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Abstract

As popularised by PrediXcan (and related methods), transcriptome‐wide
association studies (TWAS), in which gene expression is imputed from single‐
nucleotide polymorphism (SNP) genotypes and tested for association with a

phenotype, are a popular approach for investigating the role of gene expression

in complex traits. Like gene expression, DNA methylation is an important

biological process and, being under genetic regulation, may be imputable from

SNP genotypes. Here, we investigate prediction of CpG methylation levels

from SNP genotype data to help elucidate relationships between methylation,

gene expression and complex traits. We start by examining how well CpG

methylation can be predicted from SNP genotypes, comparing three penalised

regression approaches and examining whether changing the window size

improves prediction accuracy. Although methylation at most CpG sites cannot

be accurately predicted from SNP genotypes, for a subset it can be predicted

well. We next apply our methylation prediction models (trained using the

optimal method and window size) to carry out a methylome‐wide association

study (MWAS) of primary biliary cholangitis. We intersect the regions

identified via MWAS with those identified via TWAS, providing insight into

the interplay between CpG methylation, gene expression and disease status.

We conclude that MWAS has the potential to improve understanding of

biological mechanisms in complex traits.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) have success-
fully identified regions of the genome associated with a
range of phenotypes (MacArthur et al., 2017). However,

for many of these findings, the mechanism by which
variants affect their associated phenotype remains
unknown (Gallagher & Chen‐Plotkin, 2018). Most trait‐
associated variants identified by GWAS fall in regulatory
regions of the genome (Maurano et al., 2012), and are
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hypothesised to act by altering gene expression rather
than the protein code. Indeed, enrichment of expression
quantitative trait loci (eQTLs) at known GWAS risk loci
(Nicolae et al., 2010), and overlaps between GWAS risk
variants and genomic loci affecting markers of genome
regulation (such as histone modifications) have been
identified (Chen et al., 2016; Tehranchi et al., 2016; X.
Zhang, Joehanes, et al., 2015), reinforcing this hypothe-
sis. For this reason, an approach to improve under-
standing of mechanisms underlying GWAS findings is to
integrate GWAS and gene expression data. One such
approach is the transcriptome‐wide association study
(TWAS), implemented in the software packages Pre-
diXcan (Gamazon et al., 2015), S‐PrediXcan (Barbeira
et al., 2018) and FUSION (Gusev et al., 2016). This
approach uses known relationships between single‐
nucleotide polymorphisms (SNPs) and gene expression
(estimated from a reference panel with matched geno-
type and gene expression data) to impute expression into
GWAS samples. Imputed expression is then tested for
association with the phenotype to identify phenotype‐
relevant genes. This method has been widely used to
investigate the role of gene expression in complex traits
(Ioannidis et al., 2018; Khawaja et al., 2018; Mancuso
et al., 2018; Roselli et al., 2018), and represents a
powerful approach for interpretation of GWAS findings.

CpG methylation, which refers to the addition of a
methyl (–CH3) group to cytosine residues in cytosine‐
guanine dinucleotides, is known to regulate the expres-
sion of nearby genes. For example, increased methylation
at CpG sites in promoter regions is often associated with
decreased expression at a nearby gene (although the
relationship is often more complex than this) (Luo et al.,
2018; Schubeler, 2015). Additionally, aberrant methyla-
tion at CpG sites has been implicated as a potential
mechanism in complex diseases (Dhana et al., 2018;
Story Jovanova et al., 2018; Xu et al., 2018). Like gene
expression, DNA methylation is under genetic regula-
tion. Twin and family‐based studies have identified a
significant heritable component of CpG methylation,
with estimates of heritability ranging from 16% to 20%
(Bell et al., 2012; Grundberg et al., 2013; Hannon, Knox,
et al., 2018; van Dongen et al., 2016). Studies estimating
CpG methylation heritability using SNPs also find a
significant heritable component, although estimates vary
depending on which SNPs are used. For example, a large
study using SNPs across the whole genome found an
estimate of 19% (van Dongen et al., 2016), similar to
estimates from twin studies, whereas studies focussing
on heritability attributable to SNPs proximal to CpG sites
generated smaller estimates (Quon et al., 2013; Rowlatt
et al., 2016). In addition, studies have consistently
identified relationships between CpG methylation and

genotypes at individual SNPs, termed methylation
quantitative trait loci (mQTLs) (Gaunt et al., 2016;
Grundberg et al., 2013; Richardson et al., 2016; Volkov
et al., 2016). The presence of these mQTLs and the non‐
zero heritability estimates of CpG methylation indicate
that it may be possible to predict methylation from SNP
genotypes.

Here, we apply the PrediXcan approach, originally
designed for testing for association between predicted
gene expression levels and a phenotype, to the problem
of testing for association between predicted methylation
levels and a phenotype, assuming that genome‐wide SNP
data is available (in both training and test data sets) to
inform the prediction. We start by investigating how well
CpG methylation can be predicted from SNP genotypes
local to CpG sites, using data from the Accessible
Resource for Integrated Epigenomics Studies (ARIES)
(Relton et al., 2015), a study within the Avon Longitudi-
nal Study of Parents and Children (ALSPAC) (Boyd et al.,
2013; Fraser et al., 2013) and data from the Under-
standing Society study (Hannon, Gorrie‐Stone, et al.,
2018). We compare the performance of three penalised
regression methods and investigate prediction accuracy
at five window sizes to identify an optimal method and
window size for prediction model training. For CpG sites
where methylation can be predicted well, we then
generate prediction models and illustrate their use in a
methylome‐wide association study (MWAS) of the
autoimmune liver disease primary biliary cholangitis
(PBC). Finally, we investigate the relationships between
regions identified via MWAS and those identified via
TWAS, providing insight into the interplay between CpG
methylation, gene expression and disease status.

2 | MATERIALS AND METHODS

2.1 | ARIES data

We obtained approval to access genotype data and CpG
methylation data measured at an antenatal clinic for 855
mothers as part of the ARIES study, a study within
ALSPAC (Boyd et al., 2013; Fraser et al., 2013). The
ALSPAC study website contains details of all the data
that is available through a fully searchable data dictio-
nary and variable search tool (http://www.bristol.ac.uk/
alspac/researchers/our-data/). Ethical approval for the
study was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committees.
Informed consent for the use of data collected via
questionnaires and clinics was obtained from partici-
pants following the recommendations of the ALSPAC
Ethics and Law Committee at the time. Consent for
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biological samples has been collected in accordance with
the Human Tissue Act (2004).

Details of the collection and processing of the ARIES
data can be found in the Supporting Information Text.
Following processing and quality control, we were left
with matched genotype and CpG methylation data at the
“antenatal” time point for 841 ARIES samples to be taken
forward for statistical modelling.

2.2 | Understanding Society data

We also obtained approval to access genotype data
(University of Essex et al., 2015) and methylation data
(University of Essex et al., 2017) previously generated by
Understanding Society: the UK Household Longitudinal
Study. Details of the collection and processing of the
Understanding Society data can be found in the
Supporting Information Text. Following processing and
quality control, we had matched genotype and methyla-
tion data for 1120 samples to be taken forward for
downstream analysis.

2.3 | Training and testing CpG
methylation prediction models

CpG methylation prediction models were generated
separately in the ARIES and Understanding Society data
sets by regressing methylation levels on genotype dosages
of all SNPs within a specified distance (window size) of
the CpG site, using three different penalised regression
methods (see Supporting Information Text). The meth-
ods considered were ridge regression (Hoerl & Kennard,
2000), LASSO (Tibshirani, 1996) and elastic net with
mixing parameter α set to 0.5 (Zou & Hastie, 2005).
Although, in principle, one could consider the mixing
parameter α as a parameter to be estimated (e.g., by
performing a grid search), fixing its value at 0.5 has the
advantage of reducing the computational complexity and
matches what was done in the original PrediXcan
publication (Gamazon et al., 2015), effectively providing
a balance between the level of penalisation employed by
ridge regression and LASSO. The prediction models were
trained in R using the glmnet package (Friedman et al.,
2010). For all methods, a value for the regularisation
parameter λ was selected using 10‐fold cross‐validation.
Any values of λ that produced a prediction model that
did not contain any SNPs were excluded. Of the
remaining values of λ, the value at which the minimum
mean squared error between predicted and observed
methylation was achieved in the cross‐validation was
then selected.

The ARIES data were used to carry out a comparison
of penalised regression approaches, while both ARIES
and Understanding Society data were used to carry out a
comparison of SNP window sizes. To compare the three
penalised regression approaches, 50% of ARIES samples
were designated as the model training set, and 20% as the
test set. (The remaining 30% of samples were saved for
use later as a prediction model testing set). For each CpG
site, prediction models were trained by regressing CpG
methylation on SNP genotypes for all SNPs within 1Mb
of the CpG site using each method, the resulting models
were applied to the test set, and the correlation (R)
between predicted and observed methylation levels was
calculated.

For the comparison of five window sizes, CpG
methylation prediction models were trained by regres-
sing CpG methylation on genotypes of SNPs within
250 kb, 500 kb, 1Mb, 2Mb or 3Mb of the CpG site, using
elastic net with α= 0.5 and using the same training and
testing sets as used previously to compare penalised
regression methods. By limiting the maximum window
size to 3MB, we effectively focus on SNPs that act as cis
mQTLs; although a role has been demonstrated for trans
mQTLs (including both interchromosomal effects and
intra‐chromosomal effects, operating at distances >5Mb
of the CpG site) (Min et al., 2020), they represent a much
smaller percentage of total mQTLs (8.5% compared to the
92.5% represented by cis mQTLs) and, moreover, the
effect sizes for trans mQTLs are lower than for cis
mQTLs, meaning that much larger sample sizes are
required to reliably identify them (Min et al., 2020).

Having identified an optimal method from the three
methods considered, and a CpG‐specific window size for
prediction model training, new CpG methylation predic-
tion models were trained using the ARIES and Under-
standing Society data sets, to establish how accurately
methylation could be predicted. The 50% of ARIES
samples that had previously been used as a prediction
model training set and the 20% that had previously been
used for prediction model testing were combined and
used as the prediction model training set here. The
remaining 30% of samples that had not been used before
this point were used as a prediction model testing set to
evaluate overall predictive accuracy. The same procedure
was used to generate training and testing sets for
assessing predictive accuracy with the Understanding
Society data.

2.4 | Enrichment testing

Having estimated predictive accuracy, enrichment tests
were performed to determine the extent to which five
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pre‐specified functional annotations were more highly
represented among the set of well‐predicted CpG sites
than among the background set of all CpG sites that
passed quality control. Separately, we also tested whether
the same five annotations were more highly represented
among the set of trait‐associated CpG sites than among
all CpG sites tested in the MWAS. Enrichment tests were
applied to the results obtained using ARIES data and
Understanding Society data using annotations taken
from the Illumina manifest files. As the annotations
listed in the 450k chip and EPIC chip manifest files were
slightly different, separate enrichment tests were per-
formed for the results obtained using ARIES data and
Understanding Society data. For full details of the
procedure, see the Supporting Information Text.

2.5 | Heritability estimation

The heritability of methylation at each CpG site was
estimated using restricted maximum likelihood (REML)
analysis in GCTA (Yang et al., 2010, 2011). Heritability
estimates were generated separately for the ARIES data
and the Understanding Society data. For each CpG, the
SNPs within the optimal window size of the CpG site's
genomic location were used to construct a genetic
relationship matrix (GRM). The proportion of the
variance of CpG methylation explained by these SNPs
(the narrow‐sense heritability) was then estimated using
REML analysis in GCTA. Heritability estimates were
restricted to fall within the [0, 1] range.

2.6 | Training and validating a final set
of CpG methylation prediction models

Having obtained an estimate of prediction accuracy using
the optimal method and window size for each CpG site,
our final step was to train a set of CpG methylation
prediction models that could be used in MWAS to
investigate the relationship between predicted CpG
methylation and complex traits.

To maximise the prediction accuracy of these final
CpG methylation prediction models (and thus improve
the power of the subsequent tests of association between
predicted methylation and phenotype), the sample size of
the prediction model training set was increased by
combining the 70% training set and 30% testing set. This
resulted in two training sets (one comprised of ARIES
data and one of Understanding Society data), each
consisting of 100% of their samples. Using these training
sets, prediction models were then trained for the CpG
sites where a prediction accuracy estimate ≥ 0.1 had been

achieved at the optimal method and window size. This
resulted in 78,250 CpG methylation prediction models
trained using 100% of the ARIES data and 207,525 CpG
methylation prediction models trained using 100% of the
Understanding Society data.

The prediction models were then validated through
application to the other data set on which the models had
not been trained (see Supporting Information Text). The
prediction models trained on 100% of ARIES data were
applied to 100% of the Understanding Society samples,
and the correlation between predicted and observed
methylation was calculated. Similarly, prediction models
trained on 100% of Understanding Society data were
applied to 100% of the ARIES samples, and the
correlation between predicted and observed methylation
was calculated. Models which failed to meet a prediction
accuracy R estimate ≥ 0.1 in their respective validation
data set were discarded from further consideration.

2.7 | MWAS of PBC

As an illustration of our approach, the final CpG
methylation prediction models were used within the
S‐PrediXcan (Barbeira et al., 2018) software package,
together with summary statistics from our recent
genome‐wide meta‐analysis of the autoimmune liver
disease PBC (Cordell et al., 2021), to perform an MWAS,
testing for association between predicted methylation at
up to 78,250 ARIES and 207,525 Understanding Society
CpGs and disease status. This analysis represents an
updated version of the analysis previously described
(Cordell et al., 2021) which had used earlier, unopti-
mised, versions of the methylation prediction models. We
also used the most recent (GTEx v8) gene expression and
splicing (eQTL and sQTL) prediction models from the
PredictDB Data Repository (https://predictdb.org/) in
S‐PrediXcan, together with the same set of PBC summary
statistics, to test for association between disease status
and predicted gene expression/splicing, allowing us to
intersect the regions identified via MWAS with those
identified via TWAS and a splicing site wide association
study (SWAS), respectively.

3 | RESULTS

3.1 | Sparse methods outperform
polygenic methods at prediction of CpG
methylation from SNP genotypes

We first compared the performance of three penalised
regression approaches for the prediction of CpG
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methylation from local SNP genotypes. Overall, sparse
approaches (elastic net and LASSO) outperformed the
more polygenic ridge regression approach (Figure 1a).
Across the CpG sites successfully modelled with all three
methods, higher average prediction accuracy estimates
were achieved with LASSO (mean R= 0.097, SD= 0.191)
and elastic net (mean R= 0.098, SD = 0.191) than with
ridge regression (mean R= 0.080, SD = 0.164). Estimates
from all three methods were highly correlated
(Figure 1b). While the difference between methods was
hard to see when considering all CpGs, it could be seen
more clearly when looking at the 10,004 CpGs for which
an R estimate ≥ 0.5 was achieved by any of the three
methods (Supporting Information: Figure S1).

3.2 | The optimal window size for
fitting CpG methylation prediction models
is CpG‐specific

We next sought to investigate whether changing the
window size used to select SNPs used for model fitting
could improve the models’ accuracy. Prediction accuracy
estimates obtained at the five window sizes were highly
correlated with one another (Figure 2a,b). On average, a
slight decrease in the mean accuracy achieved across the
CpG sites successfully modelled at all five window sizes
was observed with an increase in the window size
(Table 1). However, when looking at the results on a
CpG‐by‐CpG basis, no clear pattern was observed, with
some CpG sites showing greater prediction accuracy at
the larger window sizes and other CpG sites showing

greater prediction accuracy at the smaller window sizes.
The same result was observed when restricting the
comparison to those CpG sites for which an R estimate ≥
0.5 was achieved at any of the five window sizes
(Supporting Information: Figure S2). This suggests that
the optimal window size for training CpG methylation
prediction models is a CpG‐specific quantity. For each
CpG site, the optimal window size was therefore
determined as the window size at which the maximum
prediction accuracy was achieved.

The same comparison of five window sizes was
performed on the other data set considered, the Under-
standing Society study, to identify optimal window sizes
for those CpG methylation measurements. 50% of
Understanding Society samples were designated as the
training set, with 20% of samples assigned to the testing
set. Overall, prediction accuracy estimates at the five
window sizes were highly correlated with one another
(Supporting Information: Figure S3). Again, some CpG
sites showed greater prediction at larger window sizes,
while others showed greater accuracy at the smaller
window sizes, reinforcing the conclusion that the optimal
window size for CpG methylation prediction model
training is CpG‐specific. The same conclusion was once
again reached when the comparison was restricted to just
the CpG sites where a prediction accuracy estimate ≥ 0.5
was achieved with any of the five window sizes
(Supporting Information: Figure S4). For each CpG site
in the Understanding Society data set, the optimal
window size was therefore determined as the window
size at which the maximum prediction accuracy was
achieved.

FIGURE 1 Comparison of penalised regression approaches for predicting CpG methylation. (a) Box plots of prediction accuracy
estimates (R) from training and testing prediction models using 3 forms of penalised regression (ridge regression, elastic net, LASSO) on
ARIES data. The line within the box represents the median, with the edges of the box the upper and lower quartiles. (b) Correlation plots
between prediction accuracy estimates achieved using the three penalised regression approaches. In the lower panels, each point represents
a CpG site, with the R achieved by two methods displayed on the axes. Also shown are the line of equality (green dashed line) and a best fit
line between x and y (red solid line). Upper panels show the pairwise correlations between the R values achieved using the three methods.
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3.3 | Methylation at most CpG sites
cannot be accurately predicted from SNP
genotypes

Having identified an optimal method (elastic net with α
set to 0.5) from the three methods considered, and a
CpG‐specific window size for prediction model training,
new CpG methylation prediction models were trained in
the 70% of the ARIES and Understanding Society data
sets using these optimal values. The prediction models
were then applied to their respective 30% testing sets (i.e.,
ARIES‐trained models applied to the ARIES testing set
and Understanding Society‐trained models applied to the
Understanding Society testing set), and the correlation
between predicted and measured methylation was
calculated.

We found that methylation at most CpG sites could not
be accurately predicted from SNP genotypes (Figure 3),
although there existed a subset of CpG sites for which
methylation could be predicted with some accuracy.
Reassuringly, prediction accuracy estimates from ARIES
data were highly correlated (r=0.757) with those obtained

FIGURE 2 Comparison of window sizes for predicting CpG methylation. (a) Box plots of prediction accuracy estimates (R) from
training and testing prediction models using elastic net with single‐nucleotide polymorphisms selected using five window sizes (250 kb,
500 kb, 1Mb, 2Mb and 3Mb) on ARIES data. The line within the box represents the median, with the edges of the box the upper and lower
quartiles. (b) Correlation plots between prediction accuracy estimates achieved using the five window sizes. In the lower panels, each point
represents a CpG site, with the R achieved at the two window sizes displayed on the axes. Also shown are the line of equality (green dashed
line) and a best fit line between x and y (red solid line). Upper panels show the pairwise correlations between the R values achieved at the
five window sizes.

TABLE 1 Average prediction accuracy estimates achieved
when training and testing CpG methylation prediction models
using five different window sizes using ARIES data.

Window size Average prediction accuracy

250 kb 0.0548

500 kb 0.0525

1Mb 0.0502

2Mb 0.0481

3Mb 0.0467

FIGURE 3 Prediction accuracy of CpG methylation prediction
models trained using elastic net with α= 0.5 and with a CpG‐
specific window size. Box plots of prediction accuracy estimates (R)
from training and testing prediction models using elastic net (with
α= 0.5) with a CpG‐specific window size using data from ARIES
and Understanding Society. The line within the box represents the
median, with the edges of the box the upper and lower quartiles.
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from Understanding Society data (Figure 4). This was
especially the case for the well‐predicted CpG sites such as
cg16906346, which showed a prediction accuracy of 0.924
when examined using ARIES data and a prediction accuracy
estimate of 0.953 when examined using Understanding
Society data. In total, prediction models for 78,250 CpG sites
from ARIES (assayed using the HumanMethylation450
BeadChip) and 207,525 CpG sites from Understanding
Society (assayed using the denser MethylationEPIC array)
showed a prediction accuracy≥ 0.1 when predicted using the
optimal method and window size. These CpG sites were
taken forward for further analysis.

Of particular interest were the CpG sites where
methylation could be predicted with a high degree of
accuracy. 10,220 ARIES‐trained models and 30,865
Understanding Society‐trained models showed predic-
tion accuracy ≥ 0.5 in their respective test sets,
representing a set of well‐predicted CpG sites. To learn
more about these well‐predicted CpG sites, enrichment
testing was conducted. When considering the CpGs that
were predicted well when using ARIES data, CpG sites
tagged to genes (odds ratio [OR]= 0.682, p=4.08 × 10−68),
CpG sites located at CpG islands (OR= 0.883,
p=1.72 × 10−9) and CpG sites tagged to promoters (OR=
0.636, p=1.13 × 10−61) were all depleted among the set of
well‐predicted CpG sites (when compared to the

background set of all CpG sites), while CpGs at enhancer
regions (OR= 1.42, p=9.62 × 10−53) and CpGs at DNAse1
hypersensitivity sites (OR= 1.40, p=8.57 × 10−33) were
enriched among the well‐predicted CpG sites. Reassuringly,
these enrichments and depletions were replicated when
looking at those CpG sites that were well‐predicted when
using the Understanding Society data (Supporting Informa-
tion: Figure S5).

The theoretical upper limit on how accurately CpG
methylation can be predicted from SNP genotypes is
equivalent to its narrow‐sense heritability. We estimated
the heritability of methylation at each CpG site using
SNPs within the CpG‐specific optimal window size and
compared heritability estimates with estimates of predic-
tion accuracy obtained with the optimal method and
window size. Overall, heritability estimates were highly
correlated and concordant with prediction accuracy
estimates, with the exception of a small number of
CpG sites where heritability estimates were much greater
than the prediction accuracy estimates). This was
observed for both the ARIES and the Understanding
Society data sets (Supporting Information: Figure S6),
suggesting that the upper bound on prediction accuracy
had been reached for most CpG sites.

3.4 | Training and validating a final set
of CpG methylation prediction models

Having obtained an estimate of prediction accuracy using
the optimal method and window size for each CpG site, the
final step was to use the full set (100%) of samples in the
ARIES and Understanding Society data sets to train and
validate a set of CpG methylation prediction models that
could be used in MWAS to investigate the relationship
between predicted CpG methylation and complex traits.
Following this procedure (see Supplementary Text for full
details), we ended up with a total of 232,356 prediction
models. These 232,356 prediction models covered 193,315
unique CpG sites, with 39,041 CpG sites represented by
both an ARIES‐trained and an Understanding Society‐
trained prediction model.

3.5 | MWAS in PBC identifies regions
that overlap with TWAS and SWAS signals

MWAS was carried out to test for association between
predicted methylation and disease status at the 48,658
(out of a possible 78,250) ARIES CpGs and 172,008 (out
of a possible 207,525) Understanding Society CpGs for
which sufficient SNPs were available in the PBC
summary statistics to inform the tests. Results are shown

FIGURE 4 Comparison of prediction accuracy estimates from
ARIES and Understanding Society data sets. Each point represents
a CpG site, with its prediction accuracy estimate obtained from
training and testing a prediction model using the ARIES data
shown on the x axis, and its prediction accuracy estimate obtained
from training and testing a prediction model using the
Understanding Society data shown on the y axis. The red line
represents a best fit line, and the dashed line represents the line of
equality (y= x).
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in Figure 5, along with TWAS and SWAS results from
similar tests of association between PBC and predicted
gene expression and splicing, respectively. The associa-
tion results generated at the Understanding Society CpGs
(outermost circle) were considerably stronger than those
generated at the sparser set of ARIES CpGs (second
circle), resulting in 782 significant Understanding
Society CPGs (p < 2.91 × 10−7, corresponding to p= 0.05

Bonferroni‐corrected for the 172,008 tests performed). As
expected, these significant Understanding Society CpGs
corresponded to GWAS association signals of association
between SNPs and PBC (innermost circle), but also, in
many cases, to TWAS and SWAS signals (i.e., regions of
association between PBC and predicted gene expression
[third circle] and/or splicing [fourth circle]). Figure 6
shows the implicated genes (p< 7.79 × 10−6,

FIGURE 5 Circular Manhattan plot. Shown are the −log10 p values from tests of association with PBC and predicted methylation at
Understanding Society CpGs (outermost circle), predicted methylation at ARIES CpGs (second circle), predicted gene expression (third
circle), predicted splicing (fourth circle) and measured (genotyped or imputed) SNPs (innermost circle). PBC, primary biliary cholangitis;
SNP, single‐nucleotide polymorphism.
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corresponding to p= 0.05 Bonferroni‐corrected for the
6419 genes tested)—except for some regions on chromo-
somes 6 and 17 where there were too many significant
genes to be plotted—along with MWAS results at
Understanding Society CpGs (outermost circle), TWAS
(second circle) results, SWAS results (third circle) and
GWAS results (innermost circle). A full list of the 63
implicated genes is given in Supporting Information:
Table 1, while Supporting Information: Table 2 addition-
ally includes the significant CPGs and significant splicing
sites (p< 6.39 × 10−6, corresponding to p= 0.05
Bonferroni‐corrected for the 7825 tests performed).
Further detailed analysis of each of the 63 implicated
gene regions, using fine‐mapping and complementary
approaches such as co‐localisation (Giambartolomei
et al., 2018), Mendelian Randomisation (Zuber et al.,
2022), and Bayesian Network analysis (Howey et al.,
2020, 2021) is beyond the scope of the current study, but
will be carried out in the near future to help elucidate the
underlying causal relationships between the different

biological phenomena investigated here and the extent to
which the same genetic factor(s) may underpin the
associations observed.

4 | DISCUSSION

Here we have extended the approach originally popu-
larised by PrediXcan (Gamazon et al., 2015) for testing
association between predicted gene expression levels and
a phenotype, to instead test for association between
predicted methylation levels and a phenotype, allowing
one to carry out MWAS to identify associations between
the trait and imputed methylation at CpGs across the
genome. In the original PrediXcan publication (Gamazon
et al., 2015), the authors considered prediction models
based on LASSO, elastic net with α= 0.5 and polygenic
scores. They found that LASSO performed similarly to
elastic net and both methods outperformed polygenic
scores; they subsequently focused on prediction models

FIGURE 6 Circos plot. Shown via links to the ideogram are the significant genes along with inner circles showing the −log10 p values
from tests of association with PBC and predicted methylation at Understanding Society CpGs (outermost circle), predicted gene expression
(second circle), predicted splicing (third circle) and measured (genotyped or imputed) SNPs (innermost circle). PBC, primary biliary
cholangitis; SNP, single‐nucleotide polymorphism.

FRYETT ET AL. | 637



using elastic net because it performed well and was more
robust to slight changes in input SNPs.

Comparing the performance of penalised regression
approaches for predicting methylation, similarly to what
we had seen previously for gene expression (Fryett et al.,
2020), we found that sparse models (trained with LASSO
or elastic net with α= 0.5) tended to outperform more
polygenic models (trained with ridge regression), sug-
gesting that the underlying local genetic architecture of
CpG methylation is sparse. While there has been no
formal investigation of the genetic architecture of CpG
methylation, mQTL studies have found that most CpG
sites have few mQTLs (if any), each with a large effect
size (Gaunt et al., 2016), which is indicative of a sparse
local architecture. Gene expression has also been shown
to have a sparse local architecture (Wheeler et al., 2016),
indicating this local sparsity may a feature shared by
multiple cellular traits.

A comparison of prediction accuracy estimates when
training CpG methylation prediction models using a
range of different window sizes showed that increasing
window size led to a marginal decrease on average
prediction accuracy across many CpG sites, although the
effect on the prediction accuracy of individual CpG sites
varied. Interestingly, there was no consistent direction of
effect to this, with some CpG sites benefitting from a
smaller window size, and others benefitting from a larger
window size, suggesting that the optimal window size for
the prediction of CpG methylation is a CpG‐specific
quantity. Before our analysis, there had been no
investigation into the effect of window size on the
accuracy with which CpG methylation can be predicted
from SNP genotypes. However, given that mQTL studies
have shown that methylation at a small number of CpGs
is regulated by SNPs distal to the CpG sites (Gaunt et al.,
2016), it is perhaps unsurprising that increasing the
window size to the point where some of these more distal
regulatory SNPs can be included in the prediction models
could improve prediction accuracy for some CpG sites. In
contrast, increasing the window size for the CpG sites
where methylation is not known to be regulated by distal
SNPs could lead to increased noise in the CpG
methylation prediction model fitting procedure, leading
to poorer estimation of the prediction model coefficients,
and subsequently poorer prediction accuracy. Given that
these distal regulatory SNPs are only known to exist for
some, not all, CpG sites, this may explain why the
average prediction accuracy across all CpG sites exam-
ined here fell slightly as the window size increased.

A crucial finding from our study is that methylation
at most CpG sites cannot be accurately predicted from
SNP genotypes. Through comparison with heritability
estimates obtained using GCTA, we found that

prediction accuracy estimates for most CpG sites
examined here approached their upper bound, and so
are unlikely to be increased much further at the current
window size and sample size. Despite most CpG sites
showing poor prediction accuracy and heritability
estimates, there exist a set of CpG sites where methyla-
tion can be predicted with accuracy, with some CpG sites
showing high degrees of prediction accuracy. We found
that these well‐predicted CpG sites are enriched at
enhancers and depleted at promoters, matching previ-
ously identified enrichments for CpG sites with mQTLs
(Banovich et al., 2014; Gutierrez‐Arcelus et al., 2013).
Importantly, prediction accuracy estimates for well‐
predicted CpG sites replicated when tested on an
independent data set, indicating that we have identified
real, reliable relationships between genotype and mea-
sured methylation. For these robustly predicted CpG
sites, our approach represents a powerful method to
investigate their role in complex traits.

As an illustration of our approach, we applied our
final CpG methylation prediction models to GWAS
summary data from PBC, identifying 782 significant
CpGs, many of which localised with significant regions of
association between predicted gene expression and/or
splicing. Further interrogation of these regions using
advanced co‐localisation and causal modelling analysis
techniques will help elucidate the interplay between CpG
methylation, gene expression and disease status, thus
improving our understanding of underlying biological
mechanisms. This PBC data set was chosen largely for
convenience (as we had easy access to the GWAS
summary statistics, generated previously by ourselves)
but also partly because our previous work with PBC led
us to expect the existence of strong GWAS signals,
making this a good data set to illustrate the approach; in
principle any disease exhibiting similarly strong GWAS
signals should work equally well.

We conclude by briefly discussing some limitations of
our study. We trained CpG methylation prediction
models using methylation data measured in blood, since
the only large‐scale data sets available with both genome‐
wide SNP data and genome‐wide methylation are blood‐
based. However, blood is unlikely to be the true causal
tissue of interest for many complex traits. Studies have
found strong concordance between the effects of SNPs on
methylation in blood and the effects of those same SNPs
on methylation in other tissues (Hannon et al., 2017; Lin
et al., 2018; Shi et al., 2014), however, the number of
tissues studied and the sample sizes used in these studies
has been limited. Thus, it is difficult to say how well our
prediction models or association results translate to
tissues of interest. Additionally, both data sets used to
generate prediction models are from populations of
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British ancestry. To date, there has been little study of
how genetic effects on methylation differ across popula-
tions. In TWAS, gene expression prediction accuracy is
reduced when using prediction models trained using
samples of a different ancestry to the samples in the
GWAS data (Mikhaylova & Thornton, 2019; Mogil et al.,
2018). Should the CpG methylation prediction models
generated here be used in an MWAS of a non‐European
population, a similar reduction in prediction accuracy
would likely be observed.

In our study, we focussed on comparing a limited set
of (penalised regression based) prediction methods and a
limited set of five possible window sizes for choosing the
SNP predictors. This was in part motivated by the success
of such approaches for predicting gene expression
(Gamazon et al., 2015) for use in subsequent association
testing (via TWAS) with a phenotype of interest.
Although alternative methods (e.g., based on support
vector machines or deep learning) have been developed
to predict DNA methylation (Bhasin et al., 2005; Levy
et al., 2020; Tang et al., 2020; Tian et al., 2019; W. Zhang,
Spector, et al., 2015; Zhou et al., 2012), these methods are
not generally designed to predict methylation from SNP
genotype data alone (as would be needed to take the
models forward for MWAS, in conjunction with
individual‐level SNP genotypes or GWAS summary
statistics for a phenotype of interest), but they rather
make use of additional features (such as full DNA
sequence data, histone modification marks or transcrip-
tion factor binding sites) to inform the prediction. This is
a much richer set of features than would generally be
available in publicly (or privately) available GWAS data
sets, limiting the applicability for subsequent MWAS of
any models that encompass these features.

Limiting the search for SNP predictors to five possible
(CpG‐specific) window sizes was largely a pragmatic
choice. It is possible that improved prediction for any
given CpG could be achieved through use of a window
size not considered here, or through a more complicated
scheme such as adapting the window size to the local LD
pattern. However, we note that optimal prediction of
methylation per se is not our ultimate goal; we are more
interested in the power to detect associations through
MWAS, which relies not only on the accuracy of the
methylation imputation, but also on the sample size of
the GWAS data (or summary statistics) to be used. Thus,
an association can still be detected for CpGs with low
prediction R, provided a GWAS with a sufficiently large
sample size is used.

In conclusion, our study suggests that MWAS based
on imputed methylation levels represents a potentially
powerful approach for aiding the interpretation of GWAS
data and interrogating the relationship between CpG

methylation and gene expression. Further development
and application of this method may help improve
understanding of the role of CpG methylation and gene
expression in complex trait biology and to identify
potential targets for disease therapy.

AUTHOR CONTRIBUTIONS
Heather J. Cordell and Andrew P. Morris conceived and
designed the project and played an important role in
interpreting the results. James J. Fryett and Heather J.
Cordell carried out data analysis and drafted the
manuscript. All authors contributed to revising the
manuscript and approved the final paper.

ACKNOWLEDGEMENTS
This study includes data from ALSPAC. We are
extremely grateful to all the families who took part in
this study, the midwives for their help in recruiting them,
and the whole ALSPAC team, which includes inter-
viewers, computer and laboratory technicians, clerical
workers, research scientists, volunteers, managers, recep-
tionists and nurses. This study was funded in whole, or in
part, by the Wellcome Trust (Grant numbers: 102858/Z/
13/Z and 219424/Z/19/Z). For the purpose of open
access, the author has applied a CC BY public copyright
licence to any Author Accepted Manuscript version
arising from this submission. J. J. F. was funded by a
BBSRC DTP studentship (BB/M011186/1). H. J. C. was
funded by a Wellcome Senior Research Fellowship in
Basic Biomedical Science (102858/Z/13/Z) and a Well-
come Investigator Award in Science (219424/Z/19/Z). A.
P. M. acknowledges support from Versus Arthritis (grant
reference 21754). This study includes data from ALSPAC.
The UK Medical Research Council and Wellcome
(Grant ref: 217065/Z/19/Z) and the University of Bristol
provide core support for ALSPAC. A comprehensive
list of grants funding is available on the ALSPAC website
(http://www.bristol.ac.uk/alspac/external/documents/grant
‐acknowledgements.pdf). Collection of genotype data from
the ARIES mothers was funded by the Wellcome Trust
(WT088806). Collection of the ARIES methylation data
was funded by the BBSRC (BBI025751/1 and BB/
I025263/1), the MRC Integrative Epidemiology Unit at
the University of Bristol (MC_UU_12013/1 &
MC_UU_12013/2 & MC_UU_12013/8), the LLHW via
MRC (G1001357) and the Wellcome Trust (WT092830/Z/
10/Z). This study includes data from Understanding
Society: The UK Household Longitudinal Study, which is
led by the Institute for Social and Economic Research at
the University of Essex and funded by the Economic and
Social Research Council (Grant Number: ES/M008592/
1). The data were collected by NatCen and the genome
wide scan data were analysed by the Wellcome Trust

FRYETT ET AL. | 639

http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf


Sanger Institute. Information on how to access the data
can be found on the Understanding Society website
https://www.understandingsociety.ac.uk/. Data govern-
ance was provided by the METADAC data access
committee, funded by ESRC, Wellcome, and MRC.
(2015‐2018: Grant Number MR/N01104X/1 2018‐2020:
Grant Number ES/S008349/1). The Genotype‐Tissue
Expression (GTEx) Project was supported by the
Common Fund of the Office of the Director of the
National Institutes of Health, and by NCI, NHGRI,
NHLBI, NIDA, NIMH, and NINDS. The data used for the
analyses described in this manuscript were obtained
from the GTEx Portal.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
ARIES (ALSPAC) and Understanding Society data are
available by application to ALSPAC (http://www.bristol.ac.
uk/alspac/researchers/access/) and Understanding Society
(https://www.understandingsociety.ac.uk/documentation/
health‐assessment/accessing-data), respectively. Results gen-
erated during this study can be found within the published
article and its supplementary files, with the final ARIES and
Understanding Society methylation prediction models that
we developed (.db files, ready for use with S‐PrediXcan)
freely available for download from https://www.staff.ncl.ac.
uk/heather.cordell/MethPaper.html.

ORCID
Heather J. Cordell http://orcid.org/0000-0002-
1879-5572

REFERENCES
Banovich, N. E., Lan, X., McVicker, G., van de Geijn, B.,

Degner, J. F., Blischak, J. D., Roux, J., Pritchard, J. K., &
Gilad, Y. (2014). Methylation QTLs are associated with
coordinated changes in transcription factor binding, histone
modifications, and gene expression levels. PLoS Genetics,
10(9), e1004663. https://doi.org/10.1371/journal.pgen.1004663

Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J.,
Wheeler, H. E., Torres, J. M., Torstenson, E. S., Shah, K. P.,
Garcia, T., Edwards, T. L., Stahl, E. A., Huckins, L. M.,
GTEx, C., Nicolae, D. L., Cox, N. J., & Im, H. K. (2018).
Exploring the phenotypic consequences of tissue specific gene
expression variation inferred from GWAS summary statistics.
Nature Communications, 9(1), 1825. https://doi.org/10.1038/
s41467-018-03621-1

Bell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., Glass, D.,
Mangino, M., Zhai, G., Zhang, F., Valdes, A., Shin, S. Y.,
Dempster, E. L., Murray, R. M., Grundberg, E., Hedman, A. K.,
Nica, A., Small, K. S., MuTHER, C., Dermitzakis, E. T., …
Deloukas, P. (2012). Epigenome‐wide scans identify differentially
methylated regions for age and age‐related phenotypes in a

healthy ageing population. PLoS Genetics, 8(4), e1002629. https://
doi.org/10.1371/journal.pgen.1002629

Bhasin, M., Zhang, H., Reinherz, E. L., & Reche, P. A. (2005).
Prediction of methylated CpGs in DNA sequences using a
support vector machine. FEBS Letters, 579(20), 4302–4308.
https://doi.org/10.1016/j.febslet.2005.07.002

Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A.,
Henderson, J., Molloy, L., Ness, A., Ring, S., &
Davey Smith, G. (2013). Cohort profile: The ‘children of the
90s’—The index offspring of the Avon Longitudinal Study of
parents and children. International Journal of Epidemiology,
42(1), 111–127. https://doi.org/10.1093/ije/dys064

Chen, L., Ge, B., Casale, F. P., Vasquez, L., Kwan, T., Garrido‐
Martín, D., Watt, S., Yan, Y., Kundu, K., Ecker, S., Datta, A.,
Richardson, D., Burden, F., Mead, D., Mann, A. L.,
Fernandez, J. M., Rowlston, S., Wilder, S. P., Farrow, S., …
Soranzo, N. (2016). Genetic drivers of epigenetic and
transcriptional variation in human immune cells. Cell, 167(5),
1398–1414. https://doi.org/10.1016/j.cell.2016.10.026

Cordell, H. J., Fryett, J. J., Ueno, K., Darlay, R., Aiba, Y., Hitomi, Y.,
Kawashima, M., Nishida, N., Khor, S. S., Gervais, O.,
Kawai, Y., Nagasaki, M., Tokunaga, K., Tang, R., Shi, Y.,
Li, Z., Juran, B. D., Atkinson, E. J., Gerussi, A., … UK‐PBC, C.
(2021). An international genome‐wide meta‐analysis of
primary biliary cholangitis: Novel risk loci and candidate
drugs. Journal of Hepatology, 75(3), 572–581. https://doi.org/
10.1016/j.jhep.2021.04.055

Dhana, K., Braun, K., Nano, J., Voortman, T., Demerath, E. W.,
Guan, W., Fornage, M., van Meurs, J., Uitterlinden, A. G.,
Hofman, A., Franco, O. H., & Dehghan, A. (2018). An
Epigenome‐Wide Association Study (EWAS) of obesity‐related
traits. American Journal of Epidemiology, 187, 1662–1669.
https://doi.org/10.1093/aje/kwy025

van Dongen, J., Nivard, M. G., Willemsen, G., Hottenga, J. J.,
Helmer, Q., Dolan, C. V., Ehli, E. A., Davies, G. E.,
van Iterson, M., Breeze, C. E., Beck, S., BIOS, C.,
Suchiman, H. E., Jansen, R., van Meurs, J. B., Heijmans, B. T.,
Slagboom, P. E., & Boomsma, D. I. (2016). Genetic and
environmental influences interact with age and sex in shaping
the humanmethylome.Nature Communications, 7, 11115. https://
doi.org/10.1038/ncomms11115

Fraser, A., Macdonald‐Wallis, C., Tilling, K., Boyd, A., Golding, J.,
Davey Smith, G., Henderson, J., Macleod, J., Molloy, L.,
Ness, A., Ring, S., Nelson, S. M., & Lawlor, D. A. (2013).
Cohort profile: The Avon Longitudinal Study of parents and
children: ALSPAC mothers cohort. International Journal of
Epidemiology, 42(1), 97–110. https://doi.org/10.1093/ije/
dys066

Friedman, J. H., Hastie, T., & Tibshirani, R. (2010). Regularization
paths for generalized linear models via coordinate descent.
Journal of Statistical Software, 33, 1–22. https://doi.org/10.
18637/jss.v033.i01

Fryett, J. J., Morris, A. P., & Cordell, H. J. (2020). Investigation of
prediction accuracy and the impact of sample size, ancestry,
and tissue in transcriptome‐wide association studies. Genetic
Epidemiology, 44(5), 425–441. https://doi.org/10.1002/gepi.
22290

Gallagher, M. D., & Chen‐Plotkin, A. S. (2018). The Post‐GWAS
era: From association to function. American Journal of Human

640 | FRYETT ET AL.

https://www.understandingsociety.ac.uk/
http://www.bristol.ac.uk/alspac/researchers/access/
http://www.bristol.ac.uk/alspac/researchers/access/
https://www.understandingsociety.ac.uk/documentation/health-assessment/accessing-data
https://www.understandingsociety.ac.uk/documentation/health-assessment/accessing-data
https://www.staff.ncl.ac.uk/heather.cordell/MethPaper.html
https://www.staff.ncl.ac.uk/heather.cordell/MethPaper.html
http://orcid.org/0000-0002-1879-5572
http://orcid.org/0000-0002-1879-5572
https://doi.org/10.1371/journal.pgen.1004663
https://doi.org/10.1038/s41467-018-03621-1
https://doi.org/10.1038/s41467-018-03621-1
https://doi.org/10.1371/journal.pgen.1002629
https://doi.org/10.1371/journal.pgen.1002629
https://doi.org/10.1016/j.febslet.2005.07.002
https://doi.org/10.1093/ije/dys064
https://doi.org/10.1016/j.cell.2016.10.026
https://doi.org/10.1016/j.jhep.2021.04.055
https://doi.org/10.1016/j.jhep.2021.04.055
https://doi.org/10.1093/aje/kwy025
https://doi.org/10.1038/ncomms11115
https://doi.org/10.1038/ncomms11115
https://doi.org/10.1093/ije/dys066
https://doi.org/10.1093/ije/dys066
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1002/gepi.22290
https://doi.org/10.1002/gepi.22290


Genetics, 102(5), 717–730. https://doi.org/10.1016/j.ajhg.2018.
04.002

Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V.,
Aquino‐Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C.,
GTEx, C., Nicolae, D. L., Cox, N. J., & Im, H. K. (2015). A
gene‐based association method for mapping traits using
reference transcriptome data. Nature Genetics, 47(9),
1091–1098. https://doi.org/10.1038/ng.3367

Gaunt, T. R., Shihab, H. A., Hemani, G., Min, J. L., Woodward, G.,
Lyttleton, O., Zheng, J., Duggirala, A., McArdle, W. L., Ho, K.,
Ring, S. M., Evans, D. M., Davey Smith, G., & Relton, C. L.
(2016). Systematic identification of genetic influences on
methylation across the human life course. Genome Biology, 17,
61. https://doi.org/10.1186/s13059-016-0926-z

Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M.,
Shi, H., Boocock, J., Pickrell, J., Jaffe, A. E., CommonMind, C.,
Pasaniuc, B., & Roussos, P. (2018). A Bayesian framework for
multiple trait colocalization from summary association statis-
tics. Bioinformatics, 34(15), 2538–2545. https://doi.org/10.
1093/bioinformatics/bty147

Grundberg, E., Meduri, E., Sandling, J. K., Hedman, A. K., Keildson, S.,
Buil, A., Busche, S., Yuan, W., Nisbet, J., Sekowska, M., Wilk, A.,
Barrett, A., Small, K. S., Ge, B., Caron, M., Shin, S. Y.,
Multiple Tissue Human Expression Resource, C., Lathrop, M.,
Dermitzakis, E. T., … Deloukas, P. (2013). Global analysis of DNA
methylation variation in adipose tissue from twins reveals links to
disease‐associated variants in distal regulatory elements. American
Journal of Human Genetics, 93(5), 876–890. https://doi.org/10.
1016/j.ajhg.2013.10.004

Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W.,
Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A.,
Sullivan, P. F., Nikkola, E., Alvarez, M., Civelek, M.,
Lusis, A. J., Lehtimäki, T., Raitoharju, E., Kähönen, M.,
Seppälä, I., … Pasaniuc, B. (2016). Integrative approaches for
large‐scale transcriptome‐wide association studies. Nature
Genetics, 48(3), 245–252. https://doi.org/10.1038/ng.3506

Gutierrez‐Arcelus, M., Lappalainen, T., Montgomery, S. B.,
Buil, A., Ongen, H., Yurovsky, A., Bryois, J., Giger, T.,
Romano, L., Planchon, A., Falconnet, E., Bielser, D.,
Gagnebin, M., Padioleau, I., Borel, C., Letourneau, A.,
Makrythanasis, P., Guipponi, M., Gehrig, C., …
Dermitzakis, E. T. (2013). Passive and active DNA methylation
and the interplay with genetic variation in gene regulation.
eLife, 2, e00523. https://doi.org/10.7554/eLife.00523

Hannon, E., Gorrie‐Stone, T. J., Smart, M. C., Burrage, J.,
Hughes, A., Bao, Y., Kumari, M., Schalkwyk, L. C., &
Mill, J. (2018). Leveraging DNA‐Methylation Quantitative‐
Trait loci to characterize the relationship between methylomic
variation, gene expression, and complex traits. American
Journal of Human Genetics, 103(5), 654–665. https://doi.org/
10.1016/j.ajhg.2018.09.007

Hannon, E., Knox, O., Sugden, K., Burrage, J., Wong, C.,
Belsky, D. W., Corcoran, D. L., Arseneault, L., Moffitt, T. E.,
Caspi, A., & Mill, J. (2018). Characterizing genetic and
environmental influences on variable DNA methylation using
monozygotic and dizygotic twins. PLoS Genetics, 14(8),
e1007544. https://doi.org/10.1371/journal.pgen.1007544

Hannon, E., Weedon, M., Bray, N., O'Donovan, M., & Mill, J.
(2017). Pleiotropic effects of trait‐associated genetic variation

on DNA methylation: Utility for refining GWAS loci.
American Journal of Human Genetics, 100(6), 954–959.
https://doi.org/10.1016/j.ajhg.2017.04.013

Hoerl, A. E., & Kennard, R. W. (2000). Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics, 42(1),
80–86. https://doi.org/10.2307/1271436

Howey, R., Clark, A. D., Naamane, N., Reynard, L. N., Pratt, A. G.,
& Cordell, H. J. (2021). A Bayesian network approach
incorporating imputation of missing data enables exploratory
analysis of complex causal biological relationships. PLoS
Genetics, 17(9), e1009811. https://doi.org/10.1371/journal.
pgen.1009811

Howey, R., Shin, S. Y., Relton, C., Davey Smith, G., & Cordell, H. J.
(2020). Bayesian network analysis incorporating genetic
anchors complements conventional Mendelian randomization
approaches for exploratory analysis of causal relationships in
complex data. PLoS Genetics, 16(3), e1008198. https://doi.org/
10.1371/journal.pgen.1008198

Ioannidis, N. M., Wang, W., Furlotte, N. A., Hinds, D. A., Research, T.,
Bustamante, C. D., Jorgenson, E., Asgari, M. M., &
Whittemore, A. S. (2018). Gene expression imputation identifies
candidate genes and susceptibility loci associated with cutaneous
squamous cell carcinoma. Nature Communications, 9(1), 4264.
https://doi.org/10.1038/s41467-018-06149-6

Khawaja, A. P., Cooke Bailey, J. N., Wareham, N. J., Scott, R. A.,
Simcoe, M., Igo RP, J. r, Jr., Song, Y. E., Wojciechowski, R.,
Cheng, C. Y., Khaw, P. T., Pasquale, L. R., Haines, J. L.,
Foster, P. J., Wiggs, J. L., Hammond, C. J., Hysi, P. G.,
UK Biobank Eye and Vision, C., & NEIGHBORHOOD, C.
(2018). Genome‐wide analyses identify 68 new loci associated
with intraocular pressure and improve risk prediction for
primary open‐angle glaucoma. Nature Genetics, 50(6),
778–782. https://doi.org/10.1038/s41588-018-0126-8

Levy, J. J., Titus, A. J., Petersen, C. L., Chen, Y., Salas, L. A., &
Christensen, B. C. (2020). MethylNet: an automated and
modular deep learning approach for DNA methylation
analysis. BMC Bioinformatics, 21(1), 108. https://doi.org/10.
1186/s12859-020-3443-8

Lin, D., Chen, J., Perrone‐Bizzozero, N., Bustillo, J. R., Du, Y.,
Calhoun, V. D., & Liu, J. (2018). Characterization of cross‐
tissue genetic‐epigenetic effects and their patterns in schizo-
phrenia. Genome Medicine, 10(1), 13. https://doi.org/10.1186/
s13073-018-0519-4

Luo, C., Hajkova, P., & Ecker, J. R. (2018). Dynamic DNA
methylation: In the right place at the right time. Science,
361(6409), 1336–1340. https://doi.org/10.1126/science.aat6806

MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E.,
Junkins, H., McMahon, A., Milano, A., Morales, J.,
Pendlington, Z. M., Welter, D., Burdett, T., Hindorff, L.,
Flicek, P., Cunningham, F., & Parkinson, H. (2017). The new
NHGRI‐EBI catalog of published genome‐wide association
studies (GWAS catalog. Nucleic Acids Research, 45(D1),
D896–D901. https://doi.org/10.1093/nar/gkw1133

Mancuso, N., Gayther, S., Gusev, A., Zheng, W., Penney, K. L., Kote
‐Jarai, Z., Eeles, R., Freedman, M., Haiman, C., & Pasaniuc, B.
(2018). Large‐scale transcriptome‐wide association study
identifies new prostate cancer risk regions. Nature
Communications, 9(1), 4079. https://doi.org/10.1038/s41467-
018-06302-1

FRYETT ET AL. | 641

https://doi.org/10.1016/j.ajhg.2018.04.002
https://doi.org/10.1016/j.ajhg.2018.04.002
https://doi.org/10.1038/ng.3367
https://doi.org/10.1186/s13059-016-0926-z
https://doi.org/10.1093/bioinformatics/bty147
https://doi.org/10.1093/bioinformatics/bty147
https://doi.org/10.1016/j.ajhg.2013.10.004
https://doi.org/10.1016/j.ajhg.2013.10.004
https://doi.org/10.1038/ng.3506
https://doi.org/10.7554/eLife.00523
https://doi.org/10.1016/j.ajhg.2018.09.007
https://doi.org/10.1016/j.ajhg.2018.09.007
https://doi.org/10.1371/journal.pgen.1007544
https://doi.org/10.1016/j.ajhg.2017.04.013
https://doi.org/10.2307/1271436
https://doi.org/10.1371/journal.pgen.1009811
https://doi.org/10.1371/journal.pgen.1009811
https://doi.org/10.1371/journal.pgen.1008198
https://doi.org/10.1371/journal.pgen.1008198
https://doi.org/10.1038/s41467-018-06149-6
https://doi.org/10.1038/s41588-018-0126-8
https://doi.org/10.1186/s12859-020-3443-8
https://doi.org/10.1186/s12859-020-3443-8
https://doi.org/10.1186/s13073-018-0519-4
https://doi.org/10.1186/s13073-018-0519-4
https://doi.org/10.1126/science.aat6806
https://doi.org/10.1093/nar/gkw1133
https://doi.org/10.1038/s41467-018-06302-1
https://doi.org/10.1038/s41467-018-06302-1


Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E.,
Haugen, E., Wang, H., Reynolds, A. P., Sandstrom, R.,
Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T.,
Stehling‐Sun, S., Johnson, A. K., Canfield, T. K., Giste, E.,
Diegel, M., … Stamatoyannopoulos, J. A. (2012). Systematic
localization of common disease‐associated variation in regula-
tory DNA. Science, 337(6099), 1190–1195. https://doi.org/10.
1126/science.1222794

Mikhaylova, A. V., & Thornton, T. A. (2019). Accuracy of gene
expression prediction from genotype data with PrediXcan
varies across and within continental populations. Frontiers in
Genetics, 10, 261. https://doi.org/10.3389/fgene.2019.00261

Min, J. L., Hemani, G., Hannon, E., Dekkers, K. F., Castillo‐
Fernandez, J., Luijk, R., & Relton, C. L. (2020). Genomic and
phenomic insights from an Atlas of genetic effects on DNA
methylation. medRxiv, 2020. https://doi.org/10.1101/2020.09.
01.20180406

Mogil, L. S., Andaleon, A., Badalamenti, A., Dickinson, S. P.,
Guo, X., Rotter, J. I., Johnson, W. C., Im, H. K., Liu, Y., &
Wheeler, H. E. (2018). Genetic architecture of gene expression
traits across diverse populations. PLoS Genetics, 14(8),
e1007586. https://doi.org/10.1371/journal.pgen.1007586

Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E., &
Cox, N. J. (2010). Trait‐associated SNPs are more likely to be
eQTLs: Annotation to enhance discovery from GWAS. PLoS
Genetics, 6(4), e1000888. https://doi.org/10.1371/journal.pgen.
1000888

Quon, G., Lippert, C., Heckerman, D., & Listgarten, J. (2013).
Patterns of methylation heritability in a genome‐wide analysis
of four brain regions. Nucleic Acids Research, 41(4), 2095–2104.
https://doi.org/10.1093/nar/gks1449

Relton, C. L., Gaunt, T., McArdle, W., Ho, K., Duggirala, A.,
Shihab, H., Woodward, G., Lyttleton, O., Evans, D. M.,
Reik, W., Paul, Y. L., Ficz, G., Ozanne, S. E., Wipat, A.,
Flanagan, K., Lister, A., Heijmans, B. T., Ring, S. M., &
Davey Smith, G. (2015). Data resource profile: Accessible
Resource for Integrated Epigenomic Studies (ARIES).
International Journal of Epidemiology, 44(4), 1181–1190.
https://doi.org/10.1093/ije/dyv072

Richardson, T. G., Shihab, H. A., Hemani, G., Zheng, J.,
Hannon, E., Mill, J., Carnero‐Montoro, E., Bell, J. T.,
Lyttleton, O., McArdle, W. L., Ring, S. M., Rodriguez, S.,
Campbell, C., Smith, G. D., Relton, C. L., Timpson, N. J., &
Gaunt, T. R. (2016). Collapsed methylation quantitative trait
loci analysis for low frequency and rare variants. Human
Molecular Genetics, 25(19), 4339–4349. https://doi.org/10.
1093/hmg/ddw283

Roselli, C., Chaffin, M. D., Weng, L. C., Aeschbacher, S.,
Ahlberg, G., Albert, C. M., Almgren, P., Alonso, A.,
Anderson, C. D., Aragam, K. G., Arking, D. E., Barnard, J.,
Bartz, T. M., Benjamin, E. J., Bihlmeyer, N. A., Bis, J. C.,
Bloom, H. L., Boerwinkle, E., Bottinger, E. B., … Rienstra, M.
(2018). Multi‐ethnic genome‐wide association study for atrial
fibrillation. Nature Genetics, 50(9), 1225–1233. https://doi.org/
10.1038/s41588-018-0133-9

Rowlatt, A., Hernández‐Suárez, G., Sanabria‐Salas, M. C., Serrano‐
López, M., Rawlik, K., Hernandez‐Illan, E., Alenda, C.,
Castillejo, A., Soto, J. L., Haley, C. S., & Tenesa, A. (2016).
The heritability and patterns of DNA methylation in normal

human colorectum. Human Molecular Genetics, 25(12),
2600–2611. https://doi.org/10.1093/hmg/ddw072

Schubeler, D. (2015). Function and information content of DNA
methylation. Nature, 517(7534), 321–326. https://doi.org/10.
1038/nature14192

Shi, J., Marconett, C. N., Duan, J., Hyland, P. L., Li, P., Wang, Z.,
Wheeler, W., Zhou, B., Campan, M., Lee, D. S., Huang, J.,
Zhou, W., Triche, T., Amundadottir, L., Warner, A.,
Hutchinson, A., Chen, P. H., Chung, B. S., Pesatori, A. C., …
Landi, M. T. (2014). Characterizing the genetic basis of
methylome diversity in histologically normal human lung
tissue. Nature Communications, 5, 3365. https://doi.org/10.
1038/ncomms4365

Story Jovanova, O., Nedeljkovic, I., Spieler, D., Walker, R. M.,
Liu, C., Luciano, M., Bressler, J., Brody, J., Drake, A. J.,
Evans, K. L., Gondalia, R., Kunze, S., Kuhnel, B., Lahti, J.,
Lemaitre, R. N., Marioni, R. E., Swenson, B., Himali, J. J.,
Wu, H., … Amin, N. (2018). DNA methylation signatures of
depressive symptoms in middle‐aged and elderly persons:
Meta‐analysis of multiethnic epigenome‐wide studies. JAMA
Psychiatry, 75(9), 949–959. https://doi.org/10.1001/jamapsyc
hiatry.2018.1725

Tang, J., Zou, J., Zhang, X., Fan, M., Tian, Q., Fu, S., Gao, S., & Fan, S.
(2020). PretiMeth: Precise prediction models for DNAmethylation
based on single methylation mark. BMC Genomics, 21(1), 364.
https://doi.org/10.1186/s12864-020-6768-9

Tehranchi, A. K., Myrthil, M., Martin, T., Hie, B. L., Golan, D., &
Fraser, H. B. (2016). Pooled ChIP‐Seq links variation in
transcription factor binding to complex disease risk. Cell,
165(3), 730–741. https://doi.org/10.1016/j.cell.2016.03.041

Tian, Q., Zou, J., Tang, J., Fang, Y., Yu, Z., & Fan, S. (2019).
MRCNN: A deep learning model for regression of genome‐
wide DNA methylation. BMC Genomics, 20(Suppl. 2), 192.
https://doi.org/10.1186/s12864-019-5488-5

Tibshirani, R. (1996). Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society. Series
B (Methodological), 58(1), 267–288.

University of Essex, Institute for Social and Economic Research, N.
S. R., & University of Exeter Medical School. (2017). Under-
standing Society: DNA methylation data based on Illumina
methylation EPIC array.

University of Essex, Institute for Social and Economic Research, N.
S. R., & Wellcome Trust Sanger Institute. (2015). Under-
standing Society: Genome Wide SNP data based on the Illumina
human core exome array.

Volkov, P., Olsson, A. H., Gillberg, L., Jørgensen, S. W., Brøns, C.,
Eriksson, K. F., Groop, L., Jansson, P. A., Nilsson, E., Rönn, T.,
Vaag, A., & Ling, C. (2016). A genome‐wide mQTL analysis in
human adipose tissue identifies genetic variants associated
with DNA methylation, gene expression and metabolic traits.
PLoS One, 11(6), e0157776. https://doi.org/10.1371/journal.
pone.0157776

Wheeler, H. E., Shah, K. P., Brenner, J., Garcia, T., Aquino‐Michaels,
K., Gtex, C., Cox, N. J., Nicolae, D. L., & Im, H. K. (2016). Survey
of the heritability and sparse architecture of gene expression traits
across human tissues. PLoS Genetics, 12(11), e1006423. https://doi.
org/10.1371/journal.pgen.1006423

Xu, C. J., Soderhall, C., Bustamante, M., Baiz, N., Gruzieva, O.,
Gehring, U., & Koppelman, G. H. (2018). DNA methylation in

642 | FRYETT ET AL.

https://doi.org/10.1126/science.1222794
https://doi.org/10.1126/science.1222794
https://doi.org/10.3389/fgene.2019.00261
https://doi.org/10.1101/2020.09.01.20180406
https://doi.org/10.1101/2020.09.01.20180406
https://doi.org/10.1371/journal.pgen.1007586
https://doi.org/10.1371/journal.pgen.1000888
https://doi.org/10.1371/journal.pgen.1000888
https://doi.org/10.1093/nar/gks1449
https://doi.org/10.1093/ije/dyv072
https://doi.org/10.1093/hmg/ddw283
https://doi.org/10.1093/hmg/ddw283
https://doi.org/10.1038/s41588-018-0133-9
https://doi.org/10.1038/s41588-018-0133-9
https://doi.org/10.1093/hmg/ddw072
https://doi.org/10.1038/nature14192
https://doi.org/10.1038/nature14192
https://doi.org/10.1038/ncomms4365
https://doi.org/10.1038/ncomms4365
https://doi.org/10.1001/jamapsychiatry.2018.1725
https://doi.org/10.1001/jamapsychiatry.2018.1725
https://doi.org/10.1186/s12864-020-6768-9
https://doi.org/10.1016/j.cell.2016.03.041
https://doi.org/10.1186/s12864-019-5488-5
https://doi.org/10.1371/journal.pone.0157776
https://doi.org/10.1371/journal.pone.0157776
https://doi.org/10.1371/journal.pgen.1006423
https://doi.org/10.1371/journal.pgen.1006423


childhood asthma: An epigenome‐wide meta‐analysis. Lancet
Respiratory Medicine, 6(5), 379–388. https://doi.org/10.1016/
s2213-2600(18)30052-3

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K.,
Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G.,
Montgomery, G. W., Goddard, M. E., & Visscher, P. M. (2010).
Common SNPs explain a large proportion of the heritability
for human height. Nature Genetics, 42(7), 565–569. https://doi.
org/10.1038/ng.608

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011).
GCTA: A tool for genome‐wide complex trait analysis.
American Journal of Human Genetics, 88(1), 76–82. https://
doi.org/10.1016/j.ajhg.2010.11.011

Zhang, W., Spector, T. D., Deloukas, P., Bell, J. T., &
Engelhardt, B. E. (2015). Predicting genome‐wide DNA
methylation using methylation marks, genomic position, and
DNA regulatory elements. Genome Biology, 16(1), 14. https://
doi.org/10.1186/s13059-015-0581-9

Zhang, X., Joehanes, R., Chen, B. H., Huan, T., Ying, S.,
Munson, P. J., Johnson, A. D., Levy, D., & O'Donnell, C. J.
(2015). Identification of common genetic variants controlling
transcript isoform variation in human whole blood. Nature
Genetics, 47(4), 345–352. https://doi.org/10.1038/ng.3220

Zhou, X., Li, Z., Dai, Z., & Zou, X. (2012). Prediction of methylation
CpGs and their methylation degrees in human DNA
sequences. Computers in Biology and Medicine, 42(4),
408–413. https://doi.org/10.1016/j.compbiomed.2011.12.008

Zou, H., & Hastie, T. (2005). Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society. Series
B (Statistical Methodology), 67(2), 301–320.

Zuber, V., Grinberg, N. F., Gill, D., Manipur, I., Slob, E., Patel, A.,
Wallace, C., & Burgess, S. (2022). Combining evidence from
Mendelian randomization and colocalization: Review and
comparison of approaches. American Journal of Human
Genetics, 109(5), 767–782. https://doi.org/10.1016/j.ajhg.2022.
04.001

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Fryett, J. J., Morris, A.
P., & Cordell, H. J. (2022). Investigating the
prediction of CpG methylation levels from SNP
genotype data to help elucidate relationships
between methylation, gene expression and
complex traits. Genetic Epidemiology, 46, 629–643.
https://doi.org/10.1002/gepi.22496

FRYETT ET AL. | 643

https://doi.org/10.1016/s2213-2600(18)30052-3
https://doi.org/10.1016/s2213-2600(18)30052-3
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.1186/s13059-015-0581-9
https://doi.org/10.1038/ng.3220
https://doi.org/10.1016/j.compbiomed.2011.12.008
https://doi.org/10.1016/j.ajhg.2022.04.001
https://doi.org/10.1016/j.ajhg.2022.04.001
https://doi.org/10.1002/gepi.22496



