highlighted with blue text. Structures in our patients were

highlighted with red boxes.

later age of seizure onset, fewer incidences of ID/DD, and higher
rate of seizure-free. Of the 10 patients with hereditary or mosaic/
somatic variant, most of them presented with isolated epilepsy
without TBS/ZLS. These findings provided possible evidence that
a low level of mosaic/somatic variant or a weaker effect on KCNH1
function of inherited variant may contribute to isolated epilepsy
phenotype.

In addition to inheritance and variant patterns that determine
phenotypic differences, recent studies have showed that molec-
ular sub-regional location of variants was also a critical factor to
determine the pathogenicity of variants and associated with pheno-
typic variations.®?”*! In this study, all patients with hotspot variants
(p.Arg357, p.Leud89, p.Ala492, p.lle494, and p.Gly496) associated
with epilepsy with moderate to severe ID/DD clustered in S4 and
Sé6, while those with isolated epilepsy/seizures or TBS/ZLS without
epilepsy were scattered, suggesting a molecular sub-regional effect
of KCNH1 variants. One of our newly reported patients presented

severe phenotype of Dravet syndrome had a variant (p.Arg357Trp)
in S4. Another patient had variant (p.lle113Thr) in the eag domain
near N-terminal; this patient showed a mild phenotype-FS. These re-
sults demonstrate the important role of voltage-sensing transmem-
brane helix S4 and Sé of the KCNH1 channel in maintaining neuronal
excitability and development.

However, factors influencing clinical phenotypic heterogeneity
of patients with KCNH1 variants remain not fully elucidated, because
we found that even patients harbored variants located in Sé, their
clinical presentations varied widely. Fourteen patients with variants
at p.Leu489, p.Ala492, and p.Gly496; all showed early onset of epi-
lepsy within 2years of age, while five patients with p.lle494Val vari-
ant had late-onset of epilepsy, with an average age of 5. We found
variant 1le494Val appears to have the least effect on hydrogen
bonds or distances of inter-amino acid, which may help explain the
mild phenotype of patients with p.lle494Val variant. However, the
specific mechanism is currently unknown; further accumulation of
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ing data.
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