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INTRODUCTION

For nearly a century, ecologists have proposed that hab-
itat complexity promotes biodiversity (Diamond,  1969; 
Kohn,  1968; MacArthur,  1965; Paine & Vadas,  1969; 
Pianka, 1969; Rosenzweig & Winakur, 1969) and drives 
other ecological phenomena (e.g. predator– prey inter-
actions, dispersal patterns; Dice,  1947; Dunlavy,  1935; 
Gause et al., 1936; Huffaker, 1958; Pimentel et al., 1963; 
Salt,  1967). Topographically complex habitats, land-
scapes and regions in both terrestrial and marine 

systems generally feature disproportionately high biodi-
versity (Badgley et al., 2017; Kiessling et al., 2010), and 
therefore have high conservation value (Falk et al., 2006; 
Ritchie,  2009). In a recent global analysis, Ehbrecht 
et al. (2021) found that hotspots of enhanced structural 
complexity coincided with hotspots of greater plant 
diversity. Even when controlling for available energy 
(Hurlbert, 2004) and area (Johnson et al., 2003; Loke & 
Todd, 2016), structurally complex habitats can support 
greater species richness compared to structurally simple 
habitats.
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Abstract

Habitat complexity has been considered a key driver of biodiversity and other 

ecological phenomena for nearly a century. However, there is still no consensus 

over the definition of complexity or how to measure it. Up- to- date and clear 

guidance on measuring complexity is urgently needed, particularly given the rise of 

remote sensing and advent of technologies that allow environments to be scanned 

at unprecedented spatial extents and resolutions. Here we review how complexity 

is measured in ecology. We provide a framework for metrics of habitat complexity, 

and for the related concept of spatial heterogeneity. We focus on the two most 

commonly used complexity metrics in ecology: fractal dimension and rugosity. 

We discuss the pros and cons of these metrics using practical examples from our 

own empirical data and from simulations. Fractal dimension is particularly widely 

used, and we provide a critical examination of it drawing on research from other 

scientific fields. We also discuss informational metrics of complexity and their 

potential benefits. We chart a path forward for research on measuring habitat 

complexity by presenting, as a guide, sets of essential and desirable criteria that a 

metric of complexity should possess. Lastly, we discuss the applied significance of 

our review.
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Habitat structure refers to the geometry of the phys-
ical habitat; this includes the bare substrate itself (e.g. 
rock, soil, soft sediments) and the structure provided 
by the species that characterise that habitat (e.g. mac-
rophytes, trees, oysters, corals; Graham & Nash, 2013; 
McCoy & Bell,  1991). The geometry of habitat space 
is important to biodiversity because it directly affects 
the establishment and persistence of plant and animal 
communities (McCoy & Bell,  1991; Warfe et al.,  2008). 
For instance, in aquatic habitats, microhabitat fea-
tures provide refuge from predators and from physical 
stressors such as turbulence or desiccation (Cardinale 
et al., 2000; Downes et al., 1998; Gosselin & Chia, 1995; 
Menge & Lubchenco,  1981). However, there has been 
little agreement on how exactly habitat structure me-
diates biodiversity, as measured by patterns includ-
ing complexity– diversity relationships (see Figure  1a; 
Hurlbert,  2004). This is partly because complexity is 
difficult to define, and partly because different eco-
logical processes may be mediated by different aspects 
of complexity (Ben- Hur & Kadmon,  2020a; Newman 
et al., 2019).

Our goal here is to review existing complexity metrics 
and evaluate their relevance and usefulness to ecology 
(see Box 1). A complex system is characterised by diverse 
interacting elements, hierarchical organisation, emer-
gence and related properties (Box 1; Green et al., 2006; 
Ladyman et al.,  2013). Although this definition is not 
precise, it will guide us in our goal of evaluating com-
plexity metrics, and these metrics will in turn function as 
operational definitions. There is substantial ambiguity 
and inconsistency in how complexity in ecology has been 
measured (Kovalenko et al., 2012; Tews et al., 2004). This 
ambiguity has been present for more than half a century: 
MacArthur (1965, p. 515) wrote that ‘some measures of 
habitat complexity are guessed; to see which, if any, of 
these measures is responsible for the local bird species 
diversity’. Used in this way, complexity is presented as 
an after- the- fact explanation for all kinds of ecological 
patterns. It becomes a catch- all concept that attempts to 
compensate for our ignorance about the niche processes 
that structure ecological communities (Figure  1a). A 
better understanding of exactly how complexity affects 
diversity would aid the selection of an appropriate com-
plexity metric in any given application.

Complexity metrics that have been used in ecology 
can be broadly classified into three classes: informa-
tional, geometric and other (Figure  1b; Gratwicke & 
Speight,  2005). Informational metrics are broadly ap-
plicable across the sciences and measure the amount of 
information needed to encode and describe an object. 
Geometric metrics relate more specifically to the physi-
cal structure of an object in 2D or 3D space. In ecology, 
for example, a geometric metric could measure the struc-
tural complexity of the surface of a coral reef, whereas 
an informational metric could measure the spatial or-
ganisation of individual corals over the reef. A common 

informational metric is entropy, which can be influenced 
by the number of types of elements (e.g. coral species on 
a reef), variation across types (e.g. in coral sizes) and 
spatial arrangement of elements (e.g. clustering metrics). 
Geometric metrics include fractal dimension and rugos-
ity (Warfe et al.,  2008). Lacking clear guidance, many 
ecologists, when attempting to measure complexity, sim-
ply choose a metric that is straightforward to measure 
and characterises what is perceived to be ‘complex’ at 
some particular scale (Figure 1b; Davenport et al., 1996; 
McAbendroth et al., 2005).

To further complicate matters, in ecology the term 
‘heterogeneity’ is often used interchangeably with 
‘complexity’ (Kovalenko et al.,  2012; Loke et al.,  2015; 
Tews et al., 2004; Tokeshi & Arakaki, 2012; Figure 1a). 
In this paper, we treat ‘heterogeneity’ and ‘spatial het-
erogeneity’ as subsets of ‘complexity’ (see Section 
‘Information- based metrics of complexity’). Another 
term, ‘environmental heterogeneity’ refers to variation 
in abiotic conditions across a landscape (e.g. soil mois-
ture; Liu et al., 2018; Srivastava & Lawton, 1998), and has 
been shown to be an important driver of beta- diversity 
(Liu et al., 2018; St. Pierre & Kovalenko, 2014), but we 
subsume this under ‘spatial heterogeneity’ here (Box 1).

The rapid rise of remote sensing, mapping and pho-
togrammetric technology is enabling an unprecedented 
increase in the spatial extent and resolution of habitat 
structural data, and the possibilities for how we might 
measure complexity are quite different now than they 
were even ten years ago (Bayley et al.,  2019; D'Urban 
Jackson et al.,  2020; Figueira et al.,  2015; Friedman 
et al., 2012; Lawrence et al., 2021). Both 2D digital eleva-
tion maps (heightmaps) and 3D vector representations of 
physical objects facilitate fast computation of complex-
ity metrics. There is a renewed need to understand the 
pros and cons of various complexity metrics. Ultimately 
better measurements of complexity can inform our un-
derstanding of how complexity interacts with diversity 
and which aspects of habitat structure (Figure  1a) are 
important for maintaining biodiversity. In this paper, 
we review metrics of habitat complexity, in particular 
focusing on the two most broadly applicable and com-
monly used metrics in ecology: fractal dimension (D) 
and rugosity (R). We show why progress towards under-
standing complexity– diversity relationships is difficult 
without first resolving obstacles relating to measuring 
complexity, and outline what qualities a good metric of 
complexity should possess. We compare the strengths 
and weaknesses of geometric metrics of complexity with 
those of informational metrics.

IDEA L QUA LITIES OF A M ETRIC 
OF COM PLEXITY

The following is a list of the qualities that an ideal metric 
of complexity in ecology should possess:
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1. It should be broadly applicable to multiple classes of 
objects (e.g. surface habitats, forests, landscape patterns).

2. Within each class, it should be analytically well de-
fined so as to minimise observer bias and arbitrary 
context- dependent classifications. This way, the com-
plexity of different habitats within each class can be 
compared.

3. It should be practical to measure using current tech-
nology (at least at one spatiotemporal scale).

4. It should be decoupled from the effects of area (i.e. 
there should not be a casual effect of area on the 
metric).

In addition, there are some desirable but not essential 
attributes of a complexity metric:

1. It should capture the complexity of aspects of the 
environment that are, on a theoretical basis, thought 
to be important to organisms.

2. It should be measurable across multiple spatiotempo-
ral scales.

M ETRICS OF COM PLEXITY

Fractal dimensions

A fractal is a subset of Euclidean space with non- integer 
topological dimension. Most well- known fractals are 
self- similar fractals, which means that a magnified ver-
sion of a small region appears statistically identical to a 

F I G U R E  1  (a) Conceptual diagram of complexity in ecology, including terminology used to describe complexity (blue italicised text) and 
key relationships on which the effect of complexity has been studied (green text). To describe the complexity of ‘space itself’, various terms are 
used on different spatial scales (arrow within light grey box at left). To describe the complexity of ‘other resources’, the terms ‘environmental 
heterogeneity’ and ‘resource heterogeneity’ are broadly used. (b) Metrics of habitat complexity and spatial heterogeneity used in the recent 
ecological literature, split into four categories. Grey bar: D is fractal dimension (or variations thereof; Section ‘Fractal dimensions’). Blue bars 
represent other geometric metrics of complexity; R is rugosity (or variations thereof; Section ‘Rugosity’); ‘Height’ is measurements of surface 
height range including elevation, canopy height, or vertical relief (Section ‘Other geometric metrics of complexity’); ‘Angles’ refers to any 
measures of angles, slopes, or curvatures (including vector dispersion; Section ‘Other geometric metrics of complexity’). Green bars represent 
informational metrics of complexity (Section ‘Information- based metrics of complexity’): ‘Area/Density’ refers to the total area or density of 
components (e.g. surface area, percent cover, biomass, patch size measurements); ‘No. types’ refers to the number of types of components (e.g. 
absolute and relative abundance of types or species); ‘Type variation’ refers to variation of components, usually in terms of size (e.g. size range 
of microhabitats or interstitial spaces); ‘Arrangement’ refers to the spatial configuration of elements (e.g. arrangement of habitat patches in a 
landscape matrix). Yellow bars: ‘Trait variation’ refers to quantifications of some specific biological or functional group traits (e.g. number of 
intersections in which a woody plant material contacted an axis of a particular diameter); ‘Hierarchy’ refers to measurements of hierarchical 
order (e.g. branching order). ‘Area/Density’ is the most frequently used metric here, but it is better thought of as orthogonal to complexity (see 
main text). Supporting Information S1 describes our bibliographic analysis.

Niches (niche requirements)

Space itself Other resources

Area Other properties 
of space (e.g. temperature,

light, precipitation, 
nutrients)

Biotic
(e.g. food)

• Niche partitioning

• Resource 
partitioning

• Environmental heterogeneity
• Resource heterogeneity

Local 
scale

Landscape
scale

Regional 
scale

• Spatial complexity/

• Topographic complexity

• Habitat complexity
• Habitat structure
• Habitat architecture
• Structural complexity
• Geometric complexity

• Landscape structure
• Landscape pattern

Abiotic

* Species-area
relationships [1]

* Complexity-diversity relationships [5]
* Habitat heterogeneity hypothesis [6]

* Heterogeneity-diversity relationships [3]
* More individuals hypothesis [4]

References:
[1] Preston, 1960; Lawton, 1999; [2] Allouche et al., 2012; 
[3] Hutchinson, 1957; Ben-Hur & Kadmon, 2020a; 
[4] Srivastava & Lawton, 1998; [5] McCoy & Bell, 1991; 
[6] MacArthur et al., 1962; Pianka, 1966  
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larger region. Classic examples include Koch's curve and 
the Sierpinski triangle. A more general class of fractals is 
self- affine fractals, that is fractals that scale differently 
along different dimensions.

Fractal dimension (D) is a measure of the complex-
ity of a fractal object whose behaviour is scale invariant. 
Loosely speaking, it measures the space- filling capacity 
of the object independently of area. Originally, D was 
used to describe perfectly self- similar fractals, but it can 
be adapted to self- affine fractals (Turcotte, 1997).

Examples of self- affine fractals are the curves gener-
ated by fractal Brownian motion (fBm). Zooming in on 
a profile of one- dimensional fBm (e.g. the Weierstrass– 
Mandelbrot (WM) curves), for instance, does not reveal 
an object that is statistically self- similar but instead one 
that becomes statistically self- similar only after an ap-
propriate rescaling of one of the axes. Specifically, if a 
fBm profile with Hurst exponent 𝐻 (0 < 𝐻 < 1) is defined 
by a function 𝐵H(𝑡), then

where the tilde (∼) means ‘has the probability distribution 
of’ subject to some normalising constant. The fractal di-
mension of the curve is D = 2 −H, because the curve is 

embedded in two- dimensional space (e.g. a coastline). A 
related equation describes the self- similarity of a two- 
dimensional fBm surface, in which case the fractal di-
mension is D = 3 −H, because the surface is embedded in 
three- dimensional space (e.g. the surface of a mountainous 
landscape; see also Figure 2).

Objects in nature tend to resemble self- affine fractals 
rather than self- similar fractals because they do not scale 
similarly in all directions. For example, small- scale topo-
graphical relief may resemble a microscopic version of a 
mountainous landscape, but only if the vertical axis is 
scaled differently than the horizontal axes. Indeed, many 
algorithms used to generate synthetic terrain are based 
on self- affine fractals, with the midpoint- displacement 
algorithm (based on 2D Brownian motion; Figure  2a) 
and its variations (e.g. fBms generated by Fourier syn-
thesis or the Voss algorithm; Voss,  1986) being wide-
spread (see Saupe, 1988).

Pitfalls of using fractal dimension as a 
metric of complexity

Since a seminal paper and book by Mandelbrot  (1967, 
1982) and a classic paper by Sugihara and May (1990) on 

(1)BH (at) ∼ |a|HBH (t),

BOX 1 Defining complexity and our objectives

There are no universally accepted definitions of complexity and complex systems (Gell- Mann,  1995; 
Krakauer,  2019), and indeed the appropriate definitions may be domain- specific (Ladyman et al.,  2013). 
Nevertheless, most definitions of complexity share commonalities in terms of their characterisations of the 
core features of complex systems: nonlinearity, feedback, disorder, lack of central control, variety of elements 
and interactions, emergence, and hierarchical organisation (Green et al., 2006; Mitchell, 2009; see framework 
in Ladyman & Wiesner, 2020). Some of these features are necessary conditions for complexity, while others 
are merely associated with complexity (see Ladyman et al., 2013). One general definition of complexity, for 
instance, is that ‘a complex system is an ensemble of many elements which are interacting in a disordered way 
resulting in robust organization and memory’ (Ladyman et al., 2013, p. 57), where memory is the ‘persistence 
of internal structure’ (Holland, 1992).

In ecology, a variety of terms are associated with ‘complexity’ and ‘heterogeneity’ (Li & Reynolds,  1995; 
Tews et al., 2004; see Figure 1a). There is substantial ambiguity among these terms; for example, ‘topographic 
complexity’ and ‘structural complexity’ describe overlapping but not identical concepts. The variety of terms 
and ambiguity among them arises partly because of a lack of clarity about which dimensions of complexity 
are important. One solution is to sidestep the verbal definitional issues and instead develop quantitative met-
rics that capture aspects of complexity that are believed, based on biological considerations, to be important 
to organisms. Indeed, of the many complexity metrics in use, each quantifies a subset of the core features of 
complexity rather than the phenomenon as a whole (Gell- Mann, 1995; Gell- Mann & Lloyd, 1996; Ladyman & 
Wiesner, 2020). In the absence of a strict verbal definition of complexity, these measures of complexity act as 
operational definitions.

In this Synthesis, we review and evaluate the existing complexity metrics in ecology— we do not attempt to 
adjudicate on the broader and more contentious issue of the verbal definition of complexity itself. More specif-
ically, our goal is to lay out what dimensions and features of complexity each metric measures and to evaluate 
whether or not each is useful and relevant to ecology. We present criteria for an ideal metric of complexity 
(Section ‘Ideal qualities of a metric of complexity’) for use as a guide to identifying and developing metrics 
that will serve ecology best going into the future, but we do not attempt to establish a universally best metric.
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the application of fractals in ecology, fractal dimension 
(D) has become a widely used metric of complexity in 
ecology owing to several convenient and promising fea-
tures. It is in theory scale invariant (and thus there is no 
causal effect of area, satisfying criterion (4) in Section 
‘Ideal qualities of a metric of complexity’) and as a result 
it can potentially address problems of scale and hierar-
chy in ecology. It can also be applied to most geometric 
objects (satisfying criterion (1) in Section ‘Ideal qualities 
of a metric of complexity’), and thus allow comparisons 
of complexity across different systems.

Many studies have attempted to calculate D and use 
it as a proxy for complexity (and to quantify the ‘spatial 
heterogeneity’ of landscapes; Milne,  1988) that is then 
correlated with diversity (e.g. Schindler et al.,  2008; see 
Section ‘Limitations of fractal dimension’) and other eco-
logical variables (e.g. O'Neill et al.,  1988; Ritchie,  2009; 
Ritchie & Olff, 1999). However, while D is well defined in 
theory, in practice its measurement is fraught with diffi-
culties (see Section ‘Sources of error in estimating fractal 
dimension of natural objects and patterns’). Furthermore, 
its relevance to biological organisms is questionable (see 

Section ‘Limitations of fractal dimension’). The multi-
tude of problems relating to the estimation of D have long 
been recognised by mathematicians (Dubuc et al.,  1989; 
Huang et al., 1994; Stoyan & Stoyan, 1994) but have gener-
ally been ignored by ecologists (Dibble & Thomaz, 2009; 
Kovalenko et al., 2012; McAbendroth et al., 2005) despite 
several critiques and warnings (Berntson & Stoll, 1997; Bez 
& Bertrand, 2011; Halley et al., 2004; Kenkel, 2013). For in-
stance, Thomaz et al. (2008) used D as a proxy for habitat 
complexity while acknowledging that macrophytes were 
not true fractals. In the next section, we explain why D is 
hard to measure and why it should be avoided or used only 
with great caution.

Sources of error in estimating fractal 
dimension of natural objects and patterns

Empirical objects not being true fractals (problems 
related to quantisation)
Is the object from which we are trying to estimate D 
close to fractal? Real- world objects, as opposed to 

F I G U R E  2  (a) Fractal Brownian surfaces of known fractal dimensions generated by the midpoint displacement algorithm. (b) Examples 
of fractal- like empirical surfaces represented in 3D (top row) and 2D (bottom row); from left to right: SEM scan of a 1 mm × 1 mm rock surface, 
digital elevation model (DEM) of a 1 m × 1 m quadrat on a rocky shore, lidar point cloud of a 100 m × 100 m aerial scan of a forest landscape 
(image generated using data from the ‘lidR’ package in R; Roussel et al., 2020). Five orders of magnitude in spatial scale are represented by 
these examples.

D = 2.1 D = 2.5 D = 2.9

0.001 m 100 m1 m

(a)

(b)
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mathematically idealised objects, cannot be truly frac-
tal. At sufficiently small or large scales, any self- similar 
properties of real- world objects break down. At best, 
real- world objects may exhibit close- to- fractal behaviour 
over some range of scales, and it is important to assess 
if this is true before any attempt at estimating fractal di-
mension is made.

Even if an object is close to fractal over a range of 
scales, the possible scales at which we can assess this is 
limited by data acquisition methods (Kenkel, 2013). Any 
means of capturing or representing a natural object or 
surface, whether by pixel- based digital images, or vector- 
based lines and paths, introduces limits on the range of 
scales in the resulting representation, set by the repre-
sentation's resolution (the smallest scale captured) and 
extent (the largest scale).

With these technical considerations in mind, we can 
ask over what range of scales we must measure an object 
to test whether it is close to fractal (Gneiting et al., 2012; 
Malcai et al., 1997). Gonzato et al. (1998) suggested that 
at least 2– 3 orders of magnitude are needed (Figure 3), 
a criterion that most scientific studies of fractality have 
historically failed to satisfy (Avnir et al., 1998), with some 
notable exceptions (Bouchaud, 1997; Mandelbrot, 1998). 
Based on the conservative upper bound of three orders 

of magnitude, this means that for a 0.001 m (1 mm) 
resolution digital elevation model (DEM) for example, 
one would need to capture a minimum quadrat size of 
1 m × 1 m at the very least to assess fractality (Figure 2b). 
Assessment of fractality over such a range of scales is 
feasible with modern imaging and measurement tech-
nology, but most practising ecologists continue to omit 
this step; in fact, ecologists tend to assume a priori that 
a natural object is fractal, even though it could also be 
a multifractal, that is an object requiring different val-
ues of D at different scales (Evertsz & Mandelbrot, 1992; 
Schertzer & Lovejoy,  1989; Seuront et al.,  1996), or a 
complex non- fractal object. For multifractal objects, 
alternative metrics including binomial and multinomial 
measures are available (although these are rarely if ever 
used in ecology; Evertsz & Mandelbrot, 1992).

Measurement error
Assuming the object is close to fractal, how can we ac-
curately measure D? Before we can estimate D, we need 
to decide on an appropriate method. Note that test-
ing if an object is close to fractal (see point above) is a 
separate problem to measuring D itself. Both require a 
sufficiently large range of scales (Figure 3), but the re-
quirements for measuring D are somewhat less stringent. 

F I G U R E  3  Illustration of the difficulty of measuring fractal dimension (D) from real surfaces. (a) 3D photogrammetry was used to 
obtain a 1 m × 1 m scan of a rocky intertidal DEM with a resolution of 4096 × 4096 pixels. (b) Box- counting was applied to estimate the fractal 
dimension (D) of the DEM (heightmap) across the full range of observed scales (i.e. approximately 3 orders of magnitude). Different D values at 
different scales were obtained, but because of biases in the methods used to estimate D at small and large scales (see main text), it is not possible 
to reject the hypothesis that the object is (close to) fractal. (c) Fitting a regression line to all points resulted in an estimated D of 1.46. However, 
this naive estimation of D across the full range of scales is unreliable (Gonzato et al., 1998, 2000; Kenkel, 2013; see also Box 2). To improve the 
estimation, we fitted a regression line only across points in the intermediate range of box sizes (green points in part (c)). Estimated D from this 
portion of the log- log plot resulted in a D of 1.67. (d) Fitting two separate regressions across the larger and smaller ranges also yields different 
values of D.
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A variety of methods have been developed to estimate D 
in different contexts, with some performing better than 
others, but all are subject to limitations. Examples of 
methods that have been tested against simulated fractal 
DEMs and heightmaps (2 < D < 3) include the triangular 
prism, isarithm, variogram, box- counting and variation 
methods (Klinkenberg & Goodchild,  1992; Lam & De 
Cola, 2002; Zhou & Lam, 2005).

We will not describe and compare all these meth-
ods here, as several previous reviews and simulation 
studies from other scientific disciplines such as math-
ematics and statistics have done so (e.g. Barton & La 
Pointe,  1995; Gallant et al.,  1994; Gneiting et al.,  2012; 
Klinkenberg,  1994; Klinkenberg & Goodchild,  1992). 
Instead, we will cover two methods used broadly in 
ecology: the box- counting method (the most widely 
used method; see Box 2 and Figure 4) and the variation 
method (an increasingly used method; Dubuc et al., 1987; 
Parker, 1997; see also Supporting Information S2).

The box- counting method is affected by four main 
technical issues: (i) errors at large scales due to stochas-
ticity associated with small sample sizes, which induce 
a negative bias in D; (ii) errors at small scales due to fi-
nite resolution, which also induce a negative bias in D; 
(iii) errors due to violations of regression assumptions; 
and (iv) errors due to the inclusion of non- fractal regions 
and to the offset of the box grid not being random but 
deliberately aligned with visually prominent regions of 
the fractal. These issues are explained in more detail in 
Box 2 and Figure 4.

The ideal procedure for testing any fractal dimension 
estimation method is to apply it to simulated objects of 
known D. Some studies have instead compared methods 
using empirical 1D profiles (e.g. Breslin & Belward, 1999) 
and 2D surfaces (e.g. Klinkenberg & Goodchild,  1992), 
but it is not possible to assess accuracy in these cases 
because the true D values are unknown. In Supporting 
Information  S2, for instance, we critically evaluate a 
study (Torres- Pulliza et al.,  2020) whose claims to have 
developed a unified geometric basis for surface habitat 
complexity and biodiversity evaporate when their frame-
work is tested against simulated data with known D. To 
compare five different methods of estimating D, Zhou and 
Lam (2005) tested them against simulated fractal DEM 
surfaces (i.e. 2 < D < 3). Some estimators performed bet-
ter than others, but none produced reliable estimates of 
D. However, their approach was based on a naïve box- 
counting method that uses the full range of spatial scales, 
ignoring issues (i) and (ii) above, that is discreteness of the 
pixel image at very small scales and stochasticity at very 
large scales (see also Box 2). Limiting the range of scales 
addresses these issues and leads to better estimates of D 
(Dubuc et al.,  1989; Gneiting et al.,  2012; Kenkel,  2013; 
Liebovitch & Toth, 1989; Pruess, 1995; Figure 3; Box 2). 
However, discarding information at small and large scales 
means lower statistical power, and to mitigate this an even 
broader range of scales of measurement is needed.

We conducted a test of four different methods of esti-
mating D to test how each performed in recovering the 
true D of simulated fractal maps (Figure  5). The four 
methods were: (1) box- counting, using naïve estima-
tion over the full range of available scales; (2) the varia-
tion method, also over the full range of available scales 
(Dubuc et al.,  1987; also the approach used by Torres- 
Pulliza et al. (2020); refer to Supporting Information S2 
for more details); (3) box- counting over intermediate 
scales; and (4) the variation method over intermediate 
scales.

Consistent with previous studies (e.g. Panigrahy 
et al.,  2019; Zhou & Lam, 2005), our results show that 
low values of D were overestimated and high values of 
D were underestimated by both the naïve box- counting 
and variation estimators (Figure  5). The box- counting 
method restricted to intermediate scales resulted in 
better estimates of D, though there was still some bias 
(Figure 5). The variation method at intermediate scales 
performed only slightly better than the naïve variation 
method. It is important to emphasise that these diffi-
culties arise even under our idealised conditions where 
the measured object is generated from a perfectly frac-
tal process and there are no systematic sources of error, 
other than the inevitable digitisation errors.

Limitations of fractal dimension

Assuming an object is close to a true fractal and that D 
can be measured accurately (itself a dubious prospect— 
see previous subsection), the question becomes whether 
D is correlated with biological variables of interest. For 
species richness, the results are equivocal. Although 
some studies have found positive associations between 
D and richness, the variance explained is usually low 
(Table  S1). For example, in one study of coral reefs, D 
only explained 4.6% of the variation in coral species rich-
ness (Torres- Pulliza et al., 2020) and in another study of 
seabirds it explained 1– 6% of the variation in species 
richness (Hashmi & Causey, 2008). Less frequently, there 
have been reports of high correlations between D and 
richness (Table  S1); for instance, Dijkstra et al.  (2017) 
showed that D explained 71% of the variation in meso- 
invertebrate richness on seaweeds.

Besides species richness, a number of other biologi-
cal variables of interest, such as body size and density 
of individual organisms, exhibit correlations with D 
(i.e. Beck,  1998; Gunnarsson,  1992; Hills et al.,  1999; 
Jeffries,  1993; McAbendroth et al.,  2005; Morse 
et al.,  1985; Schmid et al.,  2002; Shorrocks et al.,  1991; 
Taniguchi & Tokeshi,  2004). For example, while 
McAbendroth et al. (2005) did not find any relationship 
between D and richness of small invertebrates in com-
plex macrophytes, they found a positive relationship be-
tween D and invertebrate density. Similarly, Dibble and 
Thomaz  (2009) measured D from images of 11 species 
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BOX 2 Technical issues with using the box- counting algorithm to estimate fractal dimension and recommenda-
tions for mitigating them

The box- counting algorithm
If the number of boxes of edge length 𝜖 needed to cover a fractal is (𝜖) then mathematically the box- counting 
dimension is defined as

Standard box- counting algorithms estimate D by performing a regression of logN(�) versus � over some practi-
cally measurable range of �. We identify four issues with the use of the box- counting algorithm and make recom-
mendations about how to deal with them.

(i) Box- counting dimension at large scales
For finite numbers of boxes, where stochasticity due to sampling error can be substantial, the observed value 
of N(�) actually underestimates the true value (Kenkel, 2013). As a result, the box- counting dimension will 
tend to be underestimated at large scales, because the gradient of the curve of observed logN(�) versus � will 
be shallower than the true gradient.

(ii) Box- counting dimension at small scales
The measured box- counting dimension will tend to D = 1 at very small scales, because any digital represen-
tation of a fractal inside a computer will be only a finite- resolution approximation of a fractal (see Section 
‘Sources of error in estimating fractal dimension of natural objects and patterns’). For example, the fractal di-
mension of the Koch snowflake is D =

log4

log3
≈ 1.26 , but a typical digital representation of such an object inside 

a computer is the boundary of a set of pixels, which has dimension D = 1, and if we zoom in on it close enough, 
the box- counting algorithm will estimate D = 1 (the correct value for the digital representation, though not 
for the underlying idealised fractal object). Similarly, a record of Brownian motion may be mathematically 
well defined as an object with dimension D = 2 −H, but a digital representation is a sequence of line segments 
(Figure S3.1a), which again has dimension D = 1.

(iii) Box- counting dimension and regression assumptions
Even for truly fractal objects, violation of assumptions of the regression methods used to estimate D can lead 
to biases. A typical method involves first log- transforming Equation (B1.1) to get

where c is a constant, and then estimating the coefficients c and D via a linear regression of logN(�) on log�. The 
four assumptions of standard linear regression methods are (a) linearity of the true relationship; (b) homoske-
dasticity of residuals; (c) independence of observations; and (d) normality of residuals. When testing whether an 
object is truly fractal, all of these assumptions are potentially violated; when measuring D of an object assumed to 
be fractal, all except (a) are potentially violated (see Supporting Information S3 for details on how to deal them).

(iv) Offset and alignment of box grid
Ideally, the box grid should be aligned to a random origin with the putative fractal being measured. If the box 
grid is aligned visually to interesting areas of the fractal or if it includes regions outside the fractal, biases in the 
estimate of D can result (Bouda et al., 2016; Foroutan- pour et al., 1999; Gonzato et al., 2000; Figure S3.1b). Thus, 
when using box- counting the entire box grid should be within the fractal and the offset should be random and not 
systematically aligned to any particular point (Figure S3.1b). This issue does not apply to 2D heightmaps/DEMs, 
where the observation window is a subset of a larger putatively fractal region.

Recommendations
In view of issue (iv), we recommend that the box- counting method be applied with random origins and that 
regions that are not part of the fractal be excluded. In view of issues (i) and (ii), only intermediate box sizes 𝜖 
should be used (see Section ‘Sources of error in estimating fractal dimension of natural objects and patterns’). 
In view of issue (iii), we recommend that the assumptions of regression methods used to estimate D be checked 
carefully and alternative methods used where appropriate; particular care is needed when using regression to 
assess whether an object is fractal in the first place.

(B1.1)D = − lim
�→0

logN(�)

log�

(B1.2)logN(�) = c −Dlog�
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of tropical and temperate macrophytes and found weak 
correlations with measured densities of odonates and an-
nelids, although they did not measure species richness. 
As a side note, D is sometimes incorporated into other 
compound indices used as proxies for habitat complex-
ity (e.g. ‘stand structural complexity’ or SSCI; Ehbrecht 
et al., 2021). Such compound indices, however, by nature 
obscure rather than illuminate the effect of D on diver-
sity and other biological variables. High correlations 
could be due to variables other than D included in an 
index.

In possible defence of D, it could be argued that the 
observed correlations with diversity are mostly low 
because of errors in estimated D due to the aforemen-
tioned measurement problems (Section ‘Sources of error 
in estimating fractal dimension of natural objects and 

patterns’). However, measurement errors cut both ways: 
it is also possible that even the occasional high correla-
tions with diversity currently observed are illusory, due 
to something other than D being inadvertently measured. 
It could also be argued that if measured D correlates 
with diversity, it could be a useful metric regardless of 
whether the object is truly fractal. The retort here is that 
such a metric would be useful only if we also specify the 
scale at which D must be measured— in which case the 
use of the term ‘fractal dimension’ is misleading because 
there is no requirement for any degree of self- similarity. 
For example, Beck  (1998) found weak positive correla-
tions between D (estimated from ten 300 mm transects 
within 0.25 m2 quadrats with a resolution of 5 mm) and 
gastropod species richness in rocky intertidal and man-
grove habitats, but the photogrammetric method used 

F I G U R E  4  Results of an empirical investigation of the box- counting algorithm to estimate fractal dimension (D). We generated two- 
dimensional binary maps of dimension 4097 × 4097 from a midpoint- displacement algorithm with values of 𝐻 ranging from 0.01 to 0.99. The 
horizontal axes show the true fractal dimension D = 2 −H, where 𝐻 is the Hurst exponent in the midpoint- displacement algorithm; the vertical 
axes show the box- counting estimate of 𝐷 at each box size 𝜖 (panels); the dashed line on each panel is the one- to- one line; each point on a given 
panel is for a single map measured at the corresponding box size �. Our goal was to estimate D assuming that the object was fractal, rather 
than assess whether the object was actually fractal. Using the box- counting method with a random origin, the resulting estimates of 𝐷 are 
low for small 𝜖 (as predicted based on issue (ii); see Box 2) and large 𝜖 (as predicted based on issue (i); see Box 2), but accurate for intermediate 
� ≈ 32 − 128 (points are close to 1:1 line). We ran a similar analysis using maps generated from a Gaussian random field algorithm and again 
found that the results of the box- counting algorithm were most accurate for intermediate � ≈ 64, although the errors were larger than for the 
midpoint- displacement maps (Supporting Information S4).
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captured less than two orders of magnitude of scale, and 
it is likely that different values of D and thus different 
correlations with diversity would be obtained at other 
scales. We illustrate this in Supporting Information S5 
using our own data from an intertidal community.

Returning to our main question about how to measure 
complexity, a technical problem with fractal dimension 
is its non- monotonic relationship to complexity. Objects 
with integer fractal dimension, such as a plane (D = 2) 
and a cube (D = 3), are clearly not complex. In between 
these integer values, complexity likely obeys a hump- 
shaped (unimodal) relationship to D, increasing at first 
and then decreasing. But there is no consensus on the pre-
cise value of D at which complexity peaks (Flores, 2022; 
Gao et al., 2007; Kak, 2021; Palmer, 1992). Nevertheless, 
in many situations in ecology, values of D have a small 
decimal component (e.g. D values around 2.1 or 2.2 are 
common), and the practical implications of this technical 
issue may be minimal: assuming (generously) that all the 
other issues with D can be resolved, ecologists can safely 
assume that increasing D implies increasing complexity.

Verdict on fractal dimension

Although fractal dimension D is mathematically well de-
fined, in principle broadly applicable and independent of 
area, it is difficult to measure in practice (i.e. it satisfies 

our criteria (1), (2) and (4) in Section ‘Ideal qualities of a 
metric of complexity’ but fails criterion (3)). Real- world 
objects cannot be truly fractal, and even for objects that 
are close to fractal over a range of scales, it is very dif-
ficult to ascertain this in practice (Figure 3) and to esti-
mate D accurately (Figure 5). Measurement issues can be 
mitigated to some degree by using higher resolution im-
agery with large spatial extent, and by estimating D only 
at the intermediate scales captured (Box 2, Figure 4). In 
the light of these issues, we do not strongly recommend 
D as a metric of surface or habitat complexity in ecology. 
Even if the technical issues were resolved, the evidence to 
date suggests that D is not highly correlated with diver-
sity. Although this may simply indicate that complexity 
has little effect on diversity, another possibility is that D 
does not actually measure the aspects of complexity that 
are relevant to organisms. This latter possibility moti-
vates the search for other complexity metrics.

Rugosity

Rugosity (R) is another common measure of structural 
complexity in ecology. When applied to 2D surface habi-
tats, it is a relative measure of the amount of surface area 
within a given planar area (i.e. a parallel projection of a 
surface onto a plane). The formula for true rugosity (R∗) 
of a surface with square projection is

where A is surface area, and L is the edge length of the pro-
jected square. When applied to 1D profiles, it measures 
the total length of the profile's contour (Lm) over a fixed 
distance or linear extent (L):

Accuracy in the estimation of R∗ depends on the approaches 
used to estimate A (Equation 2) or Lm(Equation 3), which 
can be sensitive to the resolution of the measured ob-
ject, particularly if the object has fractal qualities. When 
applied to transects of a 2D surface, the estimate from 
Equation (3) gives results consistent with Equation (2) pro-
vided that the surface topography is isotropic. Rugosity 
is sometimes called topographic or surface roughness in 
the ecological literature (e.g. Figueira et al., 2015; Frost et 
al., 2005).

Pitfalls of using rugosity as a 
metric of complexity

One standard way of estimating R is to measure the total 
length of a 1D profile (e.g. using a profile gauge or a chain 

(2)R∗ =
A

L2
,

(3)R∗ =
Lm

L
.

F I G U R E  5  Estimates of fractal dimension D for two- dimensional 
binary fractal (fBm) maps of dimensions 4097 × 4097 generated by the 
midpoint displacement algorithm (e.g. Figure 2a). The Hurst exponent 
H was varied systematically across simulated maps. We applied the 
box- counting and variation methods to estimate D (averaged from 100 
maps for each 𝐻 value). The horizontal axis corresponds to the true 
fractal dimension of the simulated maps (D = 2 −H); the vertical axis 
corresponds to the estimated 𝐷 using each method. The solid line is 
the 1:1 line. Box- counting at intermediate scales produced estimates 
closest to the 1:1 line.
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with links draped over the physical surface of a habitat) 
and divide that by the linear extent as in Equation  (3) 
(Friedman et al.,  2012; Luckhurst & Luckhurst,  1978; 
McCormick, 1994; Risk, 1972); the resolution of this ap-
proach is the width of each chain- link or the distance 
between the pins of a profile gauge.

Another way of estimating R is to measure 2D surface 
area directly from a digital model and then to divide this 
by planar area (Equation 2). This approach should yield 
more precise estimates of R than averaging across multi-
ple 1D profiles (e.g. Bayley et al., 2019; Young et al., 2017), 
because the entirety of the surface is being used. In other 
words, if the 2D approach is feasible, which it now al-
most always is with digital technology, the 1D method is 
redundant. Care should also be taken to minimise poten-
tial sources of error (see next subsection).

Sources of error in estimating rugosity of 
natural objects and patterns

Measurement error (choice of approximation method)
As mentioned in Section ‘Pitfalls of using rugosity as a 
metric of complexity’, the choice of method used to ap-
proximate total surface area (A) or profile length 

(
Lm

)
 

(Equations  2 and 3) can influence the accuracy of R 
estimates across a range of scales. Given the simplic-
ity, the cost and time effectiveness, and the accuracy 
of modern computer- based methods (Du Preez,  2015; 
Young et al., 2017), it is likely that traditional field- based 
approaches will gradually be phased out. While R esti-
mates from 3D models may still be prone to some error 
resulting from the influence of slope and aspect angle 
(Figueira et al., 2015; Porter, 2019), Friedman et al. (2012) 
and Du Preez  (2015) demonstrated how this methodo-
logical issue can be corrected for using a plane of best fit.

Choice of resolution
Regardless of the estimation approach, the value of R 
fundamentally depends on the resolution at which the 
observation was made (i.e. complexity varies with the 
scale at which it is measured; Porter,  2019; Yanovski 
et al., 2017), with R increasing with increasing resolution 
(Figure  6). A given species may respond to R at some 
scales but not others. For instance, gastropods on rocky 
intertidal substrates may only perceive microhabitats 
and respond to R measured at scales closer to their body 
sizes (millimetres to centimetres) rather than R measured 
at scales of metres. Such observations have been made 
in the field: for example, both fish on coral reefs and 
amphipods in benthic algae have been found to associ-
ate with greater rugosity at scales comparable to their 
body sizes (Hacker & Steneck, 1990; Wilson et al., 2007). 
Thus, to compare R of different habitats and across 
ecosystems with different suites of species, we need to 
measure R across a wide range of resolutions. Doing so 
is feasible with computer- based approaches, though not 

with field- based approaches. This may explain why tra-
ditionally few studies in ecology have actually measured 
R across a wide range of resolutions (e.g. Porter,  2019; 
Yanovski et al., 2017) and even fewer have related their 
R estimates back to measured ecological responses (but 
see Porter, 2019).

Limitations of rugosity

Confounding effects of area
Although existing evidence suggests that rugosity R is 
often strongly positively correlated with species diver-
sity (e.g. McCoy & Bell, 1991; Risk, 1972; Torres- Pulliza 
et al.,  2020), it is possible that this simply reflects the 
greater surface area available at higher R (the fundamen-
tal species– area principle; Lawton,  1999), rather than 
other aspects of habitat structure that we might typically 
associate with complexity (see next subsection). Rugosity 
fails our criterion (4) that a good metric of complexity 
should be decoupled from the effects of area (see Section 
‘Ideal qualities of a metric of complexity’). If a land-
scape with projected area L2 has rugosity R∗ at a given 
resolution, then the surface area available to organisms 
at this resolution is A = L2R∗ (from Equation  2). The 
power- law species– area relationship then predicts that 
logS = c + zlogA = c + zlogL2 + zlogR∗, whence it is clear 
that regressing S on rugosity is likely to yield positive 
correlations due to area effects alone. While this does 
not negate the role of R as a useful metric or predictor of 
diversity, it fails to address the specific goal of establish-
ing a metric of complexity decoupled from area.

Failure to account for relevant habitat structure
The use of R as a metric of complexity overlooks impor-
tant aspects of habitat structure such as the shape and 

F I G U R E  6  Illustration of how estimated rugosity R of a 
1 m × 1 m rocky shore DEM changes with decreasing resolution (or 
increasing granularity). Since the planar area was 1 m2, R effectively 
represents total available surface area at a given resolution in square 
metres.
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configuration of habitat elements (Beck, 2000; Figure 7). 
Two habitats can have very different geometric configu-
rations, with probable different consequences for biodi-
versity, but have the same R value (Figure 7a; see also 
Loke & Todd,  2016). In addition, the measurement of 
R in practice often ignores habitat components associ-
ated with complexity, such as overhangs and interstitial 
spaces (e.g. Figure 7b), as most remote sensing methods 
are not able to capture what is within or under objects.

Verdict on rugosity

Rugosity R is always well defined (for a given resolution) 
and much easier to measure than fractal dimension. It 
also appears to be more highly correlated with diversity. 
However, being strongly confounded with surface area, 
it may be a poor metric of complexity per se and, in ad-
dition, it is relevant only to certain types of objects (in 
terms of our criteria in Section ‘Ideal qualities of a met-
ric of complexity’, it satisfies (2) and (3) but fails (1) and 
(4)). Rugosity fails to capture aspects of habitat structure 
that would typically be associated with complexity (e.g. 
Figure 7b). While we recommend the use of R (or area 
itself) to characterise surface habitats, we warn that it 
is at best an incomplete descriptor of complexity, which 
may nevertheless be correlated with diversity across a 
range of scales and systems. We urge future studies using 
R to acknowledge the effects of area on diversity, and 
should area itself be used as a metric that it be explic-
itly stated as such and not labelled as ‘complexity’. A 
sensible approach would be to include surface area as a 
covariate in any regression of species richness S on ru-
gosity (with all variables logarithmically transformed: 
logS = alogA + blogR + c), to test the effects of rugosity 
independent of those of area.

Other geometric metrics of complexity

In this section, we give an overview of other geomet-
ric complexity metrics used in ecological applications 
(Figure 1b).

Height variation is occasionally used as a metric of 
habitat complexity (Figure  1b). Height variation can 
be measured simply as the range of surface heights. At 
large scales, some measure of elevation (i.e. height of the 
Earth's surface above a particular geographic reference 
point) or height variation is often used to describe the 
‘topographic complexity’ of terrain— perhaps due to the 
availability and ease of extracting the necessary infor-
mation directly from georeferenced maps— and topo-
graphically complex regions (e.g. regions with high relief 
created by tectonic uplift and geological erosion) have 
been found to feature disproportionately greater eco-
logical, taxonomic and species diversity (Badgley, 2010; 
Badgley et al., 2017). Another index, ‘terrain/topographic 
ruggedness’ is computed from a heightmap as the root- 
mean- square of differences in height values between a 
focal cell and its eight surrounding cells, averaged across 
all focal cells (Riley et al., 1999).

Less commonly, complexity may also be quantified 
in terms of surface angle variation. Surface angle or 
slope refers to the change in vertical distance over the 
change in horizontal distance and may be expressed in 
terms of vectors and angles. ‘Vector dispersion’, which 
can be extracted from 3D models and digital elevation 
models, is sometimes used as a metric of habitat com-
plexity as it expresses the uniformity of surface angles 
at a given resolution (see Grohmann et al., 2010; Young 
et al., 2017 for more details). Low vector dispersion in-
dicates smooth surfaces, whereas high vector disper-
sion indicates rough surfaces. Previously discussed 
sources of error in estimating R apply to measures 

F I G U R E  7  Illustrations of the limitations of rugosity as a complexity metric in ecology. (a) Two hypothetical surfaces with identical surface 
area and R values but different geometrical features (i.e. ‘component types’), with different consequences for biodiversity. In an intertidal 
context, for example, the bottom surface will retain more water during low tide and provide refugia for a variety of benthic species. Analogous 
examples could be constructed for other systems, for example, macroscopic terrestrial landscapes where peaks and valleys of different altitudes 
provide habitats for different species. (b) Two hypothetical 1D profiles with identical R values, linear extents (L) and heights (h) but different 
geometrical features: the top profile has overhangs and interstitial spaces and is arguably more complex, and may harbour a greater diversity of 
species.
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of both height variation and vector dispersion (see 
Section ‘Sources of error in estimating rugosity of nat-
ural objects and patterns’).

Relative to the popular measures D and R, fewer stud-
ies use variations in height, slope and angles as metrics of 
geometric complexity (Figure 1b), and the evidence link-
ing them to diversity at local scales remains equivocal 
and difficult to generalise (e.g. contrasting environmen-
tal gradients between marine vs. terrestrial landscapes). 
Carleton and Sammarco  (1987) found that vector dis-
persion and slope explained 36% and 43% of variation 
in coral genus richness at fine (millimetre to centimetre) 
scales. But McCormick (1994) found that vector disper-
sion, slope and surface height explained only 19%, 8% 
and 2%, respectively, of the variation in fish species 
richness on coral reefs at coarser (metre) scales, and in 
a recent study conducted at similar scales at the same 
location, Torres- Pulliza et al.  (2020) found that surface 
height range explained just 4% of the variation in coral 
species richness.

These other metrics are also likely confounded 
with surface area to some degree (e.g. a landscape 
with higher vector dispersion will tend to have higher 
surface area), and so to test the effects of complexity 
independent of area, a multiple regression approach 
as outlined at the end of Section ‘Rugosity’ may be 
appropriate.

Information- based metrics of complexity

In the previous sections, we have covered metrics of geo-
metric complexity and their limitations. In some cases, 
surmounting these limitations may involve going beyond 
purely geometric notions of complexity (e.g. Figure 7a). 
Informational complexity metrics are a promising alter-
native (Figure 1b). Informational metrics of complexity 
are in many cases correlated with geometric metrics of 
complexity, but can describe a broader variety of objects 
and may provide a more unified perspective.

Informational complexity is the amount of informa-
tion needed to encode and describe an object or system. 
A common measure of informational complexity is en-
tropy (Rissanen,  2007) or, more specifically, Shannon 
entropy (Shannon,  1948). Take a set of N observations 
on a random variable X  that has k possible outcomes, 
and where the probability to observe X = xi is pi for 
i = 1, … , k. The Shannon entropy of a single observa-
tion on X  is

with the summand taken to be zero when pi = 0. The 
entropy of the entire set of N observations is NH, and 
represents the number of bits of information required to 

describe the observations. The maximum value of en-
tropy occurs when the outcomes are equally likely, that 
is pi = 1∕k for all i, in which case from Equation (4) we 
have H = log2k. The minimum value of entropy, H = 0,  
occurs when pj = 1 for some j (and thus pi = 0 for all 
i ≠ j ) (Witten, 2020). In general, objects with higher de-
grees of randomness have greater entropy than those 
with repeating elements and other regularities.

Informational complexity can be measured in 
other ways, such as algorithmic information content 
(Kolmogorov,  1983), statistical complexity (Crutchfield 
& Young,  1989), among many others (see also Badii & 
Politi, 1997; Crutchfield, 1994; Gell- Mann & Lloyd, 1996, 
2004; Lloyd & Pagels, 1988; Shalizi & Crutchfield, 2001). 
Different metrics capture different features of complex 
systems; statistical complexity, for instance, captures 
aspects of complexity that are distinct from pure ran-
domness (Ladyman & Wiesner, 2020), but as these other 
metrics were developed in other scientific fields, they 
have rarely been applied in ecology (see Section ‘Future 
research’).

To measure the informational complexity in an eco-
logical application, one first must define what consti-
tutes a relevant element in the system, a potentially 
non- trivial exercise involving some degree of subjectiv-
ity. Examples of relevant elements could be features on a 
landscape map (e.g. habitat patches, land cover classes, 
spatial points, lines, networks) or features within habi-
tats (e.g. different kinds of microhabitats). Entropy and 
other metrics of informational complexity can then de-
scribe the variability and arrangement of these elements.

Ecologists' intuitions about complexity are broadly 
congruent with informational complexity: disorder and 
randomness lead to habitats with more niches and thus 
more species. This is reflected in the way many ecologists 
have tried to quantify or recreate habitat complexity and 
spatial heterogeneity using metrics such as the density, 
number of different component types and their vari-
ability (Figure 1b), which are essentially different ways 
in which the informational content of an object or sys-
tem can be altered (Figure 8; e.g. Beck, 2000; Eriksson 
et al.,  2006; McCoy & Bell, 1991; see Loke et al.,  2014, 
2015 for more details on how these variables alter the in-
formational complexity of a system).

Many local- scale ecological experiments manip-
ulate informational complexity (Figure  1b), by con-
trolling the amount, variability or spatial positions of 
select elements in a system (Figure  8). Informational 
complexity largely overlaps with the concept of ‘het-
erogeneity’ in ecology. For example, Loke et al. (2017) 
manipulated complexity by varying the size range 
(widths and depths) of different microhabitat elements 
(pits and grooves) within a given planar surface while 
standardising for area, and Cardinale et al. (2002) ma-
nipulated benthic stream substrate heterogeneity by 
altering the range of particle sizes while holding the 
median size constant.

(4)H = −

k∑

i=1

pi log2pi
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As an operational framework, information- based 
complexity has several advantages: it can be applied 
to multiple classes of objects and systems across scales 
(our criterion (1) in Section ‘Ideal qualities of a metric 
of complexity’), it can be easily measured (criterion (3)), 
and it allows the effects of area and density to be disen-
tangled from other aspects of complexity (criterion (4)) 
(see also experiments by Ben- Hur & Kadmon,  2020b; 
Loke & Todd, 2016; Loke et al., 2019). With complexity 
being the broader concept that subsumes heterogeneity, 
information- based complexity accounts for heteroge-
neity and other types of complexity. However, one lim-
itation of informational complexity is that it relies on 
somewhat subjective criteria for selecting what consti-
tutes an element in the system (i.e. criterion (2) in Section 
‘Ideal qualities of a metric of complexity’).

FUTU RE RESEARCH

Ultimately, the goal of having a metric of habitat com-
plexity and spatial heterogeneity in ecology is to under-
stand the forces that structure biodiversity and other 
community properties. A metric may be mathematically 
well defined (like D), but if it is hard to measure or does 
not capture aspects of complexity relevant to organisms, 
it has little relevance. We may, through other disciplines 
such computer science and physics, discover and develop 

different candidate metrics, but only empirical work can 
reveal the relevance and importance of any metric in 
ecology.

A word of warning is that in any given system the 
forces structuring diversity may actually be simple, 
being driven, for example, by available surface area, 
or being associated with just one idiosyncratic aspect 
of complexity, such as pits or overhangs in intertidal 
communities (Figure  7). Furthermore, complexity is 
not a fixed property of the environment because or-
ganisms themselves can create complexity by forming 
habitats. Ecological systems are complex systems that 
are dynamic and so quantifying habitat complexity at 
specific points in time (compressing the dimension of 
time) may also leave out important temporal aspects of 
complexity. In view of all this, efforts to come up with 
a universally applicable metric of complexity may be 
futile.

Nevertheless, at least for specific systems, the mea-
surement of complexity continues to be an important 
problem in ecology for both basic and applied reasons. 
Given that we still do not have metrics that can con-
sistently explain a large fraction of the variation in 
species diversity, there is cause to keep looking, even 
if such an endeavour yields no metric better than R 
(Section ‘Limitations of rugosity’). For example, mea-
sures of informational complexity that incorporate 
correlations between elements may better characterise 

F I G U R E  8  Examples of how discrete elements in a system may be altered to manipulate its informational complexity. Different types of 
elements are represented by circles of different colours. For instance, the spatial configuration of elements on a 2D map may be defined by 
some rule (e.g. ‘ordered grid’, ‘simple random’ or ‘hierarchical random’); the more ordered a system is, the lower its informational complexity as 
less information is required to describe it. These rules fit with intuitive notions of complexity; for example, an oil palm plantation (ordered; low 
density of types, number of types, and size variation) would be considered less complex than a tropical forest (random; high density of types, 
number of types, and size variation as depicted in the 3D example at centre- bottom).
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the heterogeneity of ecological systems than do sim-
ple entropy measures (Xiong et al., 2017). Explorations 
into information- based measures of complexity may 
also potentially offer novel ways to characterise niche 
space, which may ultimately yield insights into the 
basis of community assembly and species coexistence. 
We encourage closer collaborations between field 
ecologists, experimentalists and theoretical ecologists 
to see what structural metrics of complexity are pre-
dicted to be important for explaining biodiversity and 
consequently ecosystem function in systems of inter-
est. Our lists of essential and desirable qualities that a 
good metric should possess in Section ‘Ideal qualities 
of a metric of complexity’ serve as guidelines for future 
work.

On the rise of remote sensing technologies 
in ecology

Remote sensing technologies are increasingly acces-
sible and widely applied in ecology (D'Urban Jackson 
et al.,  2020; Kerr & Ostrovsky,  2003). Tools for 3D 
mapping such as lidar, radar, sonar and techniques 
for processing remotely sensed data such as structure- 
from- motion photogrammetry have now facilitated, 
with relative ease, the reconstruction of high- resolution 
maps of vast areas of different ecosystems from which 
all kinds of habitat– structure variables can be extracted 
(Pettorelli et al., 2014; Turner et al., 2003). For instance, 
in forests a large suite of putative complexity variables, 
such as canopy density, heights, composition, or below- 
canopy tree and shrub layers can be extracted from lidar 
data (Müller & Brandl, 2009), and these have been used 
in species distribution modelling to predict patterns of 
species diversity for conservation planning and prioriti-
sation (Zellweger et al.,  2013). Supplemented with cali-
bration data painstakingly collected by field ecologists 
through ground surveys, they can be used, for example, 
to identify hotspots of biodiversity in remote and hard- 
to- access areas in both terrestrial (e.g. Schut et al., 2014; 
Turner et al.,  2003) and marine environments (e.g. 
Saunders et al., 2020).

Given the rapid advancement of these technologies 
and adoption by ecologists, it is important to appreci-
ate the interpretive and practical issues with common 
metrics of complexity such as D and R (and their vari-
ations). For instance, while it may be easy to estimate 
D via box- counting from 3D models generated from re-
motely sensed data, or to assume that it is reflecting our 
intuitive notions of ‘habitat complexity’ in a scale- free 
manner, these assumptions may quickly legitimise ar-
bitrary interpretations of the effects of ‘complexity’ on 
diversity and impede our understanding of the interac-
tion between complexity and diversity. Thus, while we 
acknowledge all the benefits that remote sensing tech-
nologies will bring to the study of habitat complexity in 

ecology, we urge caution when it comes to interpreting 
complexity measures, in particular D.

APPLIED SIGN I FICA NCE

Strategies in applied ecological fields such as conser-
vation biology, restoration ecology and ecological en-
gineering often involve creating or restoring habitat 
complexity and spatial heterogeneity in fragmented, 
degraded or simplified environments (Falk et al., 2006; 
Firth et al., 2016; Gardner et al., 2007; Lindenmayer & 
Fischer,  2007). Such implementations fall within the 
International Union for Conservation of Nature (IUCN) 
framework for nature- based solutions to societal chal-
lenges, specifically under the ecosystem restoration and 
infrastructure- related approaches (Cohen- Shacham 
et al.,  2016). With the rise in remote sensing technolo-
gies (Section ‘On the rise of remote- sensing technologies 
in ecology’), the idea of translating some metric of habi-
tat complexity (e.g. obtained from scanning diverse or 
pristine natural environments) into real- world solutions 
is tantalising (Calders et al.,  2020; Ferrari et al.,  2021). 
These solutions range from replanting or introducing 
trees and habitat- forming species to adding physical el-
ements to manipulate habitat structure in both natural 
and urban environments (Morris et al.,  2019; Palmer 
et al., 2010). Whatever the means, the idea of recreating 
some level of complexity in a degraded system is largely 
based on the assumption that this will mimic and recre-
ate niches for organisms, leading to increased levels of 
biodiversity and ecosystem services.

Complexity metrics are also being used as success in-
dicators for restoration programs. It has been suggested 
that techniques such as photogrammetry will improve 
restoration success by enabling the measurement of 
complexity with ‘unprecedented accuracy’ (Ferrari 
et al., 2021). Again, this premise is built on the assump-
tion that we already have reliable, accurate metrics 
of complexity; but, unfortunately, we do not. Simply 
knowing the required rugosity (R) or fractal dimension 
(D) of an artificial habitat, for instance, leaves a lot of 
room for uncertainty regarding the key aspects of design 
that may be highly relevant to biodiversity (Figure 7). In 
landscape ecology, it has been suggested metrics such 
as D may be frequently adopted simply because they are 
easily generated through landscape analysis software 
(With, 2019).

Given global rates of environmental change, including 
habitat loss and climate change, more needs to be done 
to understand the link between complexity and diversity. 
Ultimately, success in rebuilding or restoring ecological 
complexity will require metrics that are straightforward 
to measure and are correlated with ecological variables 
of interest, which in turn will depend on a deeper under-
standing of how habitat complexity begets diversity. The 
best metrics may be system- specific rather than universal.
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CONCLUSIONS

There is no consensus in ecology over the definition of 
complexity or how to measure it. While some metrics of 
complexity are used more frequently used than others, 
none is without limitations (Figure 1b; see Section ‘Metrics 
of complexity’). The terms ‘complexity’ and ‘heterogene-
ity’ are often used indiscriminately or as a substitute for 
some aspect of species’ niche requirements (Figure  1a), 
perpetuating confusion over which aspects of complexity 
are actually influencing diversity. Addressing the meas-
urement of complexity will allow ecologists to leverage the 
remote sensing revolution and study complexity– diversity 
relationships with more precision (see Section ‘Future re-
search’). Targeted system- specific efforts may initially be 
most fruitful, and may eventually reveal the bigger picture 
of how complexity affects diversity in different systems 
and at different scales, bringing broad benefits for basic 
and applied ecology.

AU T HORSH I P
LL contributed ideas, provided data, performed analy-
ses, wrote the first draft of the manuscript and led study. 
RC contributed ideas, performed analyses, edited the 
manuscript. All authors contributed substantially to 
revisions.

ACK NOW LEDGEM EN TS
LHLL was supported by a Macquarie University 
Research Fellowship (#110042722), and a grant from 
Wildlife Reserves Singapore Conservation Fund. RAC 
was supported by a grant from the James S. McDonnell 
Foundation (#220020470).  Open access publishing 
 facilitated by Macquarie University, as part of the 
Wiley - Macquarie University agreement via the Council 
of Australian University Librarians.

DATA AVA I LA BI LI T Y STAT EM EN T
The data and code supporting these results are avail-
able in the Zenodo repository: https://doi.org/10.5281/
zenodo.6640505.

PEER R EV I EW
The peer review history for this article is available at 
https://publo ns.com/publo n/10.1111/ele.14084.

ORCI D
Lynette H. L. Loke   https://orcid.
org/0000-0002-3649-1046 
Ryan A. Chisholm   https://orcid.
org/0000-0002-9847-1710 

R E F ER E NC E S
Allouche, O., Kalyuzhny, M., Moreno- Rueda, G., Pizarro, M. & 

Kadmon, R. (2012) Area– heterogeneity tradeoff and the di-
versity of ecological communities. Proceedings of the National 

Academy of Sciences of the United States of America, 109, 
17495– 17500.

Avnir, D., Biham, O., Lidar, D. & Malcai, O. (1998) Is the geometry of 
nature fractal? Science, 279, 39– 40.

Badgley, C. (2010) Tectonics, topography, and mammalian diversity. 
Ecography, 33, 220– 231.

Badgley, C., Smiley, T.M., Terry, R., Davis, E.B., DeSantis, L.R., 
Fox, D.L. et al. (2017) Biodiversity and topographic complex-
ity: modern and geohistorical perspectives. Trends in Ecology & 
Evolution, 32, 211– 226.

Badii, R. & Politi, A. (1997) Complexity: Hierarchical structures and 
scaling in physics. Cambridge: Cambridge University Press.

Barton, C.C. & La Pointe, P.R. (1995) Fractals in the earth sciences. 
New York: Plenum Press.

Bayley, D.T., Mogg, A.O., Koldewey, H. & Purvis, A. (2019) Capturing 
complexity: field- testing the use of ‘structure from motion’ de-
rived virtual models to replicate standard measures of reef phys-
ical structure. PeerJ, 7, e6540.

Beck, M.W. (1998) Comparison of the measurement and effects of 
habitat structure on gastropods in rocky intertidal and man-
grove habitats. Marine Ecology Progress Series, 169, 165– 178.

Beck, M.W. (2000) Separating the elements of habitat structure: inde-
pendent effects of habitat complexity and structural components 
on rocky intertidal gastropods. Journal of Experimental Marine 
Biology and Ecology, 249, 29– 49.

Ben- Hur, E. & Kadmon, R. (2020a) Heterogeneity– diversity relation-
ships in sessile organisms: a unified framework. Ecology Letters, 
23, 193– 207.

Ben- Hur, E. & Kadmon, R. (2020b) An experimental test of the area– 
heterogeneity tradeoff. Proceedings of the National Academy of 
Sciences of the United States of America, 117, 4815– 4822.

Berntson, G.M. & Stoll, P. (1997) Correcting for finite spatial scales 
of self– similarity when calculating fractal dimensions of real– 
world structures. Proceedings of the Royal Society B: Biological 
Sciences, 264, 1531– 1537.

Bez, N. & Bertrand, S. (2011) The duality of fractals: roughness and 
self- similarity. Theoretical Ecology, 4, 371– 383.

Bouchaud, E. (1997) Scaling properties of cracks. Journal of Physics: 
Condensed Matter, 9, 4319– 4344.

Bouda, M., Caplan, J.S. & Saiers, J.E. (2016) Box- counting dimension 
revisited: presenting an efficient method of minimizing quanti-
zation error and an assessment of the self- similarity of structural 
root systems. Frontiers in Plant Science, 7, 149.

Breslin, M.C. & Belward, J.A. (1999) Fractal dimensions for rain-
fall time series. Mathematics and Computers in Simulation, 48, 
437– 446.

Calders, K., Phinn, S., Ferrari, R., Leon, J., Armston, J., Asner, G.P. 
et al. (2020) 3D imaging insights into forests and coral reefs. 
Trends in Ecology & Evolution, 35, 6– 9.

Cardinale, B.J., Nelson, K. & Palmer, M.A. (2000) Linking species 
diversity to the functioning of ecosystems: on the importance of 
environmental context. Oikos, 91, 175– 183.

Cardinale, B.J., Palmer, M.A., Swan, C.M., Brooks, S. & Poff, N.L. 
(2002) The influence of substrate heterogeneity on biofilm me-
tabolism in a stream ecosystem. Ecology, 83, 412– 422.

Carleton, J.H. & Sammarco, P.W. (1987) Effects of substratum irregu-
larity on success of coral settlement: quantification by compar-
ative geomorphological techniques. Bulletin of Marine Science, 
40, 85– 98.

Cohen- Shacham, E., Walters, G., Janzen, C. & Maginnis, S. (2016) 
Nature- based solutions to address global societal challenges. 
Gland, Switzerland: IUCN.

Crutchfield, J.P. (1994) The calculi of emergence: computation, dy-
namics and induction. Physica D: Nonlinear Phenomena, 75, 
11– 54.

Crutchfield, J.P. & Young, K. (1989) Inferring statistical complexity. 
Physical Review Letters, 63, 105.

https://doi.org/10.5281/zenodo.6640505
https://doi.org/10.5281/zenodo.6640505
https://publons.com/publon/10.1111/ele.14084
https://orcid.org/0000-0002-3649-1046
https://orcid.org/0000-0002-3649-1046
https://orcid.org/0000-0002-3649-1046
https://orcid.org/0000-0002-9847-1710
https://orcid.org/0000-0002-9847-1710
https://orcid.org/0000-0002-9847-1710


   | 2285LOKE and CHISHOLM

Davenport, J., Pugh, P.J.A. & McKechnie, J. (1996) Mixed fractals 
and anisotropy in subantarctic marine macroalgae from South 
Georgia: implications for epifaunal biomass and abundance. 
Marine Ecology Progress Series, 136, 245– 255.

Diamond, J.M. (1969) Avifaunal equilibria and species turnover 
rates on the Channel Islands of California. Proceedings of the 
National Academy of Sciences of the United States of America, 
64, 57– 63.

Dibble, E.D. & Thomaz, S.M. (2009) Use of fractal dimension to as-
sess habitat complexity and its influence on dominant inverte-
brates inhabiting tropical and temperate macrophytes. Journal 
of Freshwater Ecology, 24, 93– 102.

Dice, L.R. (1947) Effectiveness of selection by owls of deer mice 
(Peromyscus maniculatus) which contrast in color with their 
background. Contributions from the Laboratory of Vertebrate 
Biology, 34, 1– 20.

Dijkstra, J.A., Harris, L.G., Mello, K., Litterer, A., Wells, C. & Ware, 
C. (2017) Invasive seaweeds transform habitat structure and in-
crease biodiversity of associated species. Journal of Ecology, 105, 
1668– 1678.

Downes, B.J., Lake, P.S., Schreiber, E.S.G. & Glaister, A. (1998) 
Habitat structure and regulation of local species diversity in a 
stony, upland stream. Ecological Monographs, 68, 237– 257.

Du Preez, C. (2015) A new arc– chord ratio (ACR) rugosity index for 
quantifying three- dimensional landscape structural complexity. 
Landscape Ecology, 30, 181– 192.

Dubuc, B., Roques- Carmes, C., Tricot, C. & Zucker, S.W. (1987) The 
variation method: a technique to estimate the fractal dimension 
of surfaces. Visual Communications and Image Processing II, 845, 
241– 248.

Dubuc, B., Zucker, S.W., Tricot, C., Quiniou, J.F. & Wehbi, D. (1989) 
Evaluating the fractal dimension of surfaces. Proceedings of 
the Royal Society A: Mathematical, Physical and Engineering 
Sciences, 425, 113– 127.

Dunlavy, J.C. (1935) Studies on the phyto- vertical distribution of 
birds. The Auk, 52, 425– 431.

D'Urban Jackson, T., Williams, G.J., Walker- Springett, G. & Davies, 
A.J. (2020) Three- dimensional digital mapping of ecosystems: a 
new era in spatial ecology. Proceedings of the Royal Society B: 
Biological Sciences, 287, 20192383.

Ehbrecht, M., Seidel, D., Annighöfer, P., Kreft, H., Köhler, M., 
Zemp, D.C. et al. (2021) Global patterns and climatic controls 
of forest structural complexity. Nature Communications, 12, 
1– 12.

Eriksson, B.K., Rubach, A. & Hillebrand, H. (2006) Biotic habitat 
complexity controls species diversity and nutrient effects on net 
biomass production. Ecology, 87, 246– 254.

Evertsz, C.J. & Mandelbrot, B.B. (1992) Multifractal measures. 
In: Chaos and fractals: new frontiers in science. New York: 
Springer- Verlag.

Falk, D.A., Palmer, M.A. & Zedler, J.B. (2006) Foundations of resto-
ration ecology. Washington, D.C.: Island Press.

Ferrari, R., Lachs, L., Pygas, D.R., Humanes, A., Sommer, B., 
Figueira, W.F. et al. (2021) Photogrammetry as a tool to im-
prove ecosystem restoration. Trends in Ecology & Evolution, 36, 
1093– 1101.

Figueira, W., Ferrari, R., Weatherby, E., Porter, A., Hawes, S. & 
Byrne, M. (2015) Accuracy and precision of habitat structural 
complexity metrics derived from underwater photogrammetry. 
Remote Sensing, 7, 16883– 16900.

Firth, L.B., Knights, A.M., Bridger, D., Evans, A., Mieskowska, 
N., Moore, P.J. et al. (2016) Ocean sprawl: challenges and op-
portunities for biodiversity management in a changing world. 
Oceanography and Marine Biology: An Annual Review, 54, 
189– 262.

Flores, J.C. (2022) Prebiotic aggregates (tissues) emerging from 
reaction– diffusion: formation time, configuration entropy and 
optimal spatial dimension. Entropy, 24, 124.

Foroutan- pour, K., Dutilleul, P. & Smith, D.L. (1999) Advances in 
the implementation of the box- counting method of fractal di-
mension estimation. Applied Mathematics and Computation, 
105, 195– 210.

Friedman, A., Pizarro, O., Williams, S.B. & Johnson- Roberson, M. 
(2012) Multi- scale measures of rugosity, slope and aspect from 
benthic stereo image reconstructions. PLoS ONE, 7, e50440.

Frost, N.J., Burrows, M.T., Johnson, M.P., Hanley, M.E. & Hawkins, 
S.J. (2005) Measuring surface complexity in ecological studies. 
Limnology and Oceanography: Methods, 3, 203– 210.

Gallant, J.C., Moore, I.D., Hutchinson, M.F. & Gessler, P. (1994) 
Estimating fractal dimension of profiles: a comparison of meth-
ods. Mathematical Geology, 26, 455– 481.

Gao, J., Pan, N. & Yu, W.D. (2007) Golden mean and fractal dimen-
sion of goose down. International Journal of Nonlinear Sciences 
and Numerical Simulation, 8, 113– 116.

Gardner, T.A., Barlow, J. & Peres, C.A. (2007) Paradox, presumption 
and pitfalls in conservation biology: the importance of habitat 
change for amphibians and reptiles. Biological Conservation, 
138, 166– 179.

Gause, G.F., Smaragdova, N.P. & Witt, A.A. (1936) Further studies of 
interaction between predators and prey. The Journal of Animal 
Ecology, 5, 1– 18.

Gell- Mann, M. (1995) What is complexity? Complexity, 1, 1.
Gell- Mann, M. & Lloyd, S. (1996) Information measures, effective 

complexity, and total information. Complexity, 2, 44– 52.
Gell- Mann, M. & Lloyd, S. (2004) Effective complexity. In: 

Gell- Mann, M. & Tsallis, C. (Eds.) Nonextensive entropy— 
Interdisciplinary applications. Santa Fe, NM: Oxford University 
Press, pp. 387– 398.

Gneiting, T., Ševčíková, H. & Percival, D.B. (2012) Estimators of frac-
tal dimension: Assessing the roughness of time series and spatial 
data. Statistical Science, 27, 247– 277.

Gonzato, G., Mulargia, F. & Ciccotti, M. (2000) Measuring the 
fractal dimensions of ideal and actual objects: implications 
for application in geology and geophysics. Geophysical Journal 
International, 142, 108– 116.

Gonzato, G., Mulargia, F. & Marzocchi, W. (1998) Practical appli-
cation of fractal analysis: problems and solutions. Geophysical 
Journal International, 132, 275– 282.

Gosselin, L.A. & Chia, F.S. (1995) Distribution and dispersal of early 
juvenile snails: effectiveness of intertidal microhabitats as ref-
uges and food sources. Marine Ecology Progress Series, 128, 
213– 223.

Graham, N.A.J. & Nash, K.L. (2013) The importance of structural 
complexity in coral reef ecosystems. Coral Reefs, 32, 315– 326.

Gratwicke, B. & Speight, M.R. (2005) The relationship between fish 
species richness, abundance and habitat complexity in a range 
of shallow tropical marine habitats. Journal of Fish Biology, 66, 
650– 667.

Green, D.G., Klomp, N., Rimmington, G. & Sadedin, S. (2006) 
Complexity in landscape ecology, Vol. 208. Dordrecht: 
Springer.

Grohmann, C.H., Smith, M.J. & Riccomini, C. (2010) Multiscale anal-
ysis of topographic surface roughness in the Midland Valley, 
Scotland. IEEE Transactions on Geoscience and Remote Sensing, 
49, 1200– 1213.

Gunnarsson, B. (1992) Fractal dimension of plants and body size dis-
tribution in spiders. Functional Ecology, 6, 636– 641.

Hacker, S.D. & Steneck, R.S. (1990) Habitat architecture and the 
abundance and body- size- dependent habitat selection of a phy-
tal amphipod. Ecology, 71, 2269– 2285.

Halley, J.M., Hartley, S., Kallimanis, A.S., Kunin, W.E., Lennon, J.J. 
& Sgardelis, S.P. (2004) Uses and abuses of fractal methodology 
in ecology. Ecology Letters, 7, 254– 271.

Hashmi, D. & Causey, D. (2008) A system in which available en-
ergy per se controls alpha diversity: marine pelagic birds. The 
American Naturalist, 171, 419– 429.



2286 |   MEASURING COMPLEXITY IN ECOLOGY

Hills, J.M., Thomason, J.C. & Muhl, J. (1999) Settlement of barnacle 
larvae is governed by Euclidean and not fractal surface charac-
teristics. Functional Ecology, 13, 868– 875.

Holland, J.H. (1992) Adaptation in natural and artificial systems: an 
introductory analysis with applications to biology, control, and ar-
tificial intelligence. Cambridge, MA: MIT Press.

Huang, Q., Lorch, J.R. & Dubes, R.C. (1994) Can the fractal dimen-
sion of images be measured? Pattern Recognition, 27, 339– 349.

Huffaker, C. (1958) Experimental studies on predation: dispersion 
factors and predator- prey oscillations. Hilgardia, 27, 343– 383.

Hurlbert, A.H. (2004) Species– energy relationships and habitat com-
plexity in bird communities. Ecology Letters, 7, 714– 720.

Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor 
Symposia on Quantitative Biology, 22, 415– 427.

Jeffries, M. (1993) Invertebrate colonization of artificial pondweeds 
of differing fractal dimension. Oikos, 67, 142– 148.

Johnson, M.P., Frost, N.J., Mosley, M.W., Roberts, M.F. & Hawkins, 
S.J. (2003) The area- independent effects of habitat complex-
ity on biodiversity vary between regions. Ecology Letters, 6, 
126– 132.

Kak, S. (2021) Fractals with optimal information dimension. Circuits, 
Systems, and Signal Processing, 40, 5733– 5743.

Kenkel, N. (2013) Sample size requirements for fractal dimension esti-
mation. Community Ecology, 14, 144– 152.

Kerr, J.T. & Ostrovsky, M. (2003) From space to species: ecological 
applications for remote sensing. Trends in Ecology & Evolution, 
18, 299– 305.

Kiessling, W., Simpson, C. & Foote, M. (2010) Reefs as cradles of evo-
lution and sources of biodiversity in the Phanerozoic. Science, 
327, 196– 198.

Klinkenberg, B. (1994) A review of methods used to determine the 
fractal dimension of linear features. Mathematical Geology, 26, 
23– 46.

Klinkenberg, B. & Goodchild, M.F. (1992) The fractal properties of 
topography: a comparison of methods. Earth Surface Processes 
and Landforms, 17, 217– 234.

Kohn, A.J. (1968) Microhabitats, abundance and food of Conus 
on atoll reefs in the Maldive and Chagos Islands. Ecology, 49, 
1046– 1062.

Kolmogorov, A.N. (1983) Combinatorial foundations of information 
theory and the calculus of probabilities. Russian Mathematical 
Surveys, 38, 29.

Kovalenko, K.E., Thomaz, S.M. & Warfe, D.M. (2012) Habitat com-
plexity: approaches and future directions. Hydrobiologia, 685, 
1– 17.

Krakauer, D.C. (2019) Worlds hidden in plain sight: thirty years of com-
plexity thinking at the Santa Fe Institute. Santa Fe, NM: Santa Fe 
Institute Press.

Ladyman, J., Lambert, J. & Wiesner, K. (2013) What is a complex sys-
tem? European Journal for Philosophy of Science, 3, 33– 67.

Ladyman, J. & Wiesner, K. (2020) What is a complex system? . New 
Haven, CT: Yale University Press.

Lam, N.S.N. & De Cola, L. (2002) Fractals in geography. Caldwell, NJ: 
The Blackburn Press.

Lawrence, P.J., Evans, A.J., Jackson- Bué, T., Brooks, P.R., Crowe, 
T.P., Dozier, A.E. et al. (2021) Artificial shorelines lack natural 
structural complexity across scales. Proceedings of the Royal 
Society B: Biological Sciences, 288, 20210329.

Lawton, J.H. (1999) Are there general laws in ecology? Oikos, 84, 
177– 192.

Li, H. & Reynolds, J.F. (1995) On definition and quantification of het-
erogeneity. Oikos, 73, 280– 284.

Liebovitch, L.S. & Toth, T. (1989) A fast algorithm to determine frac-
tal dimensions by box counting. Physics Letters A, 141, 386– 390.

Lindenmayer, D.B. & Fischer, J. (2007) Tackling the habitat fragmen-
tation panchreston. Trends in Ecology & Evolution, 22, 127– 132.

Liu, J., Vellend, M., Wang, Z. & Yu, M. (2018) High beta diversity 
among small islands is due to environmental heterogeneity 

rather than ecological drift. Journal of Biogeography, 45, 
2252– 2261.

Lloyd, S. & Pagels, H. (1988) Complexity as thermodynamic depth. 
Annals of Physics, 188, 186– 213.

Loke, L.H.L., Bouma, T.J. & Todd, P.A. (2017) The effects of manip-
ulating microhabitat size and variability on tropical seawall bio-
diversity: field and flume experiments. Journal of Experimental 
Marine Biology and Ecology, 492, 113– 120.

Loke, L.H.L., Chisholm, R.A. & Todd, P.A. (2019) Effects of habitat 
area and spatial configuration on biodiversity in an experimen-
tal intertidal community. Ecology, 100, e02757.

Loke, L.H.L., Jachowski, N.R., Bouma, T.J., Ladle, R.J. & Todd, P.A. 
(2014) Complexity for artificial substrates (CASU): software 
for creating and visualising habitat complexity. PLOS ONE, 9, 
e87990.

Loke, L.H.L., Ladle, R.J., Bouma, T.J. & Todd, P.A. (2015) Creating 
complex habitats for restoration and reconciliation. Ecological 
Engineering, 77, 307– 313.

Loke, L.H.L. & Todd, P.A. (2016) Structural complexity and compo-
nent type increase intertidal biodiversity independently of area. 
Ecology, 97, 383– 393.

Luckhurst, B.E. & Luckhurst, K. (1978) Analysis of the influence 
of substrate variables on coral reef fish communities. Marine 
Biology, 49, 317– 323.

MacArthur, R.H. (1965) Patterns of species diversity. Biological 
Reviews, 40, 510– 533.

MacArthur, R.H., MacArthur, J.W. & Preer, J. (1962) On bird species 
diversity. II. Prediction of bird census from habitat measure-
ments. The American Naturalist, 96, 167– 174.

Malcai, O., Lidar, D.A., Biham, O. & Avnir, D. (1997) Scaling range 
and cutoffs in empirical fractals. Physical Review E, 56, 2817.

Mandelbrot, B.B. (1967) How long is the coast of Britain? Statistical 
self- similarity and fractional dimension. Science, 156, 636– 638.

Mandelbrot, B.B. (1982) The fractal geometry of nature, Vol. 1. New 
York: WH freeman.

Mandelbrot, B.B. (1998) Is nature fractal? Science, 279, 783.
McAbendroth, L., Ramsay, P.M., Foggo, A., Rundle, S.D. & Bilton, 

D.T. (2005) Does macrophyte fractal complexity drive inverte-
brate diversity, biomass and body size distributions? Oikos, 111, 
279– 290.

McCormick, M.I. (1994) Comparison of field methods for measur-
ing surface topography and their associations with a tropical 
reef fish assemblage. Marine Ecology Progress Series, 112, 
87– 96.

McCoy, E.D. & Bell, S.S. (1991) Habitat structure: the evolution and 
diversification of a complex topic. In: Bell, S.S., McCoy, E.D. & 
Mushinsky, H.R. (Eds.) Habitat structure: the physical arrange-
ment of objects in space. New York, NY: Chapman & Hall, pp. 
3– 27.

Menge, B.A. & Lubchenco, J. (1981) Community organization in tem-
perate and tropical rocky intertidal habitats: prey refuges in re-
lation to consumer pressure gradients. Ecological Monographs, 
51, 429– 450.

Milne, B.T. (1988) Measuring the fractal geometry of landscapes. 
Applied Mathematics and Computation, 27, 67– 79.

Mitchell, M. (2009) Complexity: A guided tour. New York, NY: Oxford 
University Press.

Morris, R.L., Heery, E.C., Loke, L.H.L., Lau, E., Strain, E., 
Airoldi, L. et al. (2019) Design options, implementation issues 
and evaluating success of ecologically engineered shorelines. 
Oceanography and Marine Biology: An Annual Review, 57, 
169– 228.

Morse, D.R., Lawton, J.H., Dodson, M.M. & Williamson, M.H. 
(1985) Fractal dimension of vegetation and the distribution of 
arthropod body lengths. Nature, 314, 731– 733.

Müller, J. & Brandl, R. (2009) Assessing biodiversity by remote sensing 
in mountainous terrain: the potential of LiDAR to predict forest 
beetle assemblages. Journal of Applied Ecology, 46, 897– 905.



   | 2287LOKE and CHISHOLM

Newman, E.A., Kennedy, M.C., Falk, D.A. & McKenzie, D. (2019) 
Scaling and complexity in landscape ecology. Frontiers in 
Ecology and Evolution, 7, 293.

O'Neill, R.V., Krummel, J.R., Gardner, R.E.A., Sugihara, G., Jackson, 
B., DeAngelis, D.L. et al. (1988) Indices of landscape pattern. 
Landscape Ecology, 1, 153– 162.

Paine, R.T. & Vadas, R.L. (1969) The effects of grazing by sea ur-
chins, Strongylocentrotus spp., on benthic algal populations 1. 
Limnology and Oceanography, 14, 710– 719.

Palmer, M.A., Menninger, H.L. & Bernhardt, E. (2010) River resto-
ration, habitat heterogeneity and biodiversity: a failure of theory 
or practice? Freshwater Biology, 55, 205– 222.

Palmer, M.W. (1992) The coexistence of species in fractal landscapes. 
The American Naturalist, 139, 375– 397.

Panigrahy, C., Seal, A., Mahato, N.K. & Bhattacharjee, D. (2019) 
Differential box counting methods for estimating fractal dimen-
sion of gray- scale images: A survey. Chaos, Solitons & Fractals, 
126, 178– 202.

Parker, J.R. (1997) Algorithms for image processing and computer vi-
sion. New York, NY: Wiley.

Pettorelli, N., Laurance, W.F., O'Brien, T.G., Wegmann, M., 
Nagendra, H. & Turner, W. (2014) Satellite remote sensing for ap-
plied ecologists: opportunities and challenges. Journal of Applied 
Ecology, 51, 839– 848.

Pianka, E.R. (1966) Convexity, desert lizards, and spatial heterogene-
ity. Ecology, 47, 1055– 1059.

Pianka, E.R. (1969) Habitat specificity, speciation, and species den-
sity in Australian desert lizards. Ecology, 50, 498– 502.

Pimentel, D., Nagel, W.P. & Madden, J.L. (1963) Space- time structure 
of the environment and the survival of parasite- host systems. 
The American Naturalist, 97, 141– 167.

Porter, A.G. (2019) Habitat structural complexity in the 21st century: 
measurement, fish responses and why it matters (Thesis). Sydney, 
Australia: University of Sydney.

Preston, F.W. (1960) Time and space and the variation of species. 
Ecology, 41, 612– 627.

Pruess, S.A. (1995) Some remarks on the numerical estimation of frac-
tal dimension. In: Barton, C.C. & La Pointe, P.R. (Eds.) Fractals 
in the earth sciences. Boston, MA: Springer, pp. 65– 75.

Riley, S.J., DeGloria, S.D. & Elliot, R. (1999) A terrain ruggedness 
index that quantifies topographic heterogeneity. Intermountain 
Journal of Sciences, 5, 23– 27.

Risk, M.J. (1972) Intertidal substrate rugosity and species diversity 
(Thesis). California, CA: University of Southern California.

Rissanen, J. (2007) Information and complexity in statistical modeling, 
Vol. 152. New York: Springer.

Ritchie, M.E. (2009) Scale, heterogeneity, and the structure and diversity of 
ecological communities. New Jersey, NJ: Princeton University Press.

Ritchie, M.E. & Olff, H. (1999) Spatial scaling laws yield a synthetic 
theory of biodiversity. Nature, 400, 557– 560.

Rosenzweig, M.L. & Winakur, J. (1969) Population ecology of desert 
rodent communities: habitats and environmental complexity. 
Ecology, 50, 558– 572.

Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, 
T.R., Meador, A.S. et al. (2020) lidR: An R package for analy-
sis of Airborne Laser Scanning (ALS) data. Remote Sensing of 
Environment, 251, 112061.

Salt, G.W. (1967) Predation in an experimental protozoan population 
(Woodruffia- Paramecium). Ecological Monographs, 37, 113– 144.

Saunders, M.I., Doropoulos, C., Bayraktarov, E., Babcock, R.C., 
Gorman, D., Eger, A.M. et al. (2020) Bright spots in coastal 
marine ecosystem restoration. Current Biology, 30, 1500– 1510.

Saupe, D. (1988) Algorithms for random fractals. In: Barnsley, M.F., Devaney, 
R.L., Mandelbrot, B.B., Peitgen, H., Saupe, D. & Voss, R.F. (Eds.) The 
science of fractal images. Springer: New York, NY, pp. 71– 136.

Schertzer, D. & Lovejoy, S. (1989) Nonlinear variability in geophysics: 
Multifractal simulations and analysis. In: Pietronero, L. (Ed.) Fractals' 
physical origin and properties. New York, NY: Spinger, pp. 49– 79.

Schindler, S., Poirazidis, K. & Wrbka, T. (2008) Towards a core set of 
landscape metrics for biodiversity assessments: a case study from 
Dadia National Park, Greece. Ecological Indicators, 8, 502– 514.

Schmid, P.E., Tokeshi, M. & Schmid- Araya, J.M. (2002) Scaling in 
stream communities. Proceedings of the Royal Society of London. 
Series B: Biological Sciences, 269, 2587– 2594.

Schut, A.G., Wardell- Johnson, G.W., Yates, C.J., Keppel, G., 
Baran, I., Franklin, S.E. et al. (2014) Rapid characterisation 
of vegetation structure to predict refugia and climate change 
impacts across a global biodiversity hotspot. PLoS ONE, 9, 
e82778.

Seuront, L., Schmitt, F., Lagadeuc, Y., Schertzer, D., Lovejoy, S. 
& Frontier, S. (1996) Multifractal analysis of phytoplankton 
biomass and temperature in the ocean. Geophysical Research 
Letters, 23, 3591– 3594.

Shalizi, C.R. & Crutchfield, J.P. (2001) Computational mechanics: 
Pattern and prediction, structure and simplicity. Journal of 
Statistical Physics, 104, 817– 879.

Shannon, C.E. (1948) A mathematical theory of communication. The 
Bell System Technical Journal, 27, 379– 423.

Shorrocks, B., Marsters, J., Ward, I. & Evennett, P.J. (1991) The frac-
tal dimension of lichens and the distribution of arthropod body 
lengths. Functional Ecology, 5, 457– 460.

Srivastava, D.S. & Lawton, J.H. (1998) Why more productive sites 
have more species: an experimental test of theory using tree- hole 
communities. The American Naturalist, 152, 510– 529.

St. Pierre, J.I. & Kovalenko, K.E. (2014) Effect of habitat complexity 
attributes on species richness. Ecosphere, 5, 1– 10.

Stoyan, D. & Stoyan, H. (1994) Fractals, random shapes and point 
fields. Chichester, UK: Wiley & Sons.

Sugihara, G. & May, R.M. (1990) Applications of fractals in ecology. 
Trends in Ecology & Evolution, 5, 79– 86.

Taniguchi, H. & Tokeshi, M. (2004) Effects of habitat complexity 
on benthic assemblages in a variable environment. Freshwater 
Biology, 49, 1164– 1178.

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C., 
Schwager, M. et al. (2004) Animal species diversity driven by 
habitat heterogeneity/diversity: the importance of keystone 
structures. Journal of Biogeography, 31, 79– 92.

Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. & Bini, 
L.M. (2008) Influence of aquatic macrophyte habitat complex-
ity on invertebrate abundance and richness in tropical lagoons. 
Freshwater Biology, 53, 358– 367.

Tokeshi, M. & Arakaki, S. (2012) Habitat complexity in aquatic sys-
tems: fractals and beyond. Hydrobiologia, 685, 27– 47.

Torres- Pulliza, D., Dornelas, M.A., Pizarro, O., Bewley, M., Blowes, 
S.A., Boutros, N. et al. (2020) A geometric basis for surface hab-
itat complexity and biodiversity. Nature Ecology & Evolution, 4, 
1495– 1501.

Turcotte, D.L. (1997) Fractals and chaos in geology and geophysics, 2nd 
edition. Cambridge, UK: Cambridge University Press.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E. & 
Steininger, M. (2003) Remote sensing for biodiversity science 
and conservation. Trends in Ecology & Evolution, 18, 306– 314.

Voss, R.F. (1986) Characterization and measurement of random frac-
tals. Physica Scripta, 13, 27.

Warfe, D.M., Barmuta, L.A. & Wotherspoon, S. (2008) Quantifying 
habitat structure: surface convolution and living space for spe-
cies in complex environments. Oikos, 117, 1764– 1773.

Wilson, S.K., Graham, N.A.J. & Polunin, N.V. (2007) Appraisal of vi-
sual assessments of habitat complexity and benthic composition 
on coral reefs. Marine Biology, 151, 1069– 1076.

With, K.A. (2019) Essentials of landscape ecology. Oxford, UK: Oxford 
University Press.

Witten, E. (2020) A mini- introduction to information theory. La 
Rivista del Nuovo Cimento, 43, 187– 227.

Xiong, W., Faes, L. & Ivanov, P.C. (2017) Entropy measures, entropy 
estimators, and their performance in quantifying complex 



2288 |   MEASURING COMPLEXITY IN ECOLOGY

dynamics: Effects of artifacts, nonstationarity, and long- range 
correlations. Physical Review E, 95, 062114.

Yanovski, R., Nelson, P.A. & Abelson, A. (2017) Structural complex-
ity in coral reefs: examination of a novel evaluation tool on dif-
ferent spatial scales. Frontiers in Ecology and Evolution, 5, 27.

Young, G.C., Dey, S., Rogers, A.D. & Exton, D. (2017) Cost and time- 
effective method for multi- scale measures of rugosity, fractal di-
mension, and vector dispersion from coral reef 3D models. PLoS 
ONE, 12, e0175341.

Zellweger, F., Braunisch, V., Baltensweiler, A. & Bollmann, K. (2013) 
Remotely sensed forest structural complexity predicts multi 
species occurrence at the landscape scale. Forest Ecology and 
Management, 307, 303– 312.

Zhou, G. & Lam, N.S.N. (2005) A comparison of fractal dimension 
estimators based on multiple surface generation algorithms. 
Computers & Geosciences, 31, 1260– 1269.

SU PPORT I NG I N FOR M AT ION
Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.

How to cite this article: Loke, L.H.L. & Chisholm, 
R.A. (2022) Measuring habitat complexity and 
spatial heterogeneity in ecology. Ecology Letters, 25, 
2269–2288. Available from: https://doi.org/10.1111/
ele.14084

https://doi.org/10.1111/ele.14084
https://doi.org/10.1111/ele.14084

	Measuring habitat complexity and spatial heterogeneity in ecology
	Abstract
	INTRODUCTION
	IDEAL QUALITIES OF A METRIC OF COMPLEXITY
	METRICS OF COMPLEXITY
	Fractal dimensions
	Pitfalls of using fractal dimension as a metric of complexity
	Sources of error in estimating fractal dimension of natural objects and patterns
	Empirical objects not being true fractals (problems related to quantisation)
	Measurement error

	Limitations of fractal dimension
	Verdict on fractal dimension

	Rugosity
	Pitfalls of using rugosity as a metric of complexity
	Sources of error in estimating rugosity of natural objects and patterns
	Measurement error (choice of approximation method)
	Choice of resolution

	Limitations of rugosity
	Confounding effects of area
	Failure to account for relevant habitat structure

	Verdict on rugosity

	Other geometric metrics of complexity
	Information-based metrics of complexity

	FUTURE RESEARCH
	On the rise of remote sensing technologies in ecology

	APPLIED SIGNIFICANCE
	CONCLUSIONS
	AUTHORSHIP
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	PEER REVIEW

	REFERENCES


