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INTRODUCTION

Ectotherms represent most of the animal diversity on the 
planet (Zhang, 2013), yet they are particularly vulnerable 
to extreme heat events (Angilletta,  2009). Extreme heat 

events are predicted to become fourteen times more likely 
to occur, and to generate temperatures 2.7°C higher by 
2100 relative to the previous century (Arias et al., 2021). As 
such, it is crucial to understand how ectotherms will ad-
just to rapidly changing temperatures in the future (Chevin 
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Abstract

Understanding the factors affecting thermal tolerance is crucial for predicting the 

impact climate change will have on ectotherms. However, the role developmental 

plasticity plays in allowing populations to cope with thermal extremes is poorly 

understood. Here, we meta- analyse how thermal tolerance is initially and 

persistently impacted by early (embryonic and juvenile) thermal environments by 

using data from 150 experimental studies on 138 ectothermic species. Thermal 

tolerance only increased by 0.13°C per 1°C change in developmental temperature 

and substantial variation in plasticity (~36%) was the result of shared evolutionary 

history and species ecology. Aquatic ectotherms were more than three times as 

plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more 

heterogenous plasticity than older life stages, with numerous responses appearing 

as non- adaptive. While developmental temperatures did not have persistent effects 

on thermal tolerance overall, persistent effects were vastly under- studied, and their 

direction and magnitude varied with ontogeny. Embryonic stages may represent a 

critical window of vulnerability to changing environments and we urge researchers 

to consider early life stages when assessing the climate vulnerability of ectotherms. 

Overall, our synthesis suggests that developmental changes in thermal tolerance 

rarely reach levels of perfect compensation and may provide limited benefit in 

changing environments.
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et al.,  2010; Hoffmann & Sgrò,  2011; Noble et al.,  2019; 
Seebacher et al., 2015). While genetic adaptation is a key 
mechanism by which populations can adapt, it can be 
slow and is constrained by genetic (co)variation (Chevin 
et al.,  2010). Instead, phenotypic changes within an an-
imal's lifetime (i.e., phenotypic plasticity) may be a more 
effective mechanism to cope with abrupt environmental 
changes— allowing ectotherms to withstand extreme heat 
events for longer, buying time for evolutionary rescue 
to occur (Bush et al., 2016; Morley et al., 2019). Thermal 
tolerance is a key trait permitting organisms to deal with 
thermal stress and is known to respond to the environ-
ment plastically (Gunderson et al.,  2017; Gunderson & 
Stillman, 2015; Morley et al., 2019; Pottier, Burke, Drobniak 
et al., 2021; Rohr et al., 2018). Thermal tolerance traits (e.g., 
CTmax, CTmin) can be used to understand how species dis-
tributions will be impacted by climate change (e.g., Sunday 
et al., 2012, 2014; Comte & Olden, 2017; Pinsky et al., 2019). 
Nonetheless, broad- scale ecophysiological models rarely 
account for plasticity in thermal tolerance (Bush et al., 2016; 
Huey et al., 2012). In addition, most syntheses examining 
plasticity in thermal tolerance have not assessed whether 
embryonic, juvenile and adult stages differ in the extent of 
their plasticity (Bodensteiner et al., 2021).

Early life stages, however, are crucial periods 
during development that are often the most impacted 
by temperature (Bodensteiner et al.,  2021; Fawcett & 
Frankenhuis, 2015; Noble et al., 2018; O'Dea et al., 2019; 
Refsnider et al.,  2019; Truebano et al.,  2018; Turriago 
et al.,  2015; While et al.,  2018). Neglecting how early 
(embryonic and/or juvenile) environmental experi-
ences shape thermal tolerance (i.e., developmental plas-
ticity) may be an important oversight given that early 
life experiences have major and often long- lasting ef-
fects on phenotypes (Bodensteiner et al.,  2021; Noble 
et al.,  2018; O'Dea et al.,  2019; Refsnider et al.,  2019; 
While et al.,  2018). Importantly, examining whether 
thermal tolerance is persistently shaped by early ther-
mal environments has critical implications for ecophys-
iological modelling and experimental research. In fact, 
experimental studies often assume that laboratory accli-
mation erase the effects of thermal history (Kellermann 
et al., 2017) and that adult plasticity does not vary with 
early thermal conditions (Beaman et al.,  2016; Healy 
et al.,  2019; Kellermann & Sgrò,  2018). However, early 
life stages are predicted to differ in their levels of plas-
ticity relative to adults because these stages often coin-
cide with limited mobility— forcing organisms to cope 
with the environmental conditions in which they settle. 
Without resort to behavioural thermoregulation, selec-
tion for more plastic responses may occur disproportion-
ately in early life stages relative to adults (Bodensteiner 
et al., 2021; Muñoz, 2021; but see Mitchell et al., 2013). 
In addition, plastic responses are expected to be costly 
(DeWitt et al., 1998, but see Murren et al., 2015). As such, 
the self- reliance of early life stages on endogenous en-
ergy reserves and the costs imposed by developmental 

processes (Marshall et al.,  2020; Pettersen et al.,  2018) 
may constrain the allocation of energy to diverse func-
tions, including plastic responses to temperatures.

Taken together, weaker plastic responses are expected 
in early life stages if energy allocation trade- offs have a 
predominant role, whereas selection for stronger plas-
ticity could occur due to limited thermoregulatory abil-
ities. Importantly, the interplay between basal thermal 
tolerance and plasticity throughout ontogeny is essential 
to consider in broad- scale quantifications of climate 
vulnerability (Ruthsatz et al.,  2022). Ontogenetic vari-
ation in absolute thermal tolerance may be mitigated 
or further exacerbated by varying levels of plasticity 
throughout the life cycle. For instance, if the lower ther-
mal tolerance of embryos (Truebano et al., 2018; Dahlke 
et al., 2020; but see Pottier, Burke, Drobniak, et al., 2022 
and Dahlke et al., 2022) is associated with low plasticity, 
then this life stage may be the most sensitive to abrupt 
climate change. Therefore, it is crucial to investigate 
whether early life stages can acclimate to new tempera-
tures (i.e., initial effects), whether those responses persist 
(i.e., persistent effects), and how the magnitude of plas-
tic responses to temperatures vary with ontogeny. Yet, 
no study has systematically addressed those questions 
across ectothermic species. A meta- analysis of the pub-
lished experimental data could help delineate the initial 
and persistent effects of developmental temperatures on 
thermal tolerance, as well as explaining the heteroge-
neity across studies. For instance, a meta- analysis may 
resolve discrepancies between studies by increasing sta-
tistical power (Duffy et al., 2021) and highlighting poten-
tial differences between species based on their ecology, 
evolutionary history, or differences in experimental 
methodology (Gurevitch et al., 2018).

Here, we synthesize the current evidence to quantify 
the magnitude and variability of developmental plas-
ticity in heat tolerance across ectotherms, using a meta- 
analysis of the experimental literature. We hypothesised 
that, overall, early- life stages acclimated to higher tem-
peratures would be more heat tolerant than animals accli-
mated to lower temperatures, reflecting similar patterns 
as in adult animals (e.g., Gunderson & Stillman, 2015). 
We also hypothesised that the levels of developmen-
tal plasticity would vary with ontogeny. Specifically, 
we hypothesised that temperatures experienced during 
embryonic development would have stronger influence 
on heat tolerance than during juvenile development be-
cause the limited ability for embryos to thermoregulate 
behaviourally may have selected for greater plastic re-
sponses. In addition, manipulating the temperature of 
both embryonic and juvenile development may increase 
an animal's plasticity by spanning various developmen-
tal windows of sensitivity to temperatures. Alternatively, 
we predicted the opposite pattern if juveniles can invest 
additional energy into physiological regulation via feed-
ing. Indeed, the reliance of embryos on endogenous en-
ergy reserves might constrain the resource investment 
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into plastic responses. For all life stages, we hypothe-
sised that the effects of developmental temperatures on 
heat tolerance will persist throughout the life of the an-
imals. However, the magnitude of persistent responses 
should decline as animals are re- acclimated to common 
garden conditions for extended periods after the initial 
acclimation.

We also hypothesised that the developmental plasticity 
of ectotherms will vary based on their ecology. Because 
terrestrial habitats tend to have a greater seasonal and 
daily temperature variability than aquatic habitats, we 
predicted terrestrial animals to be more developmentally 
plastic than their aquatic counterparts as greater sea-
sonality may select for greater plastic responses (Janzen, 
1967; Ghalambor et al., 2006; Chevin & Hoffmann, 2017). 
Alternatively, because changes in water temperature result 
in faster changes in body temperature (Angilletta, 2009; 
Denny,  1993), plastic responses may be more strongly 
selected in aquatic taxa because of increased exposure 
to temperature variability (Chevin & Hoffmann,  2017). 
Finally, we investigated sources of methodological varia-
tion such as differences in thermal tolerance metrics (i.e., 
LT50 or CTmax) and assay heating rates.

M ATERI A LS A N D M ETHODS

Protocol, registration, and reporting

We preregistered our predictions (see introduction), 
methods and planned analyses prior to data extrac-
tion and analysis (https://osf.io/zkx6u; Pottier, Burke, 
Zhang, et al., 2021). We followed the PRISMA- EcoEvo 
(Preferred Reporting Items for Systematic reviews & 
Meta- Analyses in Ecology and Evolutionary biology; 
O'Dea et al.,  2021) guidelines for reporting this study 
(Table  S4). Data, code, and additional resources are 
available at https://github.com/p- potti er/Dev_plast icity_
therm al_toler ance (Pottier, Burke, Zhang, et al., 2022).

Literature searches and study selection

We aimed to obtain a relatively comprehensive and 
representative sample of the experimental literature 
(published or unpublished) testing for the developmen-
tal plasticity of heat tolerance in ectotherms. We ac-
cessed Scopus, ISI Web of Science (core collection), and 
ProQuest (dissertations & theses) on 2021/03/05 and did 
not apply a timespan limit. Search strings were tailored 
to each database (full search strings are presented in 
Supporting Information S1; supplementary methods) to 
capture studies manipulating developmental tempera-
tures of ectothermic animals, and subsequently measur-
ing their heat tolerance. In addition to database searches, 
we performed backward searches in Scopus to search 
for relevant studies citing four influential publications 

(Schaefer and Ryan (2006); and Bodensteiner et al., 2021, 
Bowler & Terblanche,  2008 and Refsnider et al.,  2019). 
We also included studies testing CTmax in Table I and 
Table II of Bodensteiner et al.  (2021) and Refsnider 
et al. (2019), respectively. Finally, we included all studies 
cited in Bowler and Terblanche  (2008) but did not per-
form a forward search from Schaefer and Ryan  (2006) 
because it was not a literature review.

Our searches found 5996 unique documents. Titles, 
abstracts, and keywords were screened by PP (90%), SB 
(5%) and RZ (5%) in Rayyan QCRI (Ouzzani et al., 2016). 
A total of 571 documents were further assessed for eligi-
bility by PP. Thirty- five documents were not accessible 
to the authors, and 32 studies were missing descriptive 
statistics for their direct inclusion in the meta- analysis 
(mean, sample size, and measure of dispersion). We con-
tacted the authors of the original studies to request miss-
ing information if the study was published after 1995. We 
imputed missing standard deviations when authors did 
not respond but we could not impute missing standard 
errors (see Data extraction and effect size calculation). 
One study (Cheung, 2019) was found to be eligible during 
pilot searches using Google Scholar (i.e., benchmark-
ing, sensu Foo et al., 2021), but was not captured by our 
search methods. Search methods are summarized in our 
PRISMA flowchart (Figure 1), and included studies are 
listed in the Data sources section.

Eligibility criteria

We focused on studies that chronically manipulated 
the developmental (embryonic or juvenile) tempera-
ture of ectothermic animals, and subsequently meas-
ured their heat tolerance. We selected studies based 
on seven eligibility criteria (Figures S1, S2). First, we 
only included studies on ectothermic animals. Second, 
we focused our study on manipulative laboratory ex-
periments. Third, we only considered studies using 
standard and ecologically- relevant measures of heat 
tolerance (Terblanche et al., 2011). Eligible heat toler-
ance metrics were (i) the critical thermal maximum 
(CTmax), where temperature is incrementally increased 
until animals reach an endpoint (dynamic method; 
Lutterschmidt & Hutchison,  2011), and (ii) the tem-
perature lethal for 50% of the animals (LT50), where 
animals are subjected to constant temperatures and 
their survival is measured after a given period (static 
method; Fry, 1947). We also considered studies meas-
uring the time to death (or heat knockdown) at differ-
ent static temperatures because these measures can be 
converted to CTmax using regression approaches (see 
Rezende et al.,  2014; Jørgensen et al.,  2019, 2021). To 
increase the comparability of our estimates, we ex-
cluded alternative proxies for heat tolerance such as 
heat knockdown recovery time, or extrapolations from 
physiological performance curves. Fourth, we only 

https://osf.io/zkx6u
https://github.com/p-pottier/Dev_plasticity_thermal_tolerance
https://github.com/p-pottier/Dev_plasticity_thermal_tolerance
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included studies where animals experienced controlled 
early thermal environments during their embryonic 
development. Therefore, only data from animals born 
in captivity were included. Fifth, we included studies 
using ≥2 developmental constant or f luctuating tem-
peratures differing by their mean and controlled in 
a laboratory setting. Fluctuating treatments were in-
cluded provided they were comparable (i.e., differing 
by their mean, but having a comparable f luctuation). 
Sixth, we considered any prolonged (≥ 24 h) tempera-
ture experienced during the embryonic or juvenile 
stage as a relevant manipulation of developmental 
temperature. Hence, we excluded studies solely accli-
mating adult animals. We also excluded studies where 

developmental plasticity was confounded with adult 
acclimation. In other words, adult measures of heat 
tolerance must have been performed on adults accli-
mated to the same temperature but differing by their 
developmental thermal history. For logistical reasons, 
the developmental thermal exposure may have been 
continued for hours after the transition to adulthood 
in some studies (e.g., emergence from pupa). We tol-
erated such an overlap with adult acclimation when 
thermal conditions experienced by adults was ≤24 h. 
Ectotherms can take days to acclimate to new tem-
peratures (e.g., Layne & Claussen, 1982) and 24 h was 
chosen as cut- off to separate acclimatory responses 
from passive physiological plasticity or responses to 

F I G U R E  1  PRISMA flow chart summarizing the search methods, the number of studies excluded, and the reasons for exclusion.
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heat shocks. Decision trees and further details about 
our inclusion criteria are presented in Figures  S1, S2 
and Tables S1, S2.

Data extraction and effect size calculations

We extracted mean heat tolerance for developmental 
temperature along with associated sample sizes and 
measures of dispersion (i.e., standard deviations and 
standard errors). Data extractions were performed by 
PP (72.8%), SB (13.6%) and RZ (13.6%) and all data were 
further checked for accuracy by PP. Data presented in 
the text or tables were directly extracted from the study. 
Data from figures were digitized using the metaDigitise 
package in R (Pick et al.,  2019; version 1.0.1). Means, 
standard deviations and sample sizes were estimated 
from the raw data when available. When data were pre-
sented in different sources, we prioritized the source hav-
ing the finest resolution. For studies measuring the time 
to death (or heat knockdown) at different static tempera-
tures, we performed a linear regression of the logarithm 
of the time to death against the test temperatures and 
estimated the temperature the animals could tolerate for 
1 h as a proxy for CTmax (following Jørgensen et al., 2019, 
2021). We did not use the temperature the animals could 
tolerate for 1 min because extrapolations beyond ther-
mal death time curves provide less accurate estimates 
than interpolations of the data (Jørgensen et al., 2019, 
2021). In addition to heat tolerance data, we extracted 
information required to address our a priori hypotheses 
(see Introduction). We also collected additional data from 
the studies, such as the origin of the animals, their body 
mass, body length, sex, or details about the heat toler-
ance methodology.

We defined our effect size as the developmental ac-
climation response ratio (dARR), which is analogous to 
the acclimation response ratio (ARR; Claussen,  1977). 
Such a metric defines the variation in heat tolerance 
associated with a one- degree change in developmental 
temperature. For instance, a dARR of 0.6 indicates that 
each degree increase in developmental temperature in-
creases the heat tolerance by 0.6°C. This effect size has 
the advantage of accounting for the magnitude of tem-
perature difference between the temperature treatments 
compared (controlling for the “nuisance heterogeneity” 
sensu Noble et al., 2022).

We defined our effect size as:

where T represents the developmental temperature in 
Celsius (with T2 > T1), and HT the heat tolerance estimates 
in Celsius. When data on >2 developmental temperatures 
were presented, we calculated dARR for each stepwise com-
parison (e.g., 20– 22°C, 22– 25°C, 25– 27°C). The sampling 

variance for this effect size was derived as per Equation 2 
(derived from Pottier, Burke, Drobniak et al., 2021):

where s2(dARR) is the sampling variance of dARR, sd is 
the standard deviation and n is the sample size (number 
of individuals). In cases where sample sizes were unknown 
and only standard errors were presented, the sampling 
variance of dARR was calculated as per Equation 3.

Where se is the standard error.
We also included data where the same animals were 

measured at both T1 and T2. In this case, the sampling 
variance of dARR was calculated as Equation  4 when 
standard deviations were available, or Equation 5 when 
only standard errors were presented.

Where r[T1T2] was taken as 0.5 as a conservative measure 
(Noble et al., 2017).

The sampling variance for our effect size requires 
knowledge about the uncertainty around mean esti-
mates (Equations 2– 5). Therefore, for effect sizes miss-
ing standard deviations, we inferred standard deviations 
using within- study imputation (Equation  6; Lajeunesse 
et al., 2013), where the standard deviation to mean ratio 
was deemed constant across studies. 

where sd is the standard deviation, X
i
 is the mean heat 

tolerance of the sample, j is the study, k is the total num-
ber of studies, and Xj is the mean heat tolerance of the 
study. Assessments of the accuracy of these imputa-
tions and their impact on our analyses are described in 
Sensitivity Analyses.

Meta- analysis and meta- regressions

We performed all statistical analyses in R version 4.1.0 
(R Core Team, 2019). We used multi- level meta- analytic 

(1)dARR =
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models using the rma.mv function in the metafor pack-
age (Viechtbauer, 2010; version 3.0.2). Test statistics and 
confidence intervals for the fixed effects were computed 
using t distributions.

Our data had various sources of non- independence 
(Noble et al., 2017). Multiple effect sizes were collected 
from the same studies (study ID), some species and pop-
ulations were represented multiple times (species ID and 
population ID, respectively), species had different levels 
of phylogenetic relatedness (phylogeny), some animals 
in different treatments originated from the same par-
ents (family ID), the same data were re- used in stepwise 
comparisons when calculating effect sizes (e.g., dARR 
for groups acclimated to 20– 22°C, 22– 25°C, 25– 27°C; 
shared treatment ID), and repeated measures were col-
lected on the same group of animals (e.g. 24 h- LT50 and 
48 h- LT50 measured on the same cohorts; cohort ID).

Family and population ID were confounded, as such, 
we only included population ID in our models. Similarly, 
species and study ID were not distinguishable given so 
few studies had multiple species. As such, we only kept 
species ID in the models to partition phylogenetic and 
non- phylogenetic species effects (Cinar et al., 2022). We 
inferred phylogenetic relatedness from a phylogenetic 
tree constructed from the Open Tree of Life using the 
rotl package (Michonneau et al.,  2016; version 3.0.11). 
We computed branch lengths using Grafen's method 
and modelled phylogeny as a correlation matrix using 
the ape package (Paradis & Schliep, 2019; version 5.5). 
Polytomies were resolved at random, and one spe-
cies, Villosa delumbis, was manually added to the tree 
based on information from the Integrated Taxonomic 
Information System (https://itis.gov). Non- independence 
arising from the same cohorts was controlled using 
Equations 4 and 5. Finally, sampling errors from treat-
ments involved in multiple comparisons were correlated 
(using a conservative r = 0.5) with a variance covariance 
matrix using the metaAidR package (“github.com/danie 
l1nob le/metaAidR”; version 0.0.0.9000). To decide on the 
random effect structure of the models, we first fitted all 
non- overlapping random variables (species ID, popula-
tion ID, and phylogeny) and an observation- level random 
effect (effect size ID) in a meta- analytic (intercept- only) 
model. Because population ID explained virtually no 
variance, it was excluded from further models.

We then estimated the overall meta- analytic mean 
and the total amount of heterogeneity (i.e., variation 
not explained by sampling error; Senior et al.,  2016), 
and decomposed the heterogeneity explained by the dif-
ferent random effect terms. Single- moderator models 
were performed with each of our a priori moderators 
(see Introduction) to address our hypotheses. More com-
plex models with multiple moderators were also built 
to explain the remaining heterogeneity (see Supporting 
Information S1; supplementary methods).

For each meta- regression, we visually assessed as-
sumptions of homogeneity of residual variance and used 

a heteroscedastic compound symmetric structure with 
variance components estimated for each level of a cate-
gorical variable at the effect size level (”HCS” structure 
with zero covariance from the rma.mv function in the 
metafor package). AIC comparisons highlighted that this 
approach improved model fit (Table S20).

Statistical significance was assumed when 95% confi-
dence intervals did not overlap with zero. We presented 
the estimates of each moderator category but note that 
differences between groups (i.e., contrasts) are also pre-
sented in Supporting Information S1 (Tables S9- 19).

Sensitivity analyses and publication bias

Publication bias refers to a higher likelihood of statis-
tically significant findings being published than that of 
non- significant findings. This bottleneck generates un-
representative study samples and may impact the robust-
ness of meta- analytic results (Nakagawa et al.,  2022). 
Publication bias was assessed in four ways. First, we 
used visual inspections of the relationship between 
model residuals and the standard error using funnel 
plots. We note that this method assumes that data het-
erogeneity is null and may not be appropriate outside of 
a purely visual tool (see Nakagawa et al., 2022). Second, 
we performed multilevel meta- regressions using stand-
ard error or sampling variance as moderator variables 
to detect a small study effect, where small- sample- sized 
studies tend to have larger effect sizes (sensu Nakagawa 
et al., 2022). Third, we compared whether the estimates 
obtained from peer- reviewed publications differed from 
dissertations and theses in meta- regressions. Fourth, we 
assessed the time- lag bias in our data set using a meta- 
regression with publication year. The time lag bias (also 
known as the ‘decline effect’) refers to cases where studies 
with larger effects tend to be published earlier than stud-
ies with smaller effects (Koricheva & Kulinskaya, 2019).

To assess the robustness of our results, we performed 
five types of sensitivity analyses. First, we performed 
leave- one- out- analyses on the meta- analytic intercept- 
only model to determine how robust results were to the 
exclusion of one study or one species. Second, we per-
formed separate analyses for studies investigating the ini-
tial or persistent effects of developmental temperatures. 
Each moderator variable outlined above (see Introduction) 
was fitted in single- moderator models for both data sub-
sets. Third, we fitted a meta- analytic model without data 
deemed to be acquired using unusual methods (i.e., risk 
of bias analysis; Tables S6, S35). Fourth, we fitted a meta- 
analytic model without the effect sizes for which sampling 
variances were imputed. Fifth, because previous synthe-
ses excluded effect sizes under a certain magnitude of re-
sponse (e.g., excluding effect sizes < −0.15 in Gunderson & 
Stillman, 2015; or quantifying negative responses as null in 
Morley et al., 2019), we fitted meta- analytic models without 
effect sizes reaching different arbitrary cut- offs.

https://itis.gov
http://github.com/daniel1noble/metaAidR
http://github.com/daniel1noble/metaAidR
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Deviations from registration

While we essentially followed our original plans and 
procedures, we acknowledge minor deviations (details 
in Supporting Information S1; supplementary methods). 
Notably, because the distribution of the data was skewed 
towards aquatic animals (85.7% of effect sizes), we es-
timated marginal mean estimates for models assessing 
habitat variation in developmental plasticity. We used 
the package emmeans (Lenth et al., 2019; version 1.6.2) 
to obtain marginal means, where data from different 
habitats were given equal weights (i.e., post- stratification 
sensu Gelman et al., 2020). Following recommendations 
at the peer- review stage, we examined whether develop-
mental plasticity estimates varied with body mass, age at 
sexual maturity and the relative time at a common tem-
perature after the initial acclimation, i.e., the proportion 
of days at a common temperature relative to the age at 
sexual maturity. We found no evidence that the age at 
sexual maturity is associated with levels of developmen-
tal plasticity in heat tolerance (Table S37). Furthermore, 
we found no evidence for a significant influence of the 
(relative) time at a common temperature after the initial 
acclimation on (i) the magnitude of developmental plas-
ticity, or (ii) the persistence or ontogenetic variation in 
the reported effects (Tables S22, S23). We also examined 
two-  and three- way interactions between latitudinal ori-
gin, body mass, ramping rate, and acclimation duration 

(Supporting Information  S1; supplementary methods; 
Tables S38– S44). Finally, because the temperature toler-
ated for 1 h is not a direct proxy for CTmax, and in fact, 
is more analogous to the death temperature (TKO, cf. 
Rezende et al., 2014), we demonstrated that the inclusion 
of the temperature tolerated for 1 h did not influence our 
results (Table S35).

RESU LTS

What is the current state of knowledge?

We collected a total of 1089 effect sizes from 150 stud-
ies (1960– 2021) and 138 ectothermic species. The mean 
(±SD) number of effect sizes per study was 7.26 ± 9.63, 
with a range of 1– 80. Developmental plasticity in heat 
tolerance was tested with several experimental designs 
in the literature (Figure 2). We combined these designs 
into two broad categories: “initial” designs, where the 
heat tolerance was assessed immediately following the 
period of acclimation, and “persistent” designs, where 
the heat tolerance of different groups of animals was 
measured after a period of re- acclimation to a com-
mon temperature after the initial acclimation (Figure 2). 
Overall, 79.5% of effect sizes represented “initial” effects 
whereas 20.5% of effect sizes represented “persistent” ef-
fects. In total, 57.2% of the effect sizes originated from 

F I G U R E  2  Experimental designs used to assess the developmental plasticity in heat tolerance in ectotherms. Experimental designs are 
grouped based on whether they assess the initial (a– c; without re- acclimation to a common garden condition) or persistent (d– f; with re- 
acclimation to a common garden condition after the initial acclimation) responses to developmental temperatures. Horizontal dashed lines 
represent when the heat tolerance was tested. The timing of heat tolerance measurement was positioned arbitrarily within a life history stage. 
In designs d, e and f, heat tolerance is assessed at either the juvenile or the adult stage following re- acclimation, as denoted by the two heat 
tolerance symbols for each experimental design. Three temperatures (pink, green, grey) are presented here, but note that more temperatures 
can be used, and that the common temperature C can sometimes be identical to temperature a or b. Pie charts denote the number of effect sizes 
extracted for each type of experimental design.
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fish species (Figure 3). Across papers, 79.2% of the effect 
sizes originated from CTmax data, whereas 20.8% origi-
nated from LT50 data (Figure 3). Further visualizations 
and explorations of the data are included in Supporting 
Information S2.

How much do early thermal environments impact 
heat tolerance?

Early thermal environments have a significant but 
weak overall effect on heat tolerance across ectotherms 
(dARR  =  0.190; 95% confidence interval, CI  =  0.015, 
0.364; n  =  1089; Figure  4). For each degree increase in 
developmental temperatures, heat tolerance increases 
by only 0.19°C. Prediction intervals (PI) suggest that 
95% of the time, we expect future dARR estimates to 
fall between −0.444 and 0.823. Adjusting for the over- 
representation of aquatic animals in our data set re-
duced the overall estimate even further (dARR = 0.134; 
95% CI = 0.002, 0.266; 95% PI = −0.455, 0.723; n = 1089; 
Figure 4), pointing to a required 7.5°C shift in develop-
mental temperatures to increase heat tolerance by 1°C. 
Despite this weak effect, heterogeneity was extremely 
high (I2 = 99.5%). Overall, 26.1% of the variation was ex-
plained by shared evolutionary history, 10.0% explained 
by non- phylogenetic species effects, and 63.4% of the 
heterogeneity associated with the residuals (i.e., within- 
species heterogeneity).

Are embryos more plastic than juveniles?

Ectotherms were most plastic when tested immediately 
following temperature exposure during their juvenile (de-
sign A) or both their embryonic and juvenile development 
(design C) (dARRdesign A = 0.230; 95% CI = 0.085, 0.376; 
95% PI  =  −0.403, 0.864; n  =  700; dARRdesign C  = 0.250; 
95% CI = 0.097, 0.404; 95% PI = −0.166, 0.666; n = 146; 
R2

marginal = 0.271; Figure 5). By contrast, embryos held at 
different temperatures (design B) barely differed in their 
heat tolerance levels and had highly heterogenous re-
sponses to temperature exposures (dARRdesign B = 0.098; 
95% CI = −0.210, 0.406; 95% PI = −1.093, 1.290; n = 20; 
Figure 5).

The magnitude and direction of persistent responses 
varied based on when in development the animals were 
acclimated before being re- acclimated to a common 
temperature (Figure 5). Specifically, animals which ex-
perienced higher temperatures during their juvenile 
(design F) or both their embryonic and juvenile develop-
ment (design E) and re- acclimated to a common garden 
condition tended to be better at tolerating heat, albeit re-
sponses were not significantly different from zero (dAR-
Rdesign E = 0.118; 95% CI = −0.044, 0.280; 95% PI = −0.292, 
0.528; n  =  76; dARRdesign F  = 0.102; 95% CI  =  −0.052, 
0.255; 95% PI  =  −0.276, 0.479; n  =  55). By contrast, 

animals incubated at different temperatures during their 
embryonic development and raised in a common garden 
condition after hatching (design D) tended to have rel-
atively reduced heat tolerance levels, albeit not signifi-
cantly (dARRdesign D = −0.082; 95% CI = −0.248, 0.085; 
95% PI = −0.585, 0.421; n = 92). However, we note that 
the distribution of those effect sizes was skewed towards 
negative dARR estimates— indicating that higher incu-
bation temperatures persistently reduce the heat toler-
ance of ectotherms in most instances.

Do early thermal environments have persistent 
impacts on thermal tolerance?

We found no overall signature for a persistent effect 
of early thermal environment on thermal tolerance. 
When animals had been returned to a common tem-
perature after the initial developmental acclimation, 
the dARRs were not significantly different from zero 
on average, whereas animals tested immediately after 
acclimation to higher temperatures had higher thermal 
tolerance (dARRinitial  = 0.224, 95% CI  =  0.086, 0.363; 
95% PI = −0.383, 0.832; n = 866; dARRpersistent = 0.049, 
95% CI = −0.095, 0.192; 95% PI = −0.380, 0.477; n = 223; 
R2

marginal  = 0.191; Figure  5). However, note that the 
magnitude and direction of persistent responses varied 
based on the life- history stage exposed to temperatures 
(see above).

Albeit non- significant, we found a negative associ-
ation between dARR and the time at a common tem-
perature after the initial acclimation (intercept = 0.050; 
95% CI = −0.134, 0.234; slope = −0.009; 95% CI = −0.034, 
−0.016; n = 204; R2

marginal = 0.048; Figure S3).

Are terrestrial animals more plastic than aquatic 
animals?

We found that aquatic animals were more than three times 
as plastic as terrestrial animals (dARRaquatic  = 0.209; 
95% CI = 0.079, 0.338; 95% PI = −0.410, 0.827; n = 929; 
dARRterrestrial  = 0.060; 95% CI  =  −0.091, 0.210; 95% 
PI = −0.315, 0.434; n = 160; R2

marginal = 0.113; Figure 6). 
This variation aligned with differences between func-
tional taxonomic groups (Figure  7). Fish, amphibians, 
and aquatic invertebrates expressed the largest plastic 
responses (dARRfish = 0.254, 95% CI = 0.004, 0.504; 95% 
PI = −0.331, 0.839; n = 623; dARRamphibians = 0.197, 95% 
CI = −0.152, 0.545; 95% PI = −0.807, 1.200; n = 71; dAR-
Raquatic invertebrates  = 0.199, 95% CI  =  −0.055, 0.454; 95% 
PI = −0.665, 1.063; n = 221) whereas terrestrial animals 
had lower, and non- statistically significant dARR esti-
mates (dARRreptiles = 0.070, 95% CI = −0.273, 0.413; 95% 
PI = −0.506, 0.647; n = 27; dARRterrestrial invertebrates = 0.049, 
95% CI = −0.230, 0.328; 95% PI = −0.457, 0.555; n = 147; 
R2

marginal = 0.117).
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Is experimental methodology influential for 
estimating plasticity?

Neither the heat tolerance metric (dARRCTmax = 0.195; 95% 
CI = 0.017, 0.372; 95% PI = −0.435, 0.829; n = 863; dAR-
RLT50 = 0.162; 95% CI = −0.020, 0.343; 95% PI = −0.469, 
0.798; n = 226; contrast = −0.033; 95%CI = −0.083, 0.017; 
R2

marginal = 0.005) nor the heating rate (intercept = 0.212; 
95% CI  =  0.005, 0.419; slope  =  0.019; 95% CI  =  −0.045, 
0.084; n = 855; R2

marginal <0.001) had statistically signifi-
cant influence on developmental responses to tempera-
tures. However, we found a positive association between 
heating rate and developmental responses to temperature 
after accounting for differences in body mass (Tables S39– 
S41). We also found evidence that developmental plasticity 
estimates were significantly influenced by the interaction 
between ramping rate and acclimation duration, as well as 
by a three- way interaction between body mass, ramping 
rate, and acclimation duration (Tables S39– S41).

Is there evidence for publication bias?

Visual inspections of the funnel plot of the model's re-
siduals did not suggest evidence for publication bias 
(Figure S4). We also did not find evidence for publica-
tion bias (small- study effect) when using robust multi- 
level meta- regressions (Table  S26). Dissertations and 
theses provided qualitatively similar estimates to pub-
lished findings (Table S27), and we found little evidence 
for a time- lag bias (Table S28).

How robust are our results?

Our results were robust to the iterative exclusion of 
one study or one species (Table  S29). Investigating 
initial effects separately yielded higher estimates 
than previously presented, but generally qualita-
tively similar results (Tables  S31, S32; Supporting 

F I G U R E  3  Distribution and characterization of the effect sizes across the phylogeny. The histograms represent the number of effect sizes 
extracted for each species. The outermost heatmap represent whether the initial or persistent effects of developmental temperatures (or both, cf. 
Figure 2) were assessed for this species. The innermost heatmap depicts whether the critical thermal maximum (i.e., CTmax), the median lethal 
temperature (i.e., LT50), or both metrics were assessed for this species. Phylogeny was constructed from the Open Tree of Life (Michonneau 
et al., 2016), and branch lengths were computed using Grafen's method. Silhouettes were taken from PhyloPic (www.phylo pic.org).

http://www.phylopic.org
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Information  S1; supplementary results). Analyses of 
persistent responses sometimes produced contrast-
ing results to previously reported, but those analyses 
were deemed preliminary (Tables S33, S34; Supporting 
Information  S1; supplementary results). Our results 
were also robust to the removal of (i) data acquired 
using uncommon methods, (ii) effect sizes for which 
sampling variance was imputed, and (iii) extreme neg-
ative effect sizes. However, removing extreme effect 
sizes tended to increase overall estimates (Table S35). 
Finally, the inclusion of body mass, heating rate, accli-
mation duration, and their interactions in models did 
not impact our main conclusions (Table S44).

DISCUSSION

Understanding the extent to which ectotherms can accli-
mate to temperatures during their development is crucial 
to assess their vulnerability to rising temperatures. Here, 
we provide the first systematic review and quantitative 
synthesis to quantify the initial and persistent influence 

of developmental temperatures on heat tolerance across 
138 ectothermic species.

Early thermal environments have weak overall 
effects on thermal tolerance

Ectotherms raised at higher developmental tempera-
tures tend to be slightly more tolerant to heat but the 
effects were weak (Figure  4). This pattern is akin to 
previous syntheses where data were mostly taken from 
adults (Gunderson & Stillman, 2015; Morley et al., 2019; 
Rohr et al., 2018) although early life stages seem to have 
a lower, and more variable, plasticity than adults. To in-
crease heat tolerance by 1°C in developing ectotherms, it 
requires a 7.5°C shift in developmental temperatures (ad-
justed dARR ~0.13); whereas data from a previous syn-
thesis on 278 adult ectothermic species (153 and 183 effect 
sizes from terrestrial and aquatic animals, respectively) 
points to a required shift of 4.2°C (ARR ~0.24; Morley 
et al., 2019). This discrepancy may be due to differences in 
study methodology and scope. First, previous syntheses 

F I G U R E  4  Overall level of developmental plasticity in heat tolerance. Mean meta- analytic estimates (triangles) with their 95% confidence 
intervals (thicker bars with whiskers) and prediction intervals (thinner bars without whiskers) are depicted along with individual data points 
(coloured circles) scaled by precision (inverse of standard error). Results are presented before (a) and after (b) controlling for the over- 
representation of data from aquatic vs. terrestrial animals. The graphs were constructed using the orchaRd package (Nakagawa et al., 2021; 
version 2.0). k: number of effect sizes (number of species). dARR: developmental acclimation response ratio.
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F I G U R E  5  Life history variation and persistence of developmental plasticity. Mean estimates (triangles) with their 95% confidence 
intervals (thicker bars with whiskers) and prediction intervals (thinner bars without whiskers) are depicted along with individual data 
points (coloured circles) scaled by precision (inverse of standard error). k: number of effect sizes (number of species). dARR: developmental 
acclimation response ratio. Experimental design categorisations are presented in Figure 2.
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F I G U R E  6  Habitat variation in developmental plasticity. Mean estimates (triangles) with their 95% confidence intervals (thicker bars with 
whiskers) and prediction intervals (thinner bars without whiskers) are depicted along with individual data points (coloured circles) scaled by 
precision (inverse of standard error). k: number of effect sizes (number of species). dARR: developmental acclimation response ratio.

F I G U R E  7  Taxonomic variation in developmental plasticity. Mean estimates (triangles) with their 95% confidence intervals (thicker 
bars with whiskers) and prediction intervals (thinner bars without whiskers) are depicted along with individual data points (coloured circles) 
scaled by precision (inverse of standard error). k: number of effect sizes (number of species). dARR: developmental acclimation response ratio. 
Taxonomic categorisations follow those of Morley et al., (2019). “Reptiles” refer to non- avian reptiles.
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often maximized positive ARR values by excluding effect 
sizes under a certain magnitude of response (e.g., exclud-
ing ARR below −0.15; or quantifying negative responses 
as null; Gunderson & Stillman, 2015; Morley et al., 2019). 
Such procedures may lead to an overestimation of the 
magnitude and direction of plastic responses by neglect-
ing the possibility that ectotherms could express “non- 
adaptive” (negative) responses to temperature exposures 
(Terblanche & Hoffmann, 2020). Unsurprisingly, exclud-
ing extremely negative effect sizes tended to increase our 
estimates. Negative responses have been argued to be 
biologically relevant and should be included in analyses 
to encompass the diversity of responses to temperatures 
organisms may exhibit (Terblanche & Hoffmann, 2020). 
Second, the low plasticity levels we observed may be due 
to biological and methodological variation. We observed 
an extremely high heterogeneity within and between spe-
cies, which certainly contributed to the substantial width 
of our estimated confidence and prediction intervals. We 
aim to explain this variation in the next sections.

Embryos respond differently to early thermal 
environments than juveniles

We found significant variation in degree of plastic re-
sponses based on the life- history stage exposed to tem-
peratures (Figure  5). Initial responses to acclimation 
during the embryonic stage are extremely heterogeneous. 
However, acclimation periods overlapping both the em-
bryonic and juvenile stages tend to have similar impacts 
on heat tolerance compared to acclimation merely con-
strained to the juvenile stage. The analysis of long- lasting 
impacts of developmental temperatures confirms this pat-
tern (Figure 5). Embryonic temperatures differentially im-
pact heat tolerance of later life stages, relative to juvenile 
developmental temperatures. While juveniles developing 
at higher temperatures tend to have slightly increased heat 
tolerance, animals incubated at higher temperatures as 
embryos and raised in standard conditions after hatching 
tend to have reduced thermal tolerance. These results sug-
gest an important difference in the ability of embryos to 
adjust their heat tolerance relative to juvenile stages.

Our results are in favour of our alternative hypothesis 
that energy allocation trade- offs may constrain the expres-
sion of plastic responses throughout ontogeny. Specifically, 
embryos, pupae, nymphs, and young larvae rely on endog-
enous energy reserves, whereas later life stages can resort 
to feeding to increase their energy intake. This reliance on 
energy reserves, combined with the important metabolic 
cost of growth (Marshall et al., 2020; Pettersen et al., 2018), 
may constrain energy allocation towards diverse func-
tions, including plastic responses to temperatures. If 
energy allocation trade- offs are major drivers of the on-
togenetic variation in plasticity, then the low plasticity of 
embryos relative to juveniles may be due to the high en-
ergy demands of development and the limited capacity 

for embryos to increase their energy intake. Investigating 
whether limited access to nutrients constrain the expres-
sion of plastic responses in juveniles would be particularly 
interesting to confirm this hypothesis.

Persistent responses to early thermal 
environments are common but not universal

Persistent responses of heat tolerance to developmen-
tal temperatures are not universal, which suggests that 
most of the responses recorded may represent reversible 
physiological acclimation rather than irreversible devel-
opmental thermal plasticity (sensu Beaman et al., 2016). 
Many ectotherms may successfully re- acclimate to new 
environmental conditions, regardless of their early ther-
mal history. However, we also note that only 26 studies 
investigated persistent responses, which is probably in-
sufficient to reach adequate statistical power given the 
high heterogeneity in the data. In addition, we empha-
size that the magnitude and direction of long- lasting re-
sponses varied based on the life- history stage exposed to 
temperatures (Figure 5). Therefore, we draw the reader's 
attention to the tendency for embryos to express nega-
tive responses to increased developmental temperatures, 
and the numerous cases where juvenile acclimation per-
sistently impacts the heat tolerance of later life stages. 
We encourage additional research on the persistence of 
developmental plasticity to unravel whether those effects 
are robust and recommend prudence when assuming 
that laboratory acclimation erases the effects of early 
thermal history. The absence of evidence for a signifi-
cant decrease in plasticity with re- acclimation time may 
indicate that animals were already fully re- acclimated to 
common garden conditions when assessed for thermal 
tolerance. Assessing the course of plasticity reversibility 
at various time scales is an important direction for future 
research.

Shared evolutionary history and species ecology 
affect how species respond to early thermal 
environments

While we observed weak overall effects of early thermal 
environments on heat tolerance, effect size heterogeneity 
was high, suggesting that species exhibit diverse responses 
to early thermal environments. As predicted, a lot of this 
variation is due to species- specific ecology and shared 
evolutionary history, with ~36% of the variation in effects 
driven by these two factors alone. Aquatic species were 
more plastic to thermal developmental environments than 
terrestrial species (Figures 6, 7). This observation confirms 
findings from previous syntheses focusing on later life 
stages (Gunderson & Stillman, 2015; Morley et al., 2019; 
Rohr et al., 2018) but contradicts our primary hypothesis 
that larger fluctuations in environmental temperatures 
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may have selected for larger plastic responses in terres-
trial animals. Instead, it provides support to our alterna-
tive hypothesis that body temperatures equilibrate faster 
in water, which may select for greater plasticity because 
of increased exposure to operative thermal fluctuations 
(Chevin & Hoffmann, 2017; Denny, 1993). Opportunities 
for behavioural thermoregulation were also hypothesised 
to be reduced in aquatic environments (Gunderson & 
Stillman, 2015), which may expose aquatic animals to even 
larger fluctuations in operative temperatures. In addition, 
greater selection for developmental plasticity may occur 
in aquatic environments as a response to limited oxygen 
availability (Pörtner et al., 2017; but see Jutfelt et al., 2018). 
On the other hand, terrestrial animals have more ther-
moregulatory opportunities and the selection for plastic 
physiological responses may be reduced (Muñoz,  2021). 
Because marine ectotherms are experiencing operative 
temperatures closer to their upper thermal limits (Pinsky 
et al., 2019), increased levels of plasticity seem imperative 
for their survival in a changing world. Assessing the ex-
tent to which plasticity compensates aquatic organisms for 
the increased exposure to extreme body temperatures is 
an interesting avenue for future research. While we might 
expect heavy and slow- developing animals to be especially 
responsive to changes in thermal environments (Uno & 
Stillman, 2020), we found little evidence for a relationship 
between developmental plasticity in heat tolerance and 
body mass or age at sexual maturity. The reasons why ani-
mals with different life histories respond similarly to early 
thermal environments are unclear and require biological 
and methodological considerations (see next section).

Methods for measuring heat tolerance can be 
influential

Although different metrics (i.e., CTmax or LT50) may yield 
different absolute levels of heat tolerance, the extent to 
which heat tolerance varies with developmental acclima-
tion is relatively similar between metrics. While most quan-
titative syntheses on heat tolerance plasticity focused solely 
on CTmax (Barley et al., 2021; Gunderson & Stillman, 2015; 
Morley et al., 2019; Pottier, Burke, Drobniak et al., 2021; 
Rohr et al., 2018), we recommend, given statistical valida-
tion, the inclusion of LT50 in further syntheses. Slow heating 
rates result in extended time at high temperatures, which 
reduces thermal limits because of extended physiological 
stress (Rezende et al.,  2011; Terblanche et al.,  2007) and 
allow animals to acclimate during the experimental trials. 
Therefore, we predicted weak plasticity estimates at slow 
heating rates because extended heat stress and acclima-
tion during assays reduce differences in thermal tolerance 
between cool-  and warm- acclimated animals. We found 
that, at equal body mass, animals tested at faster heating 
rates are usually more plastic, as predicted. Moreover, we 
detected previously described (Rohr et al., 2018) interac-
tions between heating rate, body mass, and acclimation 

duration, but did not find evidence for interactions with 
latitudinal origin, probably due to a lack of statistical 
power. Our observations support that body size and meth-
odological factors interact to shape the acclimation re-
sponses of ectotherms (Rohr et al., 2018).

Limitations and future directions

While we aimed at performing a comprehensive sys-
tematic review, existing taxonomical and methodologi-
cal biases in the literature (Figures 2, 3) constrain the 
generalisability of our findings. Notably, nearly 60% of 
the data eligible for our synthesis were on fish species, 
whereas we could only extract 27 relevant effect sizes 
in non- avian reptiles. We encourage further research ef-
forts on invertebrates and the herpetofauna for a more 
uniform distribution of data across the tree of life. We 
also observed a great disparity in the experimental de-
signs employed to assess developmental plasticity in the 
literature (Figure 2). Most studies assessed the initial ef-
fects of developmental temperatures, with only 26 stud-
ies assessing whether those effects persist when animals 
are re- acclimated to common garden conditions after 
the initial acclimation. Our synthesis also highlighted 
that only five studies tested for the initial plasticity of 
embryos. We stress the need for a greater standardiza-
tion and unification of experimental approaches in the 
field, with a priority on the responses of embryos to 
varying temperatures. Importantly, we did not inspect 
whether there exist intrinsic differences in developmen-
tal plasticity within a life stage (e.g., between larval 
stages). However, basal thermal tolerance and plastic-
ity may follow complex patterns throughout ontogeny 
(Klockmann et al.,  2017; Pincebourde & Casas,  2015; 
Ruthsatz et al., 2022; Ruthsatz, Dausmann, et al., 2018) 
that need to be further investigated. We also encourage 
the use of state- of- the- art meta- analytic approaches to 
increase the reproducibility and comparability of evi-
dence syntheses in comparative physiology (cf. Noble 
et al., 2022; Vetter et al., 2013). Particularly, a formal sta-
tistical comparison of the level of plasticity of adults rel-
ative to earlier life stages would represent an important 
advancement towards understanding and modelling 
how ectotherms will respond to rising temperatures.

Implications for climate change impacts

Our study provides evidence that the capacity for ec-
totherms to adjust their heat tolerance is remarkably 
limited throughout their life cycle. Strikingly, nearly 
none of the 95% prediction intervals of the estimated ef-
fect sizes overlapped with unity. In other words, future 
changes in thermal phenotypes will rarely be expected 
to reach levels of perfect compensation, i.e., when heat 
tolerance perfectly tracks changes in environmental 
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temperatures. We also observed numerous cases of re-
duced heat tolerance at higher developmental tempera-
tures, particularly when acclimation occurred during 
the embryonic development (Figure 7). In fact, previous 
syntheses (Przeslawski et al.,  2015; Collin et al.,  2021; 
Dahlke et al.,  2020; but see Pottier, Burke, Drobniak, 
et al., 2022 and Dahlke et al., 2022) and empirical work 
(e.g., Hall & Warner,  2019; Klockmann et al.,  2017; 
Truebano et al., 2018; Turriago et al., 2015) suggest that 
embryos may have reduced thermal tolerance relative 
to other life stages. Non- adaptive responses to develop-
mental acclimation may represent a signature of physi-
ological stress imposed upon embryos, possibly because 
of the inherent lower heat tolerance of this life stage. 
Low thermal tolerance combined with low, and some-
times non- adaptive plasticity, brings embryos to the 
forefront of climate vulnerability. With rising tempera-
tures, most animals may endure significant heat stress 
long before they reach the adult stage, although adults 
are often the focus of empirical studies and evidence 
syntheses. Assuming sufficient heritable variation, the 
strength of selection is expected to be stronger in em-
bryos expressing non- adaptive developmental plasticity. 
Investigating whether non- adaptive plasticity may lead 
to rapid evolutionary change or extinction in a warm-
ing climate is thus a particularly interesting avenue for 
research (Gibert et al., 2019). We urge ecophysiologists 
to consider early life stages when assessing the vulner-
ability of ectotherms to changing temperatures.

Finally, although thermal tolerance limits are useful 
and intensively studied, evidence points to these metrics 
as not being perfect predictors of climate change vul-
nerability (Clusella- Trullas et al.,  2021). While thermal 
tolerance is relatively constrained, decreases in thermal 
sensitivity may help ectotherms tolerate heat waves for 
longer and ensure their survival (Seebacher et al., 2015; 
Rezende et al.,  2020). Investigating how thermal toler-
ance and sensitivity are both impacted by early thermal 
environments within the same framework will represent 
a significant advancement towards understanding how 
ectotherms will navigate through changing environ-
ments. Thermal fertility limits, the temperatures at which 
animals lose fertility, may also represent better proxies 
(David et al., 2005; Parratt et al., 2021; van Heerwaarden 
& Sgrò, 2021; Walsh et al., 2019). In fact, fertility limits are 
much lower than standard thermal limits, and recent re-
search suggest they may correlate better with global spe-
cies distributions (Parratt et al., 2021; van Heerwaarden & 
Sgrò, 2021). Therefore, we may underestimate the impacts 
of rising temperatures by studying thermal tolerance lim-
its. Notably, the development and maintenance of sexual 
organs and function may be sensitive to temperatures, 
and fertility loss may not be promptly reversible (Sales 
et al., 2021). Assessing the initial and persistent impacts 
of temperatures on fertility loss throughout ontogeny will 
be crucial to understand how ectotherms will navigate 
through changing environments.

CONCLUSIONS

We found evidence for developing ectotherms to possess 
the ability to adjust their heat tolerance. Animals inhab-
iting aquatic environments tend to be more than three 
times as plastic as terrestrial animals, possibly because 
of their increased exposure to operative temperature 
fluctuations. Strikingly, we found evidence that embryos 
express a reduced, and more heterogenous plasticity than 
later life stages, with numerous responses appearing as 
non- adaptive. Our study adds to the evidence that the 
embryonic stage may represent a critical window of vul-
nerability to changing temperatures. While we did not 
find universal evidence for developmental acclimation to 
have long- lasting impacts on heat tolerance, persistent 
effects are common, and we call for increased considera-
tion of those effects in future research. We also encour-
age a standardization of empirical studies and evidence 
syntheses, and we formally highlight important knowl-
edge gaps in the literature. Overall, the capacity for de-
veloping ectotherms to adjust their thermal tolerance is 
limited and may provide minimal benefit in changing 
environments. Examining the combined impacts of de-
velopmental temperatures on thermal tolerance, sensi-
tivity, and fertility will provide important insights into 
the future of most animals on the planet.
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