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ABSTRACT

As biodiversity decreases worldwide, the development of effective techniques to track changes in ecological communities
becomes an urgent challenge. Together with other emerging methods in ecology, acoustic indices are increasingly being
used as novel tools for rapid biodiversity assessment. These indices are based on mathematical formulae that summarise
the acoustic features of audio samples, with the aim of extracting meaningful ecological information from soundscapes.
However, the application of this automated method has revealed conflicting results across the literature, with conceptual
and empirical controversies regarding its primary assumption: a correlation between acoustic and biological diversity.
After more than a decade of research, we still lack a statistically informed synthesis of the power of acoustic indices that
elucidates whether they effectively function as proxies for biological diversity. Here, we reviewed studies testing the rela-
tionship between diversity metrics (species abundance, species richness, species diversity, abundance of sounds, and
diversity of sounds) and the 11 most commonly used acoustic indices. From 34 studies, we extracted 364 effect sizes that
quantified the magnitude of the direct link between acoustic and biological estimates and conducted a meta-analysis.
Overall, acoustic indices had a moderate positive relationship with the diversity metrics (r = 0.33, CI [0.23, 0.43]),
and showed an inconsistent performance, with highly variable effect sizes both within and among studies. Over time,
studies have been increasingly disregarding the validation of the acoustic estimates and those examining this link have
been progressively reporting smaller effect sizes. Some of the studied indices [acoustic entropy index (H), normalised dif-
ference soundscape index (NDSI), and acoustic complexity index (ACI)] performed better in retrieving biological infor-
mation, with abundance of sounds (number of sounds from identified or unidentified species) being the best estimated
diversity facet of local communities. We found no effect of the type of monitored environment (terrestrial versus aquatic)
and the procedure for extracting biological information (acoustic versus non-acoustic) on the performance of acoustic indi-
ces, suggesting certain potential to generalise their application across research contexts. We also identified common sta-
tistical issues and knowledge gaps that remain to be addressed in future research, such as a high rate of pseudoreplication
and multiple unexplored combinations of metrics, taxa, and regions. Our findings confirm the limitations of acoustic
indices to efficiently quantify alpha biodiversity and highlight that caution is necessary when using them as surrogates
of diversity metrics, especially if employed as single predictors. Although these tools are able partially to capture changes
in diversity metrics, endorsing to some extent the rationale behind acoustic indices and suggesting them as promising
bases for future developments, they are far from being direct proxies for biodiversity. To guide more efficient use and
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future research, we review their principal theoretical and practical shortcomings, as well as prospects and challenges of
acoustic indices in biodiversity assessment. Altogether, we provide the first comprehensive and statistically based over-
view on the relation between acoustic indices and biodiversity and pave the way for a more standardised and informed
application for biodiversity monitoring.

Key words: species diversity, systematic review, ecoacoustics, soundscape, ecology, monitoring, ecological indicators,
biodiversity assessment.
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I. INTRODUCTION

Global change is strongly altering Earth’s ecosystems and
leading to dramatic impacts on ecological communities
(Newbold et al., 2016). Understanding biodiversity changes
and predicting future scenarios is thus urgent for developing
appropriate conservation programs (Pereira et al., 2013).
Recent technological advances have been pushing biodiver-
sity monitoring to the next level, with new tools for continu-
ous spatial and temporal assessment of ecosystems at the
global scale (Pettorelli et al., 2016). Techniques for habitat
monitoring based on passive sensors, such as satellite and air-
borne remote sensing, are now crucial to estimate tthe ‘eco-
system component’ of the essential biodiversity variables
framework (Pereira et al., 2013). However, some biological
components are underrepresented (e.g. genetic composition,
species population dynamics, community composition), since
most field-based observations are made in the short term,

and a lack of standardised protocols in data sampling impairs
cross-scale (temporal and spatial) approaches (Martin,
Blossey & Ellis, 2012; Proença et al., 2017; Sugai, 2020). In
this sense, passive acoustic monitoring has emerged as a pro-
spective technique to monitor biodiversity based on animal
sounds (Laiolo, 2010; Blumstein et al., 2011). Recent develop-
ments in acoustic sensors are enabling simultaneous and non-
invasive monitoring at multiple sites during prolonged
periods of time (Gibb et al., 2019). Consequently, passive
acoustic monitoring has become a new trend in ecological
data collection over recent decades for a variety of taxa
worldwide (Sugai et al., 2019).
Acoustic monitoring enables animal behaviour, species

diversity, phenology, species turnover, and population
dynamics to be assessed using high-temporal-resolution sam-
pling in the long term [e.g. over years (Llusia et al., 2013;
Tucker et al., 2014; Sugai & Llusia, 2019)]. However, a fun-
damental challenge of this monitoring technique lies in
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detecting target signals within the large audio data sets gener-
ated (Priyadarshani, Marsland & Castro, 2018b). Manual
analyses are often unfeasible, while fully automatic methods
for species recognition are still mostly unavailable given the
overall poor audio quality of passive recordings and the need
for large annotated databases (Digby et al., 2013; Ulloa
et al., 2018). Alternatively, a recent proposal suggested
reframing the analytical scale and focusing on the entire col-
lection of sounds emanating from a given population, com-
munity or landscape, without using species identification
(Sueur et al., 2008; Pijanowski et al., 2011b; Farina &
James, 2016). With the growing expansion of passive acoustic
monitoring and the demand for efficient analyses, this shift of
analytical scale has fostered a new interdisciplinary field that
investigates the soundscape as a whole and its relation with
ecological processes, formalised as ecoacoustics

(Servick, 2014; Sueur & Farina, 2015). As such, ecoacoustics
sets a challenge to develop effective methods for extracting
meaningful biological and ecological information from
soundscapes (Gasc et al., 2013a; Pieretti et al., 2015;
Bradfer-Lawrence et al., 2019).

In recent years, multiple acoustic diversity indices have
been proposed as a way to summarise the acoustic informa-
tion contained in soundscapes into a global measure that
attempts to describe animal communities effectively. Inspired
by species diversity indices, acoustic indices are aimed at
characterising biodiversity in space and time through the
incidence, abundance, and features of sounds (Sueur et

al., 2014; Eldridge et al., 2016). Since current acoustic data
sets often approach ‘big-data’ scales, the simplistic solution
of using acoustic indices to represent species diversity is
appealing. As a result, acoustic indices have exploded in the
literature, with up to 69 developed since 2007 (Buxton
et al., 2018b). Over more than a decade of development, the
perspective on the use and interpretation of acoustic indices
has progressively evolved, but these novel metrics overall still
assume a direct link between acoustic diversity and biodiver-
sity. However, this fundamental assumption has conceptual
and empirical shortcomings across the literature and most
indices have showed contradictory relationships with species
diversity. In real-world environmental recordings, acoustic
complexity is determined by multiple factors other than
diversity (e.g. vocal repertoire, noise, etc.), and hence these
sources of bias can critically influence the estimates of acous-
tic indices. Such drawbacks hinder the application of stan-
dards and guidelines for data collection, analysis, and
interpretation of acoustic indices (Bradfer-Lawrence
et al., 2019), and preclude scalability across studies. While
summaries of the principles and applications of acoustic indi-
ces are already available (Sueur et al., 2014; Buxton
et al., 2018b; Sugai et al., 2019), we still lack a statistically
informed synthesis of the current evidence for the power of
acoustic indices to estimate biodiversity.

After 15 years of research since the early proposals of
acoustic indices, here we provide a comprehensive review
on the use of this method as a proxy for biodiversity. For this
purpose, we examine the empirical relationship between the

most common acoustic indices and species diversity metrics
under a meta-analytical framework. We further identify
research gaps, shortcomings, and practical considerations
for the appropriate use of acoustic indices and suggest a
future research agenda for ecoacoustics research.

(1) The acoustic component of ecological
communities

Sound production and reception is a communication modality
widespread across tetrapods (Chen & Wiens, 2020) and some
arthropods (Schmidt & Balakrishnan, 2015). Among a variety
of functions, acoustic signalling underpins mate choice, playing
a key role in sexual selection (Gerhardt, 1994) and speciation
(Tobias et al., 2014a), since it acts as a prezygotic barrier for spe-
cies recognition (Höbel & Gerhardt, 2003). Consequently,
acoustic signals are usually species specific, presenting low intra-
specific and high interspecific variation, and are suitable to
determine taxonomic inconsistencies across species (Koehler
et al., 2017). Thus, the biological component of a soundscape
recorded at a given place and time is expected to reflect the local
animal diversity, generating an ‘acoustic signature’ (Farina,
Eldridge&Li, 2021). Additionally, social and ecological interac-
tions within and between species can be mediated by acoustic
signals, influencing individual fitness and hence determining
both temporal and spatial distribution patterns (Cornec
et al., 2015; Magrath et al., 2015). In this sense, acoustic
monitoring relies on the detection of animal sounds that
reveal not only species identity but also social, behavioural,
and ecological aspects of communities (Laiolo, 2010).

Sounds can be described based on three interlinked acoustic
dimensions: time, frequency, and energy. Acoustic indices are
mathematical functions that rely on these three dimensions to
summarise the global complexity or heterogeneity of a sound
recording (Sueur et al., 2014). Differences in sounds promoted
by variations in species abundance, diversity, and community
composition hypothetically cause changes in acoustic indices,
and therefore endorse the idea of the acoustic signature of a
soundscape as a proxy for biodiversity. As animal sounds are
unique in terms of acoustic features, the acoustic complexity
contained in soundscapes is presumably associated, to some
extent, with the composition and diversity of acoustically active
species in the animal community being recorded. For instance,
an audio recording with a large number of signalling species
would have energy distributed across a large set of
frequencies or a high rate of energy changes across frequency
and time. Similarly, a recording with frequent and recurrent
signals through time or with intense sound energy would reflect
high levels of species activity. These relations are used as pre-
mises to advocate that the distribution of energy of all sounds
in an environmental recording will be associated with taxa-spe-
cific information of ecological communities.

The conversion of time, frequency, and energy compo-
nents of an audio sample into acoustic indices alludes to the
use of incidence and abundance of species to calculate indices
of species diversity. As for diversity indices, acoustic indices
can be divided into alpha (resembling local diversity) and
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beta indices (resembling inter-site diversity; Sueur
et al., 2014), with differences in conceptualisation and calcu-
lation. According to the number of indices employed, they
can also be classified as first-order (using a single index) or
second-order indices (combining more than one index; Tow-
sey et al., 2014). Moreover, acoustic indices can be waveform
indices (computed from oscillograms) or spectral indices
(computed from frequency spectra and spectrograms). Over
a rapid and growing evolution of their applications, these
metrics have been used to represent distinct facets of animal
communities, including species abundance (number of sig-
nalling individuals from identified species), species richness
(number of signalling species), species diversity (heterogene-
ity metrics combining species richness and evenness), abun-
dance of sounds (number of specific types of sounds or
signals), diversity of sounds (number of distinct sound types),
and functional diversity, phylogenetic diversity, or dissimilar-
ity in community composition (Gasc et al., 2013a; Sueur
et al., 2014).

(2) Acoustic diversity indices: evolving applications

In the early years, ecoacoustics research was focused on
developing pioneer acoustic indices aimed at estimating spe-
cies richness and abundance from environmental recordings
(Table 1). Bioacoustic index (BIO; Boelman et al., 2007),
acoustic entropy (H; Sueur et al., 2008), and acoustic com-
plexity index (ACI; Pieretti, Farina & Morri, 2011) were
the earliest alpha indices proposed and showed promising
results based on both simulations and field surveys. Promptly
available in a graphical user interface software (wavesurfer),
ACI became a widely used acoustic index (Farina
et al., 2011; Farina, Pieretti & Morganti, 2013). Since these
seminal studies, the use of acoustic indices drew much atten-
tion and encouraged new approaches in bioacoustics and
ecological research. Other indices were subsequently pro-
posed [e.g. acoustic evenness index (AEI), acoustic diversity
index (ADI), normalised difference soundscape index
(NDSI), acoustic richness index (AR), amplitude index (M),
or number of frequency peaks (NP); Table 2] and tested in
relation to ACI and H, which contributed to their consolida-
tion as reference indices (Sueur, 2018). Nonetheless, limita-
tions on the capacity of acoustic indices as proxies for
biodiversity began to be revealed, promoting new pathways
for their use (Table 1), such as mathematical optimisation
with a combination of several indices (Towsey et al., 2014)
or a search for links with other dimensions of biodiversity
(e.g. functional diversity, phylogenetic diversity; Gasc
et al., 2013a). The application of acoustic indices beyond
the representation of species richness and abundance led
studies to focus mainly on higher taxonomic levels (e.g. birds,
anurans, insects) and to describe their temporal activity pat-
terns (Phillips, Towsey & Roe, 2018) and their variation
among habitats (Scarpelli, Ribeiro & Teixeira, 2021).

Regardless of the new research pathways, the primary
interest in acoustic indices as proxies for biodiversity has per-
sisted in an increasingly growing scientific community. While

the first reviews quantified 20 acoustic indices (Sueur
et al., 2014), more than 60 indices were recently listed
(Buxton et al., 2018b), and multiple study cases examining
the performance of acoustic indices in describing biological
diversity have been published to date. The first international
meeting on ecology and acoustics (in Paris in 2014)
represented an important benchmark, with the definition of
ecoacoustics as a new research area and the launch of the Inter-
national Society of Ecoacoustics (Sueur & Farina, 2015),
which promotes new research on acoustic indices and
soundscapes. Since then, several books and reviews have
been published (Farina, 2014; Farina & Gage, 2017;
Sueur, 2018) as attempts to gain visibility and to formalise
the theoretical and instrumental basis of ecoacoustics
(Servick, 2014). The most recent proposals suggest the use
of acoustic indices as features for classification algorithms
that enable better characterisation of soundscapes and more
efficient species recognition (Sethi et al., 2020).

(3) The elusive link between species and acoustic
diversity

Despite the rapid uptake of acoustic indices in ecological
research, evidence of a straightforward relationship between
species diversity and acoustic diversity remains elusive, chal-
lenging the primary aspiration of acoustic indices of being
cost-efficient and accurate tools to quantify biological diver-
sity. Because some of the theoretical and empirical assump-
tions that have supported the development of acoustic
indices are controversial (see Sections IV.2 and IV.3),
these metrics may present shortcomings when oriented to
detect species-related acoustic variations in environmental
audio recordings (Sueur et al., 2014; Towsey et al., 2014).
Several hypotheses, such as acoustic niche partitioning
(Hödl, 1977), have been evoked as the theoretical framework
to endorse the foundation of acoustic indices (Pijanowski
et al., 2011b; Sueur & Farina, 2015), although the support
for these hypotheses is still mixed (Sugai et al., 2021a). More-
over, soundscapes in real-world environments are influenced
by multiple factors besides species diversity, such as variation
in relative species abundance, vocal repertoire size, source–
sensor distance, and natural and anthropogenic noise, which
lead to an unequal contribution of animal species and other
sound sources to the soundscapes. Therefore, when analysing
the acoustic diversity of communities, the performance and
interpretation of acoustic indices depend on their ability to
capture properly such variation in biological diversity.
Since the development of the first acoustic indices, the

capacity of these indices as proxies for biodiversity has been
investigated extensively in multiple taxa- and ecosystem-
oriented research, although providing ambiguous results so
far. To overcome the lack of general synthesis and to supply
guidance for future applications, here we aim at (i) reviewing
the literature testing the link between acoustic indices and
biodiversity, and (ii) providing a meta-analysis (Fig. 1).
Thereby, we determine: (a) whether acoustic indices are good
direct indicators of biodiversity; (b) which acoustic indices
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perform better; (c) the capacity of acoustic indices to estimate
distinct facets of biodiversity; and (d) whether acoustic indices
are affected by different environments or sources of biological
information. Finally, we identify both conceptual and practical

shortcomings and pitfalls and provide general recommenda-
tions for the efficient use of these novel tools. Our findings allow
the consolidation of a new research program on acoustic diver-
sity indices that advances their application in ecology.

Table 1. Main applications of acoustic indices on the assessment of biodiversity and ecosystems

Study parameter Application Representation Example

Species richness Surrogate of the number of signalling species
from passive acoustic recordings, used
to determine the diversity of local
communities

Sueur et al. (2008)

Abundance of
sounds

Surrogate of the number of specific types of
sounds or signals produced by a given species
or animal chorus (identified or unidentified
taxa), used to determine the intensity of
acoustic activity

Pieretti et al. (2011);
Buxton et al. (2016)

Species
composition

Estimation of the similarity of soundscapes
among communities or periods over time,
used to identify changes in species
composition or habitat structure

Sueur et al. (2008);
Depraetere et al. (2012)

Overall
biological
diversity

Surrogate of biological aspects of animal
communities other than species richness (e.g.
phylogenetic or functional diversity), used to
represent a global overview of biological
diversity

Gasc et al. (2013b)

Acoustic activity
patterns

Description of temporal and spatial patterns
of acoustic activity of species or
communities, used to compare species’
calling phenology

Farina et al. (2013)

Soundscape
composition

Determination of the relative contribution of
sound sources (e.g. anthrophony and
biophony) to soundscapes, used to describe
their structure and dynamics

Kasten et al. (2012);
Gage & Axel (2014)

Soundscape
visualisation

Visual representation of long time series of
audio data, used to identify acoustic events
and describe their structure and dynamics

Phillips et al. (2018);
Towsey et al. (2018)

(Continues on next page)
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II. METHODS

(1) Selection of acoustic indices and literature
search strategy

We exhaustively searched the literature that tested the relation-
ship between acoustic indices and diversity metrics, following a
three-step procedure: (i) we gathered studies by a series of system-
atic reviews; (ii) identified studies that reported theperformanceof
acoustic indices; and (iii) screened studies that explicitly related
acoustic indices to biodiversity (Fig. 2).

Although dozens of acoustic diversity indices have been
developed, the number of publications per index is far fromuni-
form (Buxton et al., 2018b). To prevent including rare cases in
the meta-analysis (Koricheva, Gurevitch & Mengersen, 2013,
chapter 16), our systematic review focused on the most com-
monly used acoustic indices. Based on three recent literature
reviews on acoustic indices, biodiversity assessment, and passive
acoustic monitoring (Sugai et al., 2019; Sueur et al., 2014; Bux-
ton et al., 2018b), we first compiled 93 articles (duplicate records
removed) that represented the most comprehensive literature
on acoustic indices until April 2017 (a in Fig. 2). Then, we
selected those indices present in more than a single study, and
excluded standard acoustic metrics (e.g. signal-to-noise ratio,
etc.), as they are infrequently associated with complexity or
diversity of acoustic communities (Sueur et al., 2014). This led

to a set of 11 alpha acoustic indices (Table 2), the acoustic diver-
sity indices most commonly used in ecoacoustics research,
which are currently available inR and hence easy to implement
(Sueur, 2018).
Once we identified the target indices, we updated the lit-

erature database from 2017 up to July 2019 with Thomp-
son’s ISI Web of Science (WoS), using the same
combinations of key words employed by Buxton
et al. (2018b) (i.e. bioacoustic* AND ind*, ecoacoustic*, acoustic*
AND biodiversity, soundscape, AND ecology). This search was
restricted to nine WoS subject areas (i.e. zoology, environ-
mental sciences ecology, behavioural sciences, biodiversity
conservation, marine freshwater biology, acoustics, evolu-
tionary biology, entomology, and remote sensing) and
resulted in 878 published articles (b in Fig. 2). Additionally,
we used Google Scholar to compile all literature from 2017 to
July 2019 that cited (i) any of the new papers published
within this period, or (ii) cited the papers originally describ-
ing the 11 selected indices (Table 2). These two comple-
mentary surveys resulted in additional 69 and
302 articles, respectively (c and d in Fig. 2). After removing
all duplicates, we obtained 986 articles for screening,
which, in addition to the 93 already selected in the previous
step, resulted in a total of 1079 papers. The combined set of
literature searches likely enabled us to identify nearly all
relevant articles addressing our study question.

Table 1. (Cont.)

Study parameter Application Representation Example

Environmental
features

Surrogate of environmental features for acoustic
characterisation of habitats, ecosystems, and
landscapes, used to represent their structure
and dynamics

Elise et al. (2019); Scarpelli
et al. (2021)

Species
abundance

Surrogate of the number of signalling
individuals in an animal group or chorus
(identified or unidentified taxa), used as
indicators of population size

Papin et al. (2019)

Soundscape
identification

Surrogate of soundscape features for automated
identification of soundscape changes based on
machine learning techniques, as indicator of
their structure and dynamics

Sethi et al. (2020)
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(2) Inclusion criteria

We screened abstract, titles, and key words of each of the
1079 identified articles and considered eligible for meta-
analysis those that met the following inclusion criteria: (i)
reported data to test the efficiency of acoustic diversity indi-
ces as indicators of biodiversity; (ii) employed at least one of
the target acoustic indices (Table 2); (iii) employed at least
one out of five metrics to describe biodiversity, namely spe-
cies abundance, species richness, species diversity
(i.e. Shannon index, Simpson index, and Pielou’s evenness),
abundance of sounds, and diversity of sounds; and (iv) pro-
vided information of a univariate relationship between a sin-
gle acoustic index and a single diversity metric. Following
such inclusion criteria, we selected 142 papers as potentially
eligible. To ascertain their relevance, we conducted a full-
text assessment for all these studies and finally retained
35 studies (see online Supporting Information, Tables S1
and S2; https://irene-alcocer.github.io/Acoustic-Indices/).

We excluded studies describing alternative uses of acoustic
indices (e.g. Bellisario et al., 2019), reporting patterns of acoustic
indices without testing their link with biodiversity (e.g. Rodriguez
et al., 2014; Farina,Gage&Salutari, 2018) or examining the per-
formance of acoustic indices in relation to other ecological
parameters, such as soundscape composition (e.g. Bobryk
et al., 2016) or habitat structure (e.g. Pekin et al., 2012). We also
excluded studies that did not employ any of the 11 alpha indices
selected (e.g. Gasc et al., 2013a; McPherson et al., 2016), such as
articles exclusively investigating dissimilarity indices
(e.g. Lellouch et al., 2014) or standard acoustic metrics [e.g.
sound intensity, signal-to-noise ratio, etc. (Torija, Ruiz &
Ramos-Ridao, 2013; Jeon & Hong, 2015; Di Iorio
et al., 2018)], which are less common in the literature. Similarly,
we also excluded studies combining several acoustic indices in
multivariate predictive models since they are still few in number
(Buxton et al., 2018b). Models with multiple predictors were only
considered if they included one single fixed factor and additional
variables as random factors [e.g. linear mixed-effects models
(LMMs); Fuller et al., 2015; Buxton et al., 2016].When graphical

information was reported (e.g. scatterplots, line charts, etc.) and
the study provided quantitative variables and high-resolution
images, data retrieval from both acoustic and biodiversity esti-
mates was performed (e.g. Mammides et al., 2017; Jorge
et al., 2018; Lyon et al., 2019). We included peer-reviewed
and non-peer-reviewed studies since the probability of publi-
cation for a given study depends on the statistical significance,
magnitude, or direction of the effect (Koricheva, 2003). This
bias, known as publication bias, can be mitigated by gathering
the most comprehensive database possible (Lortie et al., 2007;
Nakagawa et al., 2017).

(3) Data retrieval

To characterise each of the 35 identified studies, we compiled
information from six main categories (i.e. publication, bio-
logical data, acoustic data, recording, sampling design, and
statistics) that represented 34 features (Table S3). These fea-
tures were used: (i) as descriptive variables, qualitatively to
summarise ecoacoustics research; and (ii) as moderators in
the meta-analysis, to investigate their influence on the perfor-
mance of acoustic indices.

Among biological data, we retrieved the type of environment
(aquatic or terrestrial) and taxonomic group (invertebrates, fish,
anurans, mammals, birds, or several) for which acoustic indices
were calculated. We also classified the diversity metric that was
related to acoustic indices into five categories: (i) species abun-
dance (when studies examined the number of individuals of a
single or several species); (ii) species richness, the simplest mea-
sure of diversity (when studies examined the number of vocal
and/or non-vocal species); (iii) species diversity, including more
complex diversity indices that also consider species abundance
(i.e. Shannon index, Simpson index, or species evenness); (iv)
abundance of sounds (the number of sounds by identified or
unidentified species); and (v) diversity of sounds (the number
of sound types by identified or unidentified species). Finally,
we described the method applied to obtain such biological
information as diversity source, which included (i) acoustic (data

Table 2. Acoustic indices selected for literature review and meta-analysis

Acronym Name Principle Reference

BIO Bioacoustic index Amplitude spectrum area Boelman et al. (2007)
H Acoustic entropy index Product of Ht and Hf Sueur et al. (2008)
Ht Temporal entropy index Shannon entropy of the amplitude envelope Sueur et al. (2008)
Hf Spectral entropy index Shannon entropy of the frequency spectrum Sueur et al. (2008)
ACI Acoustic complexity index Summation of weighted amplitude differences within frequency

bins
Pieretti et al. (2011)

ADI Acoustic diversity index Shannon entropy of a selection of frequency bins Villanueva-Rivera et al.
(2011)

AEI Acoustic evenness index Gini index of a selection of frequency bins Villanueva-Rivera et al.
(2011)

AR Acoustic richness index Weighted product of the ranks of M and Ht indices Depraetere et al. (2012)
M Amplitude index Median of the amplitude envelope Depraetere et al. (2012)
NDSI Normalised difference

soundscape index
Ratio of the spectral density of two frequency bands
(anthrophony and biophony)

Kasten et al. (2012)

NP Number of frequency peaks Number of the principal peaks in a frequency spectrum Gasc et al. (2013b)
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Fig. 1. Conceptual figure outlining this review. For definitions of acoustic indices see Table 2. IF, impact factor.
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extracted from audio recordings) or (ii) non-acoustic (data
extracted from literature, field surveys, etc.). Additionally, we
obtained up to three parameters employed for the derivation
of each acoustic index (frequency range, FFT size, and noise treatment;
Table S3). The procedure used to collect sound recordings was

characterised with sampling rate, audio format, recording length, and
recording method, i.e. whether field recording was (i) non-
programmed (continuous recording), (ii) programmed (record-
ings taken at periodic time intervals by an automated device),
or (iii) manual (performed by an operator).

(a)

N = 143

N = 93
(b) (c) (d)         

N = 878 N = 69 N = 302

N = 863 N = 37 N = 86
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Fig. 2. Procedures used in the literature search for articles addressing acoustic indices and diversity metrics, and the number of papers
identified at each step. The literature reviews used in (a) were: Sueur et al. (2014), Buxton et al. (2018b), and Sugai et al. (2019). The
literature search in (b) was conducted in Thompson’s ISI Web of Science, restricted to 2017–2019 and to nine subject areas, and was
based on the key words used in Buxton et al. (2018b). Literature searches in (c) and (d) were conducted in Google Scholar (GS), restricted
to 2017–2019, and based on literature that cited the articles identified in (b) and index-specific citations (d), respectively.
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(4) Sampling design and pseudoreplication

Acoustic indices are calculated from time series of passive
audio recordings typically taken by regular sampling over
hours, days, or weeks in a set of recording sites (Sugai
et al., 2020). To account for differences in sampling effort
among studies and to detect cases of pseudoreplication
(i.e. inadequate specification of the number of independent
observations when applying statistical inference), we exten-
sively assessed the sampling design and statistics of each
study. Pseudoreplication leads to a biased and incorrect
inference, and it should be carefully considered
(Hurlbert, 1984). Thus, we identified eight features that sum-
marised spatial and temporal sampling and statistical tests of
all the selected articles (Table S3).

Firstly, spatial sampling was defined by the number of study
sites, minimal distance between sites, and number of recorders per site.
To determine the number of study sites, we assumed that
recorders had standard detection spaces (Llusia, M�arquez &
Bowker, 2011; Darras et al., 2016) and only those placed at a
distance larger than 100 m from other devices were included
as distinct study sites. As true spatial replicates, we considered
the number of study sites, instead of the number of recorders,
since nearby sensors are prone to collect similar information
and can provide non-independent observations. Secondly,
temporal sampling was defined by the number of recording days
per study site, the daily period when the recordings were taken,
and the number of daily samples (i.e. recordings within a day per
study site). Similar to spatial data, time-series data commonly
experience autocorrelation, although the degree of autocorre-
lation depends on the time interval between samples
(Bence, 1995). As true temporal replicates, we considered the
number of recording days per site, instead of the total number
of recordings, since daily observations are less autocorrelated
than samples taken at shorter temporal scales (e.g. hourly
observations), and species’ vocal activity typically follows a diel
cycle (Krittika &Yadav, 2019;Gil & Llusia, 2020). Thirdly, we
gathered the number of the reported replicates (sample size)
from each statistical test that assessed the relationship between
acoustic indices and biodiversity. When the sample size of
the test was not supplied, it was calculated according to the
sampling procedure described in the article
(e.g. Desjonquères et al., 2015; Buxton et al., 2016; Gage
et al., 2017). When the procedure was unclear, sample size
was determined as the number of observations reported for
the diversity metric (e.g. Bertucci et al., 2016).

After detailing the sampling design and statistics, we deter-
mined the presence of pseudoreplication in the studies by
comparing the number of reported statistical replicates (sam-
ple size) and the product of the true spatial and temporal rep-
licates (study sites × recording days). When a mismatch between
these two values was identified, we classified the analysis as
having inflated replication (pseudoreplication = ‘yes’;
Table S1). In this case, which was rather common for simple
statistical tests (i.e. Pearson, Spearman, or linear regression),
our defined true replicates were used as the sample size of the
study for the meta-analysis (hereafter adjusted sample size)

(Spake & Doncaster, 2017). Analyses taking into account
pseudoreplication, such as tests that included random factors
for daily samples and/or recorders per site [e.g. LMM (Fuller
et al., 2015; Buxton et al., 2016)], as well as other statistical
techniques dealing with pseudoreplication and autocorrela-
tion (e.g. bootstrapping; Moreno-G�omez et al., 2019), were
not considered as presenting pseudoreplication.

(5) Effect size computation

We used Pearson’s correlation coefficient (r) as a measure of
effect size, to describe the direction and magnitude of the
relationship between acoustic indices and diversity metrics.
When Pearson’s correlation was not reported, we extracted
other statistical coefficients in the following order: Spear-
man’s correlation, t-values, F-values, linear regression slope
coefficients, and R2. When only graphical information was
available and authors did not provide original values, we
retrieved data from figures with Web Plot Digitizer v4.2.
(Rohatgi, 2019) and computed Pearson correlations, as
recently suggested for meta-analysis (Bird et al., 2019; Siviter
et al., 2021). We converted all statistics to effect sizes using
compute.es package in R (Re, 2013) or the formulae provided
in Nakagawa &Cuthill (2007) or Koricheva et al. (2013) when
the package did not offer the required functions.
We converted our effect size r to Fisher’s Z in order to sat-

isfy the normality assumption of parametric meta-analysis
(Nakagawa & Cuthill, 2007). Since Fisher’s Z values are not
directly interpretable by most researchers, we converted
Fisher’s Z back to r to ease interpretation of the meta-analysis
results. We used conventional benchmarks qualitatively to
assess the absolute magnitude of the effect size [small:
0.1 > r ≤ 0.3; moderate: 0.3 > r ≤ 0.5; and large: r > 0.5
(Møller & Jennions, 2002)]. In the investigated articles, the
application of statistical tests often involved pseudoreplica-
tion. Generally, the lower effect size variances of pseudorepli-
cated studies due to non-independent samples inflates the
relative contribution of these effect sizes in inverse-variance
weighted meta-analysis, leading to biased meta-estimates
(Pullin & Stewart, 2006; Spake & Doncaster, 2017). How-
ever, excluding pseudoreplicated studies is undesirable, as
they might contribute relevant information to the meta-
analysis (Nakagawa & Santos, 2012; Davies & Gray, 2015).
Tomitigate such bias while retaining all information, we used
an adjusted sample size for the pseudoreplicated studies (see
Section II.4). As a result of this sample size adjustment, a single
study (Bolgan et al., 2018) ended up with a sample size N ≤ 3,
which impeded the calculation of Fisher’s Z variance using
the formula 1/(N–3). For this study, we assigned an adjusted
sample size of 4 to allow variance estimation. Sample size cor-
rection was also applied to studies that controlled pseudorepli-
cation with statistical techniques, such as those using LMMs
(e.g. Buxton et al., 2016) or bootstrapping (e.g. Moreno-G�omez
et al., 2019), since Fisher’s Z variance is inversely proportional
to sample size and does not take into account variance esti-
mates coming from the statistical tests used in studies.
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Most of the studies (>80%) provided more than one esti-
mate of the goodness of fit between acoustic indices and
diversity metrics. Overall, studies tested several indices, both
acoustic and biological, as well as the same indices for multi-
ple taxonomic groups or recording data sets. Thus, we
retrieved a total of 481 effect sizes from the 35 studies. To
reduce the non-independence of intra-study observations
while collecting effect sizes (Koricheva et al., 2013, chapter
16), we applied the following procedures (Table S3, indepen-
dence). (i) Independent statistical tests, based on recordings
collected in distinct geographical locations (Roca &
Proulx, 2016; Eldridge et al., 2018; Moreno-G�omez
et al., 2019), temporal periods (Mammides et al., 2017) or by
distinct recording methods (Jorge et al., 2018), were consid-
ered as independent units of analysis. (ii) Statistical tests based
on the same recordings were only included in the
meta-analysis when researchers used a distinct frequency or
temporal resolution in each analysis, which influences the
calculation of the acoustic indices (Sueur, 2018). (iii) When
different pre-processing treatments [e.g. noise filtering, nor-
malisation (Parks, Miksis-Olds & Denes, 2014; Desjonquères
et al., 2015; Harris, Shears & Radford, 2016; Bolgan
et al., 2018)], or different metrics from the same data set
(e.g. mean, range, etc.; Eldridge et al., 2018) were applied
to the same recordings within a study, we computed a com-
posite effect size following formulae provided in Borenstein
et al. (2009, p. 230). After computing composite effect sizes
between non-independent effect sizes and removing a study
(Papin et al., 2019; Table S1) due to difficulty in determining
the study design, we retained for further analysis a total of
364 effect sizes extracted from 34 studies (Tables S4 and S5).

(6) Meta-analysis

We clustered effect sizes within their corresponding studies
and conducted multilevel meta-analysis using Fisher’s Z as
our response variable. The multilevel structure effectively
partitions the correlation structures within studies and allows
the inclusion of multiple effect sizes per study (Nakagawa &
Santos, 2012; Song et al., 2020). Following this scheme, we
first tested whether acoustic indices were in general good
proxies for biodiversity by computing an intercept-only
model. The resulting effect size estimate not only gives a clue
of whether acoustic indices are performing well in estimating
biodiversity across the literature, but also allows us to check if
there is substantial heterogeneity in our effect sizes that could
be explained by moderators. We quantified heterogeneity
with the I2 statistic, which estimates the proportion of
unknown variation in effect sizes not attributed to sampling
error variance (Higgins & Thompson, 2002). Due to the mul-
tilevel structure of our models, we used a modified version of
the I2 statistic to account for both within- and between-
cluster heterogeneity (Nakagawa & Santos, 2012). Here,
within-cluster heterogeneity corresponded to the unac-
counted for variation found on effect sizes within studies,
and between-cluster heterogeneity corresponded to the
unaccounted for variation between studies.

Once heterogeneity was identified, we conducted sub-
group and meta-regression analysis by extending the previ-
ous model with the inclusion of moderators as fixed factors.
We focused on four moderators that could alter the accuracy
of biodiversity estimation (see Table 3 for the rationale for
selection of moderators), namely the factors acoustic index

(N = 11 levels), diversity metric (N = 5), environment (N = 2), and
diversity source (N = 2; Table 3). To retain statistical power,
we refrained from including additional moderators or
increasing the number of moderator levels (Borenstein
et al., 2009). Additionally, to mitigate the effect of stochasti-
city, any moderator level with less than five studies was
excluded in both subgroup and meta-regression analysis,
leading to the removal of several acoustic indices (Hf,
Ht, M, and NP), and a biodiversity parameter (diversity of
sounds) from model fitting procedures. Consequently, we
included in our analysis seven acoustic indices (ACI, ADI,
AEI, AR, BIO, H, and NDSI), four diversity metrics (species
abundance, species richness, species diversity, and abun-
dance of sounds), two types of environments (terrestrial and
aquatic), and two diversity sources (acoustic and non-acous-
tic). We used subgroup analysis with acoustic index as a mod-
erator to assess which acoustic indices correlate best with
biodiversity. In this analysis, we removed the model intercept
specifically to test if the correlation between each acoustic
index and biodiversity was significantly different from zero.
Then, we used meta-regression to check the effect of multiple
moderators (namely, acoustic indices, diversity metric, envi-
ronment, and diversity source) on the outcome of acoustic
indices estimating biodiversity. We set as intercept the follow-
ing combination of moderator levels: ACI index, species rich-
ness, terrestrial environment, and non-acoustic diversity
source. Unfortunately, due to the low study sample size
between most factor level combinations, we were constrained
to use an additive effects model.

Collinearity among our moderators was inspected with
variance inflation factor (VIF; Zuur, Ieno & Elphick, 2010)
and found not to be an issue in our model (Table S6;
VIF <1.7 for all moderators – threshold value = 3; Zuur
et al., 2010). For all meta-analytic models, we relied on
restricted maximum likelihood estimation provided by the
metafor package in R (Viechtbauer, 2010), and considered a
result as significant if the effect size and corresponding 95%
confidence interval (CI) did not include zero. Furthermore,
we checked if our choice of moderators explained some of
the variation in our effect sizes by computing an omnibus
Wald-type test on the null hypothesis that the estimates for
the moderator levels are jointly equal to zero (Viechtbauer
et al., 2015). This test excludes moderator levels set to be
the intercept and the resulting statistic has a χ2 distribution
with degrees of freedom equal to the number of moderator
levels tested. Moreover, to assess the statistical importance
of the differences found in our analysis, within each modera-
tor, we selected the moderator levels with the highest effect
size estimates and contrasted them with effect size estimates
from the other levels. For this, we used a Wald-type test with
one degree of freedom on the null hypothesis that the
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difference between the two levels is equal to zero. Statistical
significance for Wald-type tests was assumed for p < 0.05.

(7) Publication bias

One common issue in meta-analysis is publication bias, where
studies with low sample size or null effects are less likely to get
published (Borenstein et al., 2009). We assessed publication bias
both visually with funnel plots (Koricheva et al., 2013, chapter
14) and statistically with Egger’s regression (Egger et al., 1997).
A funnel plot shows the relationship between effect sizes and
standard errors. In a symmetric funnel plot (i.e. hypothetically
free of publication bias), the dispersion of effect sizes should get
narrower as standard error decreases. Due to the multilevel

structure of our data set, we used meta-analytic residuals instead
of effect sizes to meet independence assumptions (Nakagawa &
Santos, 2012). Publication bias should be an issue if residuals
lie outside the expected symmetry of the funnel shape, and if
some of the funnel sections do not contain any residuals. To test
statistically for funnel plot symmetry, we used Egger’s regression
with no intercept. A non-significant inverse-variance weighted
regression of the residuals over the standard error indicates that
the deviation of the residuals from the funnel plot shape is not
greater than what would be expected by chance in a symmetric
funnel plot (Viechtbauer, 2010).
Additionally, we checked for trends in the magnitude of

effect size through time by visually inspecting a meta-
regression line fitted over publication year and effect size.

Table 3. List of moderators used to explain the variation in the relationship between acoustic indices and diversity metrics. See
Table 2 for definitions of acoustic indices

Moderator Levels Hypothesis Rationale Reference

Acoustic
indices

ACI, AEI, ADI, AR, BIO,
H, Ht, Hf, M, NP, NDSI

The performance of each
acoustic index is uneven in the
evaluation of biodiversity.

As each index is based on a specific
mathematical formula that
summarises distinct features of the
soundscape, some indices might
be better at estimating diversity
metrics of communities or
populations.

Sueur et al.
(2014);
Buxton
et al. (2018a)

Diversity
metrics

Species abundance, species
richness, species diversity,
abundance of sounds, and
diversity of sounds

Acoustic indices are particularly
sensitive to changes in given
biological metrics.

The biological component of
soundscapes is a complex
combination of sounds emitted by
multiple individuals and species,
and hence both diversity and
abundance of vocalising animals
(and their sounds) will have a large
influence on the structure and
dynamics of soundscapes. In
consequence, acoustic indices
might be able to better estimate
some diversity metrics in
comparison with others.

Pieretti et al.
(2011);
Gasc et al.
(2015)

Environment Aquatic or terrestrial The environment where sounds
are collected affects how well
acoustic indices retrieve the
biological information.

Due to the large differences in sound
propagation, environmental
noise, species composition,
population density, animal
behaviour and other aspects of
aquatic and terrestrial ecosystems,
acoustic indices might perform
differently depending on the type
of environment studied.

Gottesman
et al. (2020);
Roca &
Opzeeland
(2020)

Diversity
source

Acoustic or non-acoustic The method used to extract the
diversity metrics influences the
fidelity of the indices to
represent biodiversity.

Metrics extracted from audio
recordings provide fine-scale data
that might allow a better link with
acoustic estimates since both use
the same source of information.
Metrics extracted from field
surveys, literature, or other
sources often provide a more
general view of the structure of the
community or population and
they might also be faithfully
represented by the acoustic
indices.

Darras et al.
(2018);
Melo et al.
(2021)
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Similarly, we looked for publication bias due to a potential
relationship between journal impact factor and effect size
(Møller & Jennions, 2002).

(8) Sensitivity analysis

To determine the influence of pseudoreplication on our meta-
analysis, we contrasted the effect size estimates for pseudorepli-
cated and non-pseudoreplicated studies. For this, we conducted
ameta-analysis with pseudoreplication as the single explanatory
variable and evaluated if pseudoreplicated studies provided dif-
ferent estimates in comparison to non-pseudoreplicated studies.
Finally, we visually inspected the presence of outlier studies
using Cook’s distance clustered by studies. The Cook’s distance
for a given study refers to an average of how far effect size esti-
mates will move if the study in question is dropped from model
fitting (Viechtbauer & Cheung, 2010). We considered a study
an outlier if its Cook’s distance was higher than the average of
all computed Cook’s distances. Outlier studies were examined
to discriminate possible reasons for their influence, and meta-
regression analysis ran without the outliers to evaluate the
robustness of our results (Murtaugh, 2002).

III. RESULTS

(1) Literature on the relationship between acoustic
indices and biodiversity

Our systematic literature review identified 35 articles that
assessed the relationship between the most common
acoustic indices and biological diversity metrics. These
articles were published in 18 journals (16 peer-reviewed
and two non-peer-reviewed) and two PhD theses. We
identified two distinct periods in research: (i) from 2007
to 2013, the initial development of acoustic indices and
first performance tests, and (ii) from 2014 to 2019, a rapid
expansion of their application in ecology and conservation
(Fig. 3). Since the first acoustic index was published in
2007 (Boelman et al., 2007), a large number of indices have

been developed (Buxton et al., 2018b), although an ad hoc

assessment of their estimates has often been neglected.
From a total of 142 studies that employed acoustic indices
(Fig. 3), only 24.6% assessed their relationship with diver-
sity metrics. This trend has been particularly pronounced
in recent years, with a progressive decrease in the use
of validation methods when employing acoustic indi-
ces (Fig. 3).

(2) Publication trends and shortfalls

Among the variety of indices, ACI, followed by H and ADI,
have been the most popular (74, 49, and 34% of the articles,
respectively; Fig. 4A), while species richness and abundance
of sounds were the diversity metrics most commonly associ-
ated with acoustic indices (60 and 37% of the articles;
Fig. 4C). Most studies tested more than one acoustic index
(53%; Mammides et al., 2017; Retamosa Izaguirre &
Ramírez-Al�an, 2018; Eldridge et al., 2018) and estimated
diversity metrics from acoustic sources (68%). Over the envi-
ronments and organisms investigated, research has mainly
focused on terrestrial habitats (71%), birds (54%; Fig. 4B),
and was conducted in the USA, followed by Australia and
France (Fig. 5A). Despite the high diversity of investigated
subjects, methodological approaches were overall consistent
among studies, with most employing automated recordings
(60%), .wav audio format (94%), recording length equal to
(40%) or smaller than 1 min (40%), 44.1 kHz sampling rate
(37%), and more than one site (80%). These studies recorded
for an average of 44 days (range 1–282 days).

Although a large set of combinations of acoustic indices
and diversity metrics have been tested, most relationships
remained unexplored (Fig. 5B). For example, we found no
study examining the relation between acoustic indices and
richness and diversity of mammals, abundance and diversity
of anurans, or abundance of invertebrates. Bird species rich-
ness was the sole diversity metric assessed with all the most
common acoustic indices, being mainly associated with ACI
(31%), followed by H, NDSI, and ADI (23%).

Fig. 3. Trends (2007–2019) in publication and data validation, from a total of 142 articles. Articles that correlated the acoustic
indices with real biological data are represented by an orange line and studies that did not correlate acoustic indices with such
data are shown with a green line.
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A large set of studies exhibited statistical deficiencies in
testing the relationship between acoustic indices and biodi-
versity estimates, particularly pseudoreplication (40%;
Fig. S1). The use of temporally non-independent replicates
was the most common type of pseudoreplication (43%), fol-
lowed by spatial–temporal (36%) and spatial pseudoreplica-
tion (21%). The incidence of pseudoreplication varied
significantly across indices, ranging from 20% of the tests
using AR to up to 100% in the case of M and NP.

(3) Meta-analysis

We analysed 364 effect sizes and found that acoustic indices
showed an overall moderate positive correlation with biodi-
versity (r = 0.33, CI [0.23, 0.43]) (Fig. 6A; Table S7). The
variation around the overall estimate was high (i.e. within-
study heterogeneity [I2study]= 17.6%; between-study hetero-
geneity [I2entries] = 67.5%; and total heterogeneity
[I2] = 85.1%; Fig. S2), which justified the use of moderators
to explain the unaccounted for variation. Subgroup analysis
with acoustic indices as a single moderator showed a

significant and positive correlation between diversity metrics
and the ACI, ADI, H, and NDSI indices (Fig. S3; Table S8).
Although the H index was the best performing acoustic index
(r = 0.50, CI [0.36, 0.62]), overlapping confidence intervals
between H and NDSI, ACI, ADI, and BIO indices advise
against the determination of a single best acoustic index.
Meta-regression analysis provided support for the ACI, H,
and NDSI indices as the best estimators of biodiversity
(Fig. 6B; Table 4).
Additionally, acoustic indices had a higher correlation

with abundance of sounds (r = 0.25, CI [−0.03, 0.50]) than
with any other diversity metric, although such difference
was weak as indicated by the wide confidence intervals of
abundance of sounds and the non-significant Wald-type tests
comparing abundance of sounds with all other diversity met-
rics (see Tables S9–S12 for results of Wald-type tests). The
meta-regression results showed that the moderators diversity
metrics, environment, and diversity source had low additional
explanatory power compared to the results of the subgroup
analysis (Table 4). Indeed, the omnibus test revealed that
even though our choice of moderators explained some

Fig. 4. Summary of the data extracted from 35 articles identified in the systematic literature search. (A) Number of published articles
per year using different acoustic indices; the sizes of the bubbles on the right represent the number of papers and the distribution of
columns on each row is the frequency distribution of published articles over time, relative to the total per index (i.e. the number inside
the bubble). (B) Number of articles per studied taxon in the aquatic (blue) or terrestrial (brown) environment. (C) Number of articles
per diversity metric and source of data extraction (acoustic or non-acoustic). For definitions of acoustic indices see Table 2.
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variation in effect sizes (Wald [χ2] = 27.43, p = 0.004,
df = 11), only the acoustic indices moderator was found to
be statistically important in that regard (Wald [χ2] = 22.35,
p = 0.001, df = 6).

Regarding pseudoreplication, we found that this statistical
issue did not influence effect size estimates (contrast between
non-pseudoreplicated and pseudoreplicated estimates = −0.08,
CI [−0.31, 0.16]; Table S13), suggesting that sampling design
and statistical analysis were not crucial in explaining the variation
among effect sizes in our meta-analysis. Additionally, publication
bias seems aminor issue in our data set, as indicated by inspection
of the funnel plot (Fig. 7) and a non-significant relationship
between residuals and effect size precision (Egger’s regression
on the null hypothesis of plot symmetry: β = 0.15, df = 294,

p= 0.51). However, we observed a tendency for effect size values
to decrease over time from2007 to 2019 (Fig. 8A), with a less pro-
nounceddecrease since 2015 (Fig. 8B).No linear trendwas found
for the relation between effect size and journal impact factor
(Fig. S4).

Finally, we identified the presence of two outliers,
i.e. studies with a Cook’s distance value greater than the
mean of all computed Cook’s distance values (Fig. S5). Both
of these studies investigated birds. The study with the largest
Cook’s distance (Mammides et al., 2017) had a total of
84 entries in our data set, comprising 28% of our effect
sizes. The effect sizes for this study were over-dispersed
and mostly skewed towards the negative side of the meta-
analytic residuals (Fig. S6). The other study (Gage

Fig. 5. (A) The geographic distribution of the study sites corresponding to the 35 studies used in the systematic literature review. The
colouring of countries exhibits a white to black gradient relative to the number of studies contributed by each country. The coloured
dots discriminate between the different taxa studied. (B) Distribution of the number of articles by diversity metric, taxon and acoustic
index studied (see Table 2 for definitions), from the 35 studies included in the literature review.
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et al., 2017) had extremely high effect size values at both
ends of the effect size scale (−1 and 1), specifically an
extremely strong negative correlation between ADI and
species richness (r = −0.95, Nadjusted = 60), and almost per-
fect correlations between H and abundance of sounds
(r = 0.99, Nadjusted = 60) and between AEI and species

richness (r = 0.99, Nadjusted = 60). Meta-regression analysis
with the exclusion of these studies resulted in reinforcement
of the magnitude of the correlation between acoustic indices
and biodiversity, with all predicted effect sizes becoming
significantly positive (Table S14; Fig. S7), perhaps because
the study with the largest Cook’s distance (i.e. Mammides
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Fig. 6. Meta-analysis results. (A) Pearson correlation effect sizes (r) in ascending order of magnitude from all data set entries. Effect
sizes larger than 0 (vertical line) represent a positive correlation between acoustic indices and diversity. Effect sizes below 0 indicate a
negative correlation between acoustic indices and diversity. Above the dashed horizontal line, the green circles are effect sizes means,
with corresponding 95% confidence intervals (grey horizontal lines). Below the dashed line, the green circle is the overall effect size,
with a corresponding 95% confidence interval, obtained from the intercept-only meta-analysis. (B) Mean estimates (circles) and
corresponding 95% confidence intervals (horizontal lines) represented as Pearson correlation (r) effect sizes. Each estimate (except
the intercept) corresponds to the additive effect of each coefficient as obtained with the predict_rma function from metafor R package.
Estimated effect sizes whose 95% confidence intervals do not overlap zero (black vertical line) indicate a positive correlation
between acoustic indices and diversity if they are to the right of zero, or a negative correlation if they are to the left of zero.
Moderators are acoustic indices (Index), diversity metrics (Bio), environment (Environment) and acoustic source (Source). See
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Table 4. Meta-regression coefficients for the model intercepts (ACI index, species richness, terrestrial environment, and non-acoustic
source) and the levels of each moderator, based on Pearson (r) correlation (‘Estimate’). The standard error of the estimates (SE) and
the lower and upper bounds of the confidence intervals (CI.lb and CI.ub) are shown. See Table 2 for definitions of acoustic indices

Moderator Coefficient Estimate SE CI.lb CI.ub

Intercept 0.344 0.141 0.081 0.563
Acoustic index ADI −0.129 0.117 −0.344 0.1

AEI −0.284 0.123 −0.488 −0.05
AR −0.267 0.147 −0.511 0.017
BIO −0.144 0.12 −0.363 0.091
H 0.195 0.109 −0.016 0.39
NDSI 0.084 0.125 −0.162 0.319

Diversity metric Species abundance −0.081 0.158 −0.374 0.226
Species diversity −0.042 0.095 −0.224 0.143
Abundance of sounds 0.254 0.146 −0.028 0.499

Environment Aquatic −0.066 0.147 −0.342 0.221
Diversity source Acoustic −0.009 0.145 −0.288 0.271
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et al., 2017) had meta-analytic residuals on the negative side
of the original meta-regression model. Moreover, there was
some reduction in effect size heterogeneity (total I2 = 83%).
The latter changes are possibly linked to the joint effect of
the removal of the extreme values of one of the outlier stud-
ies (Gage et al., 2017) and the removal of the over-dispersed
effect sizes in the other (Mammides et al., 2017). These
changes had a minor effect on the relative positions between
model estimates when compared to our original model
(Fig. S7), and thus we retain our conclusions from the model
including the full data set.

IV. DISCUSSION

Animal sounds comprise a major source of variation in natu-
ral soundscapes, making the use of acoustic indices poten-
tially suitable to describe and track changes in ecological
communities. Although acoustic indices are increasingly
employed in biodiversity assessment, empirical evidence of
their efficiency as proxies for biological diversity is mixed,
hampering the generalisation of these indicators in ecological
research.Over a decade since their release, we found 35 stud-
ies that investigated the relationship between acoustic indices
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and biodiversity in a wide range of subjects. The majority of
the studies were related to bird richness in the northern hemi-
sphere and multiple combinations of acoustic indices, diver-
sity metrics, animal groups, and regions remain to be
examined. Surprisingly, we identified pseudoreplication as
a frequent shortcoming in the literature and future research
should consider statistical analysis more rigorously. More-
over, we found that effect sizes tended to decrease over time
and that a large and growing number of studies used indices
without testing their link with biodiversity, which may impair
the interpretation of estimates and lead to spurious findings.
Overall, our meta-analytical framework showed that acous-
tic indices have a moderate positive correlation with biodi-
versity, although effect sizes were highly variable both
within and among studies. Specifically, acoustic indices
detected changes in abundance of sounds better than
changes in other diversity metrics, with H, NDSI, and ACI
having the best performance. Other factors (type of environ-
ment and information source) had no influence on effect
sizes, suggesting that additional parameters might be crucial
to explain variation in the indices estimates. Altogether, our
findings highlight that caution should be exercised when
using acoustic indices as ecological indicators (see
Sections IV.1–4), since they are far from being direct proxies
for biodiversity. However, these novel tools are able partially
to capture changes in diversity metrics and show a certain
capacity to generalise their application across habitats and
taxa, making them promising bases for future developments.
We provide below an overview of the prospects and chal-
lenges of acoustic indices in biodiversity assessment, and out-
line recommendations for their use and future research (see
Sections IV.4 and IV.5).

(1) Do acoustic indices reflect local biodiversity? A
meta-analytical overview

The moderate relationship between acoustic indices and
metrics characterising local biodiversity corroborates, to a
certain degree, the original rationale behind acoustic diver-
sity indices, aimed at summarising the acoustic features of
communities and soundscapes in order to represent or esti-
mate biological diversity. Acoustic indices partially inform
about species diversity patterns and hence might be used as
ecological indicators, although our analysis revealed a lack
of evidence for a strong correlation. In complex systems such
as animal communities and ecosystems, the relationship
between measurable variables is rarely high, as shown by a
review of meta-analyses in ecology (r = 0.18, CI [0.15,
0.21]; Møller & Jennions, 2002). However, it is also true that
our results preclude us from considering acoustic indices as
direct proxies for biodiversity, especially when used as single
predictors in simple linear models, such as those investigated
in this study and which are the most common in the litera-
ture so far. The high variability in the performance of the
acoustic indices, both within and among studies, and even
when applying the same index, advises against their gener-
alisation as surrogates of diversity metrics without

validation of their predictions. Thus, caution should be
used when employing these indices and interpreting their
outputs (e.g. combining multiple indices, validating esti-
mates, etc.). Moreover, further research is needed to
enhance the application of these novel metrics in biodiver-
sity appraisal (see Section IV.5).
We found H, NDSI, and ACI to be better indicators of

biodiversity than the other common acoustic indices exam-
ined in the meta-analysis (i.e. ADI, AEI, AR, and BIO).
Our results highlight the most suitable acoustic indices to
be selected in future research investigating local biodiver-
sity through single linear models. However, given the abil-
ity of each index to capture distinct aspects of the acoustic
complexity of sound samples, the combination of several
indices is particularly advised for characterising biodiver-
sity (Towsey et al., 2014; Buxton et al., 2018b). It remains
to be addressed in the future whether H, NDSI, and ACI
perform better when using a combination of indices.
Overall, the performance of acoustic indices was unrelated

to biological moderators. Specifically, we found no influence
of the type of environment where studies were conducted,
namely terrestrial (N = 24 studies) versus aquatic (N = 10),
nor of the information source used to estimate the diversity
metrics, namely acoustic (N = 26) versus non-acoustic
(N = 11). This consistent performance of acoustic indices
across environments and methods used to extract biological
data suggests that indices-based estimates might be generali-
sable and encourages their use as a complementary approach
to traditional survey methods (Greenhalgh et al., 2020; Melo
et al., 2021). However, our findings showed that acoustic indi-
ces correlate better with abundance of sounds than with
other metrics, indicating a better capacity to detect changes
in the number of recorded signals than in species abundance,
richness, or diversity. This difference, although apparently
weak, suggests that predicting species-based metrics with
acoustic diversity and heterogeneity will be challenging.
These are complex and variable features that are hard to
capture with single acoustic indices computed from passive
recordings. By contrast, a high sensitivity to variation in
sound energy enables acoustic indices to estimate the abun-
dance of specific types of sounds from identified or unidenti-
fied sources more efficiently.
The lack of explanatory power of biological moderators

raises two main considerations. First, other moderators not
explored here, such as recording settings, parameters of
index calculation, etc., might also modulate the magnitude
and/or direction of the correlation between acoustic indices
and diversity metrics (Metcalf et al., 2020a). Second, our addi-
tive meta-regression model with two (out of four) binary
moderators might have failed to capture interactions
between moderator levels or underlying variation at finer
scales (e.g. using taxa as moderator levels, instead of environ-
ment type). The design of our meta-analysis was constrained
by the low number of moderator level combinations. Future
research will be able to investigate these points as more stud-
ies and effect sizes reporting the link between acoustic indices
and diversity metrics become available.
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Surprisingly, we found that studies progressively reported
smaller effect sizes over time. This implies that the broader
application of acoustic indices over recent years has revealed
limitations on their capacity to quantify local biodiversity effi-
ciently. In the early years of their application (2007–2013),
the studies that described and tested new indices often pro-
vided overly optimistic assessments of their performance,
which likely led to a false sense of optimality. When indices
started to be applied to a variety of taxa, environments, and
acoustic conditions, researchers reported a more balanced
performance for these indices. Indeed, the most recent stud-
ies have provided results closer to a distribution around the
overall mean effect size (r = 0.3). This is probably related to
the growth in papers trying to provide guidelines and sheds
light on the use and interpretation of acoustic indices during
the later period in ecoacoustics research (2014–2019). An
alternative hypothesis is that the expansion of ecoacoustics,
with more numerous and diverse practitioners, might have
led to a decline in the appropriate application of acoustic
indices, leading to an apparently less-efficient performance
of these tools over time. However, there is little evidence
for this hypothesis; a majority of pioneering researchers in
ecoacoustics continue to contribute publications and no
study has linked past experience in ecoacoustics with the
effect sizes reported by researchers. Thus, together with the
rapid spread of acoustic indices, additional efforts will be
required to clarify the significance, interpretation, and effi-
cient usage of these metrics in biodiversity appraisal (Gasc
et al., 2015; Buxton et al., 2018b; Bradfer-Lawrence
et al., 2019; Metcalf et al., 2020a) (see Section IV.5). Our
review enabled the identification of shortcomings when
applying acoustic indices that should be addressed in future
ecoacoustics research. These shortcomings derive from two
main sources: (a) the theoretical framework, and (b) practical
implementation.

(2) Shortcomings in the theoretical framework

The ecological literature has long been dominated by the clas-
sical perspective of deterministic forces driving the assembly of
ecological communities (MacArthur & Levins, 1967;
Diamond, 1975). Specifically, ecological niche partitioning
and environmental selection (e.g. environmental filtering and
species sorting) are mechanisms predicting that (i) competition
promotes segregation of ecological niches and (ii) the environ-
ment filters out species lacking specific attributes that enable
their persistence in such environments. Similarly, the twomain
hypotheses underlying the theoretical background of ecoa-
coustics posit similar expectations for the acoustic output
(or acoustic space) of coexisting species (Sueur &
Farina, 2015): the acoustic niche hypothesis (ANH;
Hödl, 1977) and the acoustic adaptation hypothesis (AAH;
Morton, 1975). Both hypotheses can be nested within a gen-
eral framework where sensory systems (including sound emis-
sion, propagation, reception, and signal design) are under
selective pressure to maximise information transfer [sensory-
drive hypothesis (Endler, 1992; Ryan & Cummings, 2013)].

The ANH predicts the acoustic output of communities to
be partitioned in time and frequency given the potential
impact of signal interference and recognition errors among
co-occurring species (Hödl, 1977; Duellman & Pyles, 1983;
Brumm, 2013; de Araújo et al., 2020). Consequently, the
higher the number of vocally active species in a given com-
munity, the higher the expected diversity of acoustic signals
in the acoustic space. Hence, the acoustic space would be seg-
regated and show low overlap between species acoustic sig-
nals. These ideas are rooted in the process of character
displacement and specifically, reproductive character dis-
placement, where closely related species with similar pheno-
types are subject to higher competition and hybridisation
potential (Pfennig & Pfennig, 2009; Hoskin &
Higgie, 2010). Evidence for character displacement in acous-
tic signals comes mainly from studies of pairs of sympatric/
syntopic and allopatric/allotopic lineages (Loftus-Hills &
Littlejohn, 1992; Lemmon, 2009; Kirschel, Blumstein &
Smith, 2009). However, it is likely that most divergence in
species traits may have accumulated while in allopatry,
before secondary contact. Trait divergence is often a result
of larger evolutionary ages of interacting lineages (Tobias
et al., 2014a; Laiolo et al., 2017), especially when in allopatry
(Drury et al., 2018), and thus a pattern of acoustic partitioning
in ecological communities may be absent or driven by evolu-
tionary forces unrelated to sensory systems. Accordingly, dis-
entangling the roles of sexual, ecological, and sensory-driven
selection on acoustic divergence requires testing multiple
hypotheses in the same system (e.g. Sugai et al., 2021a), ideally
while considering genetic differences (Wilkins, Seddon &
Safran, 2013). Therefore, the degree of acoustic partitioning
and signal diversity is not necessarily related to the number of
co-occurring species and relying on the ANH to identify a
direct relationship between acoustic and species diversity
could be misleading.

Alternatively, as predicted by the AAH, the acoustic out-
put of communities in similar habitats can converge in time
and frequency given evolutionary pressures for the optimisa-
tion of signal transmission (Morton, 1975). Experimental
tests have shown that signal attenuation and degradation
during propagation through the environment can affect sig-
nal detection and the encoded information aimed at a
receiver (Forrest, 1994; Slabbekoorn, Ellers & Smith, 2002;
Ringler et al., 2017). In agreement with these observations,
habitat-dependent selection has been found to influence sig-
nal design over evolutionary timescales (Goutte et al., 2016;
Derryberry et al., 2018; Pearse et al., 2018). However, empir-
ical evidence on AAH as a driver of the acoustic output of
ecological communities is also mixed (Ey & Fischer, 2009;
Tobias et al., 2010), and meta-analytical support reveals that
the overall effect size is weak (Boncoraglio & Saino, 2007).

Moreover, selection on ecological traits that are correlated
with acoustic features (e.g. body size) can also shape the
extent of variation in the acoustic output of ecological com-
munities (Derryberry et al., 2018), and thus a convergent
acoustic pattern of communities in similar habitats may be
unrelated to the role of AAH. For instance, agonistic

Biological Reviews 97 (2022) 2209–2236 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

Acoustic indices and biodiversity 2227



character displacement can promote convergence in traits
associated with competitor recognition given mutual benefits
in reducing interspecific aggression and competition for eco-
logical resources (Cody, 1973; Grether et al., 2009; Losin
et al., 2016). Under this perspective, species-diverse commu-
nities shaped by interspecific interactions would be composed
of species with similar acoustic signals and/or signalling strat-
egies, leading to low variability in the acoustic output of com-
munities (communication networks hypothesis), as suggested
for tropical bird communities (Tobias et al., 2014b). As a con-
sequence, an acoustic output with low acoustic variability
should not be interpreted as a low species diversity sound-
scape, since the same pattern can be driven by other forces,
such as habitat-dependent selection and species interactions.
Hence, acoustic assessments would benefit from including
covariates characterising habitats and species relatedness
(Erdtmann & Lima, 2013; Wilkins et al., 2013). In conclusion,
we identify significant shortcomings in the theoretical frame-
work behind the rationale of acoustic indices, which may
partly explain their moderate link with diversity metrics
and why estimates often deviate from expectations. These
shortfalls include weak support for ANH and AAH and the
disregard of multiple deterministic and stochastic processes
influencing the acoustic output of ecological communities.

(3) Shortcomings in practical implementation

From a practical point of view, one challenge is to find accu-
rate solutions that enable the assessment of biological diver-
sity by automated and synthetic analysis of sound samples.
First, the mathematical computation of each acoustic index
involves reducing the entire acoustic dimensions (time, fre-
quency, and energy) into a single value. Thus, it seems rea-
sonable to question to what extent an analytical strategy
based on such extreme information reduction can properly
describe biodiversity in a wide range of complex sounds-
capes, communities, and ecosystems (Buxton et al., 2018b).
Second, multiple factors strongly affect the acoustic diversity
of environmental sound samples in real-world scenarios,
representing confounding factors that often mislead the esti-
mates of acoustic indices (Depraetere et al., 2012; Gasc
et al., 2015).

Sound produced by non-target animal groups, weather
conditions, or abiotic elements (e.g. rain, wind, streams), as
well as noise generated by human activities (e.g. traffic noise),
might cause sound distortion and mask signals of interest, all
of which can greatly interfere with acoustic metrics of biodi-
versity (Towsey et al., 2014; Fairbrass et al., 2019). This issue is
particularly severe in the presence of intermittent rather than
continuous noise (Pieretti et al., 2011; Depraetere et al., 2012).
Thus, it is advisable to reduce noise in recordings, either by
placing acoustic sensors far from noise sources (Machado,
Aguiar & Jones, 2017; Mammides et al., 2017) or by applying
noise filtering (Harris et al., 2016; Eldridge et al., 2018) or
automated noise detection to the collected audio files
(Metcalf et al., 2020b), before indices calculation. Some indi-
ces can also be employed in specific frequency bands,

enabling avoidance of narrow-band noise. However, when
noise covers a wide frequency range and masks the target sig-
nals, removing recordings from the sample might likely be
the only solution (Depraetere et al., 2012).
In addition to noise, there are other deterministic and sto-

chastic sources of variability that are critical confounding fac-
tors when implementing acoustic indices, such as the number
of signals emitted by each species or the sound diversity
within and among species. The contribution of each taxon
to a given soundscape is largely determined by its relative
abundance. As shown by our meta-analysis, acoustic indices
may be particularly sensitive to the number of sounds of a
given species registered in the environmental recordings
(e.g. conspecific choruses). Thus, differences in species rela-
tive abundance are expected to influence estimates regardless
of species richness. The same pattern can be driven by varia-
tion in behavioural motivation of the signallers (leading to
interspecific differences in the number of recorded signals)
and signaller–receiver distance (leading to interspecific dif-
ferences in the amplitude of recorded signals). These sources
of variability alter the features of the soundscapes to be ana-
lysed (Priyadarshani, Castro & Marsland, 2018a; Priyadar-
shani et al., 2018b) and consequently influence the acoustic
estimates. As passive sensors typically record sounds over a
wide variety of conditions and distances, standardising or
accounting for these parameters (relative abundance, call
rate, or sound amplitude) is unfeasible, which may cause
noticeably biased values when using acoustic indices to esti-
mate species diversity.
Moreover, the number of sound types emitted by each spe-

cies (within-species sound diversity) is highly variable, partic-
ularly for certain groups such as mammals and birds. While
the vocal repertoire of some species is restricted to few simple
stereotyped signals, other species may produce dozens or
hundreds of distinct sounds (leading to an unequal contribu-
tion of species to the acoustic space). Thus, variation in the
vocal repertoire size exhibited by signalling species may crit-
ically influence the outputs and is an additional issue to be
considered when using and interpreting acoustic indices. As
a result, a low-diversity community may give rise to audio
recordings characterised by high acoustic diversity, and vice

versa (Mammides et al., 2021). Other confounding sources to
take into account when relating acoustic indices to biological
diversity are the ecological and evolutionary drivers of inter-
specific differences in acoustic features (among-species sound
diversity; see Section IV.2). For instance, phylogenetic inertia
of animal signals implies higher acoustic similarities in closely
related species, and hence a species-diverse community may
exhibit lower acoustic diversity when comprising closely
related species. Overall, community assembly is influenced
by non-exclusive deterministic (e.g. competition and environ-
mental filtering) and stochastic forces (e.g. dispersal and ran-
dom population fluctuations) that shape the organisation of
the acoustic space (Chek, Bogart & Lougheed, 2003;
Roca & Proulx, 2016; Sugai et al., 2021a,b).
As acoustic indices are mathematical formulae that sum-

marise the entire complexity of an audio sample into a single
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value, the interpretation and limitations of their estimates
should be closely linked to these formulae and to the sounds-
capes recorded. Despite increasing efforts to provide guide-
lines for their use (Gasc et al., 2015; Buxton et al., 2018b;
Sueur, 2018; Bradfer-Lawrence et al., 2019; Metcalf et al.,
2020a), the high diversity of acoustic indices in terms of con-
ceptualisation and calculation, with intrinsic variations in the
derivation of each index, still limits a full understanding of
the performance of these indicators. For example, acoustic
indices can be calculated as scalar quantities or as vectors
corresponding to frequency bins, based on ranks, evenness,
or area under the curve, and computed as averages, ratios,
or normalised values (Towsey, 2017; Sueur, 2018). Thus,
enhancing our understanding of how a particular sound
event or parameter contributes to the output values of a given
index is a key, but largely unknown, aspect of these novel
tools. The choice of specific settings (e.g. time and frequency
bins) for the computation of some acoustic indices has been
shown recently to play a key role in their fidelity to the repre-
sentation of ecological communities (Metcalf et al., 2020a).
When selecting proper time and spectral scales, indices are
likely to correlate better with diversity metrics related to a
target biological group. Similarly, the use of multiple indices
and measures of statistical dispersion, such as standard errors
(rather than only mean values), can provide a more complete
understanding of soundscape patterns over time and space
(Bradfer-Lawrence et al., 2020).

(4) Ecoacoustic literature

Together with the recent and growing expansion of this
research area, our literature review identified a series of
trends and shortfalls in the studies testing the relationship
between acoustic indices and biodiversity. The development
of these novel tools has been closely linked with the emer-
gence of passive acoustic monitoring in ecological research,
which enables cost-efficient remote sampling of environmen-
tal sounds at multiple sites and over long periods (Sugai
et al., 2019). We found that studies typically collect sounds
using short time windows (1 min or less), although the use
of continuous recording has recently been advocated
(Bradfer-Lawrence et al., 2019), now supported by advances
in technology (recording units and data storage). In contrast
with the highly diverse recording schedules applied in terres-
trial passive acoustic monitoring (Sugai et al., 2020), more
consistent sampling designs seem to be used in ecoacoustics
research. As expected, differences in sampling rate between
studies were often related to differences in focal animal
groups. This parameter has a direct influence on the spectral
range and resolution of the recordings and hence it should be
carefully considered as it may potentially impact the acoustic
estimates. Noise treatment is commonly taken into account
as a required pre-step (Depraetere et al., 2012; Gasc
et al., 2015) and a variety of methods have been employed
so far, due to a lack of a consensus on the most efficient solu-
tion. Furthermore, studies generally collected biodiversity
information from the same audio recordings used for indices

calculation, and less frequently from field surveys (e.g. point
counts; Bibby et al., 1992) or from the literature. In line with
the earliest papers (Sueur et al., 2008; Pieretti et al., 2011;
Depraetere et al., 2012), most studies used a set of acoustic
indices and tested their correlation with diversity metrics,
particularly species richness and abundance of sounds. Thus,
the published literature evaluating biodiversity with acoustic
indices fails to cover a broad collection of diversity metrics in
a balanced way.

We found a large proportion of studies addressing bird
species richness. This is likely rooted in the traditional use
of birds as study species in ecological research, where they
are highly overrepresented in comparison with other taxa
(Titley, Snaddon & Turner, 2017). Well-documented avian
bioacoustics as well as the widespread use of autonomous
recording units for bird surveys (Shonfield & Bayne, 2017;
Sugai et al., 2019) might have contributed to this uneven rep-
resentation of studies applying acoustic indices. As birds are
highly vocal animals, a better understanding of bird species
richness using acoustic methods could be an efficient way to
assess the contemporary status of bird communities to sup-
port conservation programs. Particularly noticeable is a lack
of studies on bats, which is the group most commonly moni-
tored by passive acoustics (Sugai et al., 2019), reinforcing the
idea that ecoacoustics has focused on birds as an especially
suitable model system. Primary studies were also highly
biased towards terrestrial environments, coherent with the
fact that all these indices were first tested in terrestrial com-
munities. The first study correlating acoustic indices with bio-
diversity in marine ecosystems was published in 2013, in
which the abundance of sounds in benthic habitats was eval-
uated using ACI (McWilliam & Hawkins, 2013). It was not
until 2015 that acoustic indices were first employed in fresh-
water environments (Desjonquères et al., 2015). In addition,
research has mostly focused on temperate regions, as identi-
fied in previous reviews (Buxton et al., 2018b; Sugai
et al., 2019), with typically less saturated and complex acous-
tic environments than tropical regions (Pijanowski
et al., 2011a). New research on less-studied taxa and environ-
ments will be crucial for a comprehensive understanding of
acoustic communities and their link with acoustic indices.
Some recent studies are providing the first steps to fill this
knowledge gap (Greenhalgh et al., 2020; Retamosa Izaguirre
et al., 2021).

A common statistical issue in the reviewed studies was
pseudoreplication. Pseudoreplication has been well docu-
mented in biological sciences (Colegrave & Ruxton, 2018)
and occurs when samples are considered statistically inde-
pendent when they are not (Hurlbert, 1984). We found that
40% of the 35 studies relied on pseudoreplicated data with-
out taking into account the absence of data independence,
and hence violating this general assumption of statistical tests.
The percentage of pseudoreplicated studies was similar to
those recently identified in other scientific areas
(e.g. Lazic, 2010; Waller et al., 2013). Ecoacoustics research
is prone to pseudoreplication as samples are often time series
of recordings taken at regular intervals over long periods and
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from multiple sites. Failure to account for the temporal and
spatial autocorrelation of such observations artificially
inflates sample size, leading to overestimated effect sizes, an
increase in type-I error rates, and thus a higher probability
of drawing incorrect conclusions. These and other concep-
tual and analytical issues regarding the use of entropy index
in ecoacoustics have been discussed previously (Sandoval,
Barrantes & Wilson, 2019).

For studies using passive recordings, we strongly encour-
age the adoption of basic procedures to avoid pseudoreplica-
tion. First, proper identification of replicates (true
independent samples) and pseudoreplicates (non-
independent samples) must be achieved by critically assessing
the survey design. Observations at the same site or within the
same time period (e.g. hour or day) should be considered
non-independent samples as they are likely correlated (see
Section II.4). Also, if samples are nested, collected in subsets,
or hierarchically organised, pseudoreplicates are common
since all potentially eligible samples (sample universe or pop-
ulation) had unequal chances of being selected. Second, a
proper application of statistical analyses must take into
account the structure of the data set. As pseudoreplication
is a statistical issue, rather than a design error, non-
independent data does not entail a pseudoreplicated study
(Colegrave & Ruxton, 2018). Several strategies can be
applied to prevent pseudoreplication: (i) to summarise data
into new variables that are less autocorrelated and represent
true replicates (e.g. mean per site), although this strategy
involves information loss; or (ii) to apply statistical analyses
that enable the use of the whole data set (including pseudor-
eplicates) by properly incorporating the true structure of ran-
domness present in the data. These analyses include:
repeated-measures analysis of variance (rANOVA), which
allows the addition of within-subject factors; mixed models
(e.g. LMM), which incorporate random and fixed factors,
as an improved version of rANOVA (see Fuller et al., 2015);
or bootstrapping techniques which enable the control of
autocorrelation by iterative processes of resampling and test-
ing (see Llusia et al., 2013; Moreno-G�omez et al., 2019).
Other strategies ranging from simple design-based resolu-
tions to more complex statistical tests have also been
described (Forstmeier, Wagenmakers & Parker, 2017).

In our meta-analysis, after adjusting sample sizes, we found
that pseudoreplicated studies gave effect size estimates compa-
rable to those of non-pseudoreplicated studies. We included
thembecause theymay contain relevant ecological information
which is needed for a broad overview of the correlation
between acoustic indices and biodiversity. In ecological
research, such studies can be collectively informative when
used in meta-analysis (Spake & Doncaster, 2017), while large
amounts of valuable data would be lost if all pseudoreplicated
studies were removed from analysis (Davies & Gray, 2015).

(5) Research agenda

The novelty of emerging technologies for audio recording has
promoted rapid collection of large amounts of data at the cost

of lacking standards and guidelines for spatial and temporal
sampling (Sugai et al., 2020) and acoustic analysis (Metcalf
et al., 2020a). As a result, recommendations aimed at reducing
the sources of variation and improving efficacy when using
acoustic indices as proxies for biodiversity have been proposed
(Gasc et al., 2015; Buxton et al., 2018b; Bradfer-Lawrence
et al., 2019; Sugai et al., 2020; Metcalf et al., 2020a). Our find-
ings support these practical guidelines as important founda-
tions for future research. In addition, we call attention to the
general shortcomings and knowledge gaps highlighted herein
(see Sections IV.2–4).We argue that addressing these key issues
will vastly improve our understanding of the relationship
between acoustic indices and biodiversity.
We also look forward to new avenues of research, beyond

the applications explored herein. The combined use of mul-
tiple acoustic indices to characterise biodiversity has shown
promising results (Towsey et al., 2014; G�omez, Isaza &
Daza, 2018; Buxton et al., 2018b; Dema et al., 2020;
Bradfer-Lawrence et al., 2020). This approach encompasses
the transformation of several indices into new metrics
(e.g. Towsey et al., 2014), the application of multivariate anal-
ysis based on classification algorithms (e.g. Buxton
et al., 2018b; Bradfer-Lawrence et al., 2020), or the fitting of
multiple regression models (e.g. Retamosa Izaguirre
et al., 2021). Despite being proposed early on, few studies
have applied these methods so far, likely because computa-
tion and data analysis are more complex and time-
consuming than the use of indices as single predictors
(e.g. correlation, simple linear regression, etc.). The accessi-
bility of the method may thus be important for wider use of
this alternative approach. Another key point is to understand
how acoustic indices can better represent distinct compo-
nents of animal sounds in environmental recordings and
which combinations of complementary indices could lead
to more accurate estimates of biodiversity. For example,
understanding how the resolution of time, frequency, and
energy affect the relations between indices and diversity met-
rics would increase our understanding about the redundancy
and uniqueness of the indices to be combined. Moreover,
combinations of indices might mitigate the observed limita-
tions in the performance of acoustic indices, partly derived
from the extreme information reduction (in both dimension-
ality and data) related to index calculation.
Beta acoustic indices have also been proposed to assess

biodiversity by examining the similarity or dissimilarity of
acoustic diversity (Gasc et al., 2013b; Depraetere
et al., 2012; Sueur et al., 2014). For example, these indices
were recently used to analyse differences in soundscapes
between an oil plantation and surrounding forests (Hayashi
et al., 2020). Probably due to the same challenges as the
approach based on a combination of indices, they have
attracted less attention than alpha indices so far. We encour-
age scientists to continue employing beta indices, not only to
enhance our knowledge on their efficiency for biodiversity
assessment, but also to study other biological aspects such
as functional and phylogenetic beta-diversity (Gasc
et al., 2013a).
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We found large research gaps due to the bias in studies
addressing the relationship of acoustic indices and diversity
metrics, with a paucity of analysis on distinct combinations
of indices, animal groups, and ecosystems, which should be
overcome in future research. Currently, the lack of data val-
idation in the literature, with a large and growing number of
articles assuming a direct link between acoustic indices and
alpha biodiversity indices, is a major shortcoming that needs
to be addressed in ecoacoustic studies, particularly consider-
ing the moderate association identified in our meta-analysis.
Furthermore, we suggest that future research should adopt
experimental approaches based on simulations to disentan-
gle the roles of distinct factors (e.g. types of organism, envi-
ronment, recording setting, and analytical procedure) in the
estimates provided by acoustic indices (Gasc et al., 2015).
Thereby, acoustic conditions can be fully controlled, assisting
in testing the performance of acoustic indices in their rela-
tionship with species abundance, richness, and diversity.
Overall, it is necessary to improve our understanding of the
capacity of acoustic indices to retrieve biological information.
Enhancing collaborative science to create large open data-
bases will be a beneficial strategy to increase temporal and
spatial replicates and allow evaluation of the performance
of different indices at the community level (Eldridge
et al., 2018; Bradfer-Lawrence et al., 2020).

Beyond acoustic indices, machine learning is being used
for automated signal analysis, with increasing success (Ulloa
et al., 2018; Stowell et al., 2019; Wood et al., 2021). This alter-
native research path could enable retrieval of ecological data
from passive recordings, mainly in species-oriented research,
providing detailed information on species presence and
activity, and being an attractive monitoring method for
poorly documented habitats. Yet, machine learning typically
demands manual labelling for the development of large
annotated data sets, which can be arduous and time-consum-
ing. Recently, a combination of acoustic features, indices,
and unsupervised algorithms that do not require annotated
information has been proposed to characterise soundscapes
and to visualise long periods of acoustic data in a single image
(Phillips et al., 2018; Sethi et al., 2020, 2022), although the
complexity of these innovative approaches still precludes
wide application in ecological research.

V. CONCLUSIONS

(1) Novel tools are required for efficient monitoring of rapidly
declining biodiversity at the global scale. For this purpose, a
large number of acoustic indices has recently been developed
to support passive acoustic monitoring and offer an auto-
mated method to characterise and track changes in sounds-
capes. Despite being increasingly employed in biodiversity
assessment, whether these indicators are able to capture local
biodiversity accurately remains unclear. Our systematic liter-
ature review and meta-analysis represent the first attempt to
assess the overall performance of acoustic indices as proxies

for biodiversity and hence provide new insights for future
studies using this innovative approach.
(2) After 15 years of research on acoustic indices, we found 35
studies that have explored their link with biodiversity. Over-
all, our meta-analysis revealed that these indices have a mod-
erate positive correlation with diversity metrics, implying
that they are able partially to inform on changes in biodiver-
sity. However, the inconsistent performance of the acoustic
indices, with highly variable effect sizes, both within and
among studies, highlights that caution should be exercised
(e.g. validating estimates, etc.) when using them as surrogates
of diversity metrics, especially if employed as single predic-
tors. Moreover, studies have been progressively reporting
smaller effect sizes over the research trajectory, revealing lim-
itations on their capacity to quantify local biodiversity effi-
ciently. Although our findings endorse to some extent the
rationale behind acoustic indices and support their use as
promising bases for future developments, we confirmed that
these tools are far from being direct proxies for biodiversity.
(3) The indices H, NDSI, and ACI had the highest predictive
performance in comparison with other commonly used
acoustic indices. Abundance of sounds was the metric that
best correlated with acoustic indices, although large confi-
dence intervals prevent establishing clear differences with
other diversity variables. We found no effect of the type of
monitored environment (terrestrial versus aquatic) and the
procedure for extracting biological information (acoustic ver-
sus non-acoustic), suggesting a certain capacity to generalise
their application across research contexts. Further studies
are required to test finer moderators and interactions, and
to provide a better understanding of how other factors affect
the performance of acoustic indices.
(4) We outlined significant theoretical and practical short-
comings of acoustic indices in biodiversity assessment. The
literature provides weak support for two main hypotheses
proposed as cornerstones of the ecoacoustic framework
(acoustic niche hypothesis and acoustic adaptation hypothe-
sis), as the acoustic output of ecological communities will be
influenced by multiple deterministic and stochastic processes
beyond acoustic partitioning and environmental filtering.
Additionally, a variety of factors strongly affect the acoustic
diversity of soundscapes in real-world scenarios, driving an
unequal contribution of species to the acoustic space and
representing confounding factors that often mislead the
acoustic estimates (e.g. noise, among-species differences in
abundance, vocal repertoire size, or behavioural motivation,
etc.).
(5) A trend towards neglecting the validation of the predictive
models over time was identified, with studies increasingly
assuming a correlation between acoustic indices and biodi-
versity without testing this assumption. Assessing the accu-
racy of the acoustic estimates is a crucial step for study
design and interpretation of results, according to our results
(i.e. moderate correlation, high variability in effect sizes,
etc.). Moreover, pseudoreplication was a common issue
across the literature, as ecoacoustics research is prone to the
collection of autocorrelated data. Researchers should
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consider more carefully the non-independence of time series
of audio recordings given its potential to undermine statisti-
cal inference. Finally, the performance of acoustic indices
remains unexplored for multiple combinations of indices,
diversity metrics, animal groups, and regions, making further
research needed to overcome these knowledge shortfalls.
(6) Future research should reinforce and promote the accessi-
bility of new approaches based on combinations of indices,
expand the application of beta indices, and address the identi-
fied shortcomings and knowledge gaps. Recent developments
have proposed the use of multivariate analysis and machine
learning based on a suite of acoustic indices for a more effec-
tive characterisation of soundscapes and biodiversity. Alto-
gether, we believe an increasing knowledge of the
relationship between ecological communities and soundscapes
will allow us to integrate acoustic indices with new techniques
and provide a comprehensive understanding of the use of
these promising tools in biodiversity assessment.
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Belnap, J., Böhm, M., Brummitt, N., Garcı́a-Moreno, J., Gregory, R. D.,
Honrado, J. P., Jürgens, N., Opige, M., Schmeller, D. S., Tiago, P., ET AL.
(2017). Global biodiversity monitoring: from data sources to essential biodiversity
variables. Biological Conservation 213, 256–263.

Biological Reviews 97 (2022) 2209–2236 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

2234 Irene Alcocer and others



Pullin, A. S. & Stewart, G. B. (2006). Guidelines for systematic review in
conservation and environmental management. Conservation Biology 20, 1647–1656.

*Raynor, E. J., Whalen, C. E., Brown, M. B. & Powell, L. A. (2017). Grassland
bird community and acoustic complexity appear unaffected by proximity to a wind
energy facility in the Nebraska Sandhills. The Condor 119, 484–496.

Re, A. C. D. (2013). Compute. es: Compute effect sizes. R Package.
Retamosa Izaguirre, M., Barrantes-Madrigal, J., Segura Sequeira, D.,

Spı́nola-Parallada, M. & Ramı́rez-Al�an, O. (2021). It is not just about birds:
what do acoustic indices reveal about a Costa Rican tropical rainforest? Neotropical
Biodiversity 7, 431–442.

*Retamosa Izaguirre, M. & Ramı́rez-Al�an, O. (2018). Acoustic indices applied to
biodiversity monitoring in a Costa Rica dry tropical forest. Journal of Ecoacoustics 2, 1–5.
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1. Data set used in the study.
Table S2. Variable descriptions for Table S1.
Table S3. List of the 34 features used to characterise studies
that tested the relationship between acoustic indices and
diversity metrics.
Table S4. Number of effect sizes collected from each of the
34 studies included in the meta-analysis.
Table S5.Number of effect sizes and studies per moderator
levels.
Fig. S1. Pseudoreplication summary.
Table S6. VIF (Variance Inflation Factor) values obtained
for each moderator level.
Table S7. Model estimates from the intercept-only model.
Fig. S2.Visual representation of the distribution of variance
over the multilevel structure of the intercept-only model.
Table S8. Model estimates for the sub-group analysis.
Fig. S3. Effect size mean estimates and corresponding 95%
confidence intervals obtained from the sub-group meta-
analysis with acoustic indices as the moderating factor.

Table S9.Results of Wald-type tests for all moderators, and
for each moderator separately.
Table S10. Results of Wald-type tests for the contrasts
between acoustic index H and all other acoustic indices.
Table S11. Results of Wald-type tests for the contrasts
between acoustic index NDSI and all other acoustic indices.
Table S12. Results of Wald-type tests for the contrasts
between the diversity metric ‘abundance of sounds’ and all
other diversity metrics.
Table S13. Model estimates for the meta-analysis inspect-
ing differences between pseudoreplicated and non-
pseudoreplicated studies.
Fig. S4. Relationship between reported mean effect sizes
and journal impact factor.
Fig. S5. Cook’s distance values for each study and average
Cook’s distance over all studies.
Fig. S6. Boxplot and distribution of effect size values of the
two studies identified as outliers.
Table S14. Model estimates for the meta-regression over
the data set without outliers.
Fig. S7. Contrast of model estimates obtained with meta-
regression analysis using the full data set and over the data
set with outliers removed.
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