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1  |  INTRODUC TION

1.1  |  Parvoviruses

Parvovirinae subfamily infects vertebrates including humans. Most 
viruses of this subfamily, including minute virus of mice (MVM), 

canine parvovirus (CPV), and rat parvovirus (H- 1PV), are autono-
mous, but replication of adeno- associated viruses (AAV) requires the 
presence of helper viruses such as adenoviruses or herpesviruses 
(dependoparvoviruses) (Cotmore et al., 2019; Pénzes et al., 2020). 
While Parvovirinae have an important potential in oncolytic therapy, 
AAVs are a major platform in gene therapy. H- 1PV and MVM are 
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Abstract
Parvoviruses are small non- enveloped single- stranded DNA viruses, which depend 
on host cell nuclear transcriptional and replication machinery. After endosomal expo-
sure of nuclear localization sequence and a phospholipase A2 domain on the capsid 
surface, and escape into the cytosol, parvovirus capsids enter the nucleus. Due to 
the small capsid diameter of 18– 26 nm, intact capsids can potentially pass into the 
nucleus through nuclear pore complexes (NPCs). This might be facilitated by active 
nuclear import, but capsids may also follow an alternative entry pathway that includes 
activation of mitotic factors and local transient disruption of the nuclear envelope. 
The nuclear entry is followed by currently undefined events of viral genome uncoat-
ing. After genome release, viral replication compartments are initiated and infection 
proceeds. Parvoviral genomes replicate during cellular S phase followed by nuclear 
capsid assembly during virus- induced S/G2 cell cycle arrest. Nuclear egress of capsids 
occurs upon nuclear envelope degradation during apoptosis and cell lysis. An alterna-
tive pathway for nuclear export has been described using active transport through 
the NPC mediated by the chromosome region maintenance 1 protein, CRM1, which 
is enhanced by phosphorylation of the N- terminal domain of VP2. However, other 
alternative but not yet uncharacterized nuclear export pathways cannot be excluded.
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known to induce lysis of transformed cells and to activate anticancer 
immune responses (Abschuetz et al., 2006; Geletneky et al., 2017; 
Gil- Ranedo et al., 2021; Grekova et al., 2012; Hartley et al., 2020; 
Marchini et al., 2015). The role of CPV in inducing an antitumor im-
mune response in different tumor models has been discussed (Arora 
et al., 2021). The potential of recombinant AAV vectors in gene ther-
apies has been shown by the approval of two AAV therapeutic appli-
cations for the treatment of Leber's congenital amaurosis (Luxturna) 
and spinal muscular atrophy (Zolgensma) by the US Food and Drug 
Administration (FDA) (Kuzmin et al., 2021; Large et al., 2021). In fact, 
the first gene therapy, Glybera medicine, approved in 2012 cor-
rected hereditary lipoprotein lipase deficiency (LPLD). This treat-
ment was stopped in 2018 due to the high cost of c. one million US$ 
per patient, and only 31 people were treated (Mendell et al., 2021).

Parvoviruses comprise a linear single- stranded DNA of ~4 to 
6 kb and an icosahedral capsid of 18– 26 nm in diameter (Cotmore 
et al., 1983; Kaufmann et al., 2004; Mietzsch et al., 2019; Tsao 
et al., 1991; Xie et al., 2002). The viral proteome differs between 
members of parvovirus (Cotmore & Tattersall, 2014). Many of the 
autonomous parvovirus genome encodes two structural proteins 
(VP1 and VP2) and two non- structural proteins (NS1 and NS2) 
(Cotmore et al., 1983; Cotmore & Tattersall, 2014), whereas AAV en-
codes at least for three capsid proteins (VP1, VP2, and VP3) and four 
non- structural proteins (Rep40, Rep52, Rep68, and Rep78) (Im & 
Muzyczka, 1990; Xie et al., 2002). Capsid proteins and non- structural 
proteins are translated from alternatively spliced mRNAs, following 
transcription controlled by the early P4 and the late P38 promoter. 
While the former guides the expression of NS1 and NS2, the latter 
controls the expression of capsid proteins (Christensen et al., 1995; 
Cotmore & Tattersall, 1995; Li & Rhode 3rd, 1990). Nonetheless, the 
family shows different transcriptional strategies and viruses within 
the type species of each genus express a small number of genus- 
specific ancillary proteins (Cotmore & Tattersall, 2014).

Parvoviruses use a variety of cell surface receptors for attach-
ment to their host cells, determining host range and tissue tro-
pism (Govindasamy et al., 2003; Hueffer et al., 2003; Llamas- Saiz 
et al., 1996; Michelfelder & Trepel, 2009; Palermo et al., 2006). 
CPV uses sialic acid and transferrin receptor (Parker et al., 2001; 
Parrish, 1990), whereas human parvovirus B19V attaches to 
erythrocyte P antigen (Brown et al., 1993) and its cellular entry is 
facilitated by low pH- mediated interaction with globoside (Bieri 
et al., 2021; Bieri & Ros, 2019). The dependoparvovirus AAV2 rec-
ognizes several receptors of target cells including heparan sulfate 
proteoglycan, αVβ5 integrin, and basic fibroblast growth factor re-
ceptor 1 (Qing et al., 1999; Summerford et al., 1999; Summerford 
& Samulski, 1998). Recently, the AAV receptor (AAVR; KIAA0319L) 
was identified as an essential receptor for cell internalization and 
trafficking of different AAVs (Meyer & Chapman, 2022; Pillay 
et al., 2016). After receptor binding, many parvoviruses enter cells 
via clathrin- mediated endocytosis (Bartlett et al., 2000; Cureton 
et al., 2012; Parker & Parrish, 2000). The low endosomal pH induces 
conformational changes in parvovirus capsid structure, which leads 
to exposure of the VP1 N- terminal unique region (VP1u). VP1u of 

B19, MVM, and CPV comprises a phospholipase A2 (PLA2) motif, 
a nuclear localization sequence (NLS), and three PDZ domains, 
which are highly conserved. The PLA2 domain is required for cap-
sid escape from endocytic vesicles (Farr et al., 2005; Popa- Wagner 
et al., 2012; Qu et al., 2008; Suikkanen, Antila, et al., 2003b; Zádori 
et al., 2001;Ros et al., 2020) presumably by forming holes in the en-
dosomal membrane, while NLS and PDZ domains are implicated in 
nuclear import of the capsid.

This review focuses on what has been learned in the past years 
about cytoplasmic trafficking, nuclear entry, and exit of parvovirus 
capsids.

2  |  NUCLE AR ENTRY OF PARVOVIRUS 
C APSIDS

2.1  |  Traveling to the nucleus

Subsequent to endosomal escape, the capsids have to reach the 
nuclear envelope (NE). Likely, parvoviruses make use of the cellular 
microtubule network, as depolymerization of microtubules blocks 
CPV infection (Suikkanen, Aaltonen, et al., 2003a), which is also 
consistent with their observed velocity toward the nucleus (Mäntylä 
et al., 2018). These findings are supported by observations on AAV, 
showing that their perinuclear accumulation is enhanced by dynein-  
and microtubule- mediated transport (Kelkar et al., 2004, 2006; Xiao 
& Samulski, 2012). As with CPV, tracking of single AAV particles in 
the cytoplasm has demonstrated directed motion of viral capsid to-
ward the nucleus, which is a characteristic of dynein- microtubule 
mediated transport (Seisenberger et al., 2001).

Direct transport of the released capsids along microtubules is 
likely but its requirement is not unequivocally proven as microtubule 
depolymerization does not affect CPV distribution after microinjec-
tion (Lyi et al., 2014), which was also observed for cells transduced 
with recombinant AAV2 vectors (rAAV) (Hirosue et al., 2007). Even 
less understood is the observation that the intermediate filament 
protein vimentin enhances infection after endosomal escape as 
shown for MVM (Fay & Panté, 2013) as intermediate filaments are 
not polarized and thus hardly contribute to directed cytoplasmic 
transport. The observation showing that vimentin filaments become 
disrupted at 14 to 24 h post- MVM infection, well after nuclear entry 
should have been completed, indicates an independent phenome-
non that is unrelated to early infection events (Nüesch et al., 2005).

Further, some parvoviruses such as MVM and CPV exploit 
ubiquitin- proteasome machinery to enhance their nuclear trans-
location. The presence of a proteosomal inhibitor (MG132) leads 
to cytoplasmic perinuclear retainment of capsids. However, the 
viral entry, the natural proteolytic cleavage of VP2 to VP3 and 
the externalization of the N terminal of VP1 are not affected (Ros 
& Kempf, 2004). In contrast, ubiquitination of AAV capsids leads 
to their degradation, and treatment with MG132 increases AAV- 2 
and AAV- 5 transduction (Ding et al., 2003; Douar et al., 2001; Yan 
et al., 2002; Zhong et al., 2008). It remains an open question if 
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the involvement of proteasomes affects cytosolic transport or a 
subsequent step.

2.2  |  Overview of NPC and nuclear import

Many viruses have adapted to replicate in the host's nuclei, allow-
ing exploitation of cellular machinery like DNA or RNA polymer-
ases. This requires access to the nucleoplasm, which has led to the 
evolution of specific mechanisms for reaching this compartment. 
Amongst the best- described approaches to enter the nucleus are 
interactions with nuclear pore complexes (NPC) (Fay & Panté, 2015; 
Guedán et al., 2021).

NPCs are macromolecular structures crossing the NE, allowing 
passive diffusion only of metabolites and proteins smaller than 30– 
60 kDa, dependent upon their charge. However, a slow diffusion of 
larger molecules up to 230 kDa through the NPC has been observed 
(Popken et al., 2015; Timney et al., 2016; Wang & Brattain, 2007). 
The NPC is composed by approximately 30 proteins termed nucle-
oporins (Nups). The shape of the NPC opening is determined by the 
Y complexes (Nup107- Nup160 complex) (Stuwe et al., 2015). These 
are crucial for their interactions with the gel- like mesh of highly dis-
ordered nucleoporins present in the NPC channel, which are charac-
terized by high abundance of short stretches of hydrophobic amino 
acids comprising phenylalanine (F) and glycine (G) residues. FG- 
Nups, which include Nup62, regulate which molecules may traverse 
the NE and fix cytoplasmic and nuclear fibers extruding from the 
central part of the NPC (Lyngdoh et al., 2021). Other nucleoporins 
like Nup153 and Tpr form a basket- like structure on the nucleoplas-
mic side, which is necessary for import and export. Many Nups such 
as Nup153 and Nup62 are also involved in other, non- transport- 
related functions, such as chromosome alignment and binding (Chien 
et al., 2020; Hashizume et al., 2013). Nup153 and Nup358 have been 
reported to possess conserved zinc finger domains, which are re-
quired for recruitment of coat protein I complex (COPI) coatomers 
in the early process of nuclear envelope breakdown (NEBD) during 
mitosis (Liu et al., 2003; Prunuske et al., 2006).

Transport of large proteins or nucleoprotein complexes through 
the NPC is energy dependent and requires exposure of specific 
signaling motifs on cargo surface. Classical nuclear localization 
signals (NLSs) are characterized by short stretches of positively 
charged amino acids (Arginine and Lysine) exemplified by that of 
SV40 (PKKKRKV) (Kalderon et al., 1984). Other signals are proline- 
tyrosine NLSs, previously termed M9 domains, which comprise 
highly disordered sequences of 20– 30 amino acids interspaced by 
hydrophobic or basic residues, as, for example, found in hnRNP A1 
(Bradley et al., 2007; Görlich, 1997). Not all NLSs are permanently 
exposed. The so- called cryptic NLSs become exposed only upon 
post- translational modifications or protein– protein interactions 
(Fagerlund et al., 2002; Gu et al., 2003).

The different signals for nuclear transport through the NPC 
allow binding of specialized transport receptors, named importins, 
which are divided into importin α and β (also known as KPNA, KPNB) 

(Cautain et al., 2015). Of the former, seven members, all involved 
in nuclear import, are known to serve as adaptor proteins between 
the nuclear import signal on the cargo and importin β to which it 
binds via an importin- binding domain. Depending on the species, 
between 14 and 20 importin βs have been described. Eleven mem-
bers of human importins βs facilitate nuclear import. These include 
transportin (TNPO, also called importin β2), six nuclear export, and 
three nuclear import and export (Kimura & Imamoto, 2014; Oldrini 
et al., 2017). Importin β not only binds to cargos via importin α but 
may also directly interact with cargo- exposed importin- binding do-
mains (Lee et al., 2006; Mitrousis et al., 2008). There is, however, 
growing evidence that nuclear transport receptor- independent 
pathways exist as it was described for, for example, IκBα (Sachdev 
et al., 2000).

The import is initiated by binding of importin to its correspond-
ing nuclear import motif. Via multiple interactions, these complexes 
pass the hydrophobic mesh in the central pore channel (Yoshimura 
et al., 2014). Upon interacting with Nup153, dissociation of the 
cargo from the importin occurs through binding of the Ras- like small 
GTPase Ran in its GTP- bound form (Walther et al., 2001).

Nuclear export follows a similar principle in which a nuclear ex-
port signal (NES) containing cargo traverses the NPC toward the cy-
toplasm. NESs are characterized by a hydrophobic profile, as is found 
on the HIV Rev protein (LPPLERLT) (Fischer et al., 1995). NESs allow 
binding of exportins, such as Chromosomal Maintenance 1 (CRM1) in 
complex with RanGTP (Kehlenbach et al., 1999; Petosa et al., 2004). 
After translocation through the NPC, export complexes reach cyto-
plasmic filaments where Nup214 binds to CRM1 allowing the closely 
localized Nup358- bound RanGAP to trigger the GTPase function of 
Ran, catalyzing the hydrolysis of RanGTP to RanGDP. This results in 
a conformational change and the dissociation of the transport- cargo 
complex (Hutten et al., 2008; Mahadevan et al., 2013; Ritterhoff 
et al., 2016; Wälde et al., 2012).

2.3  |  Nuclear entry of parvoviruses 
through the NPC

Although the molecular details of parvoviral nuclear import remain 
controversial, it has been suggested that intact capsids enter the 
nucleus followed by genome release at some distance from the NE 
(Bernaud et al., 2018; Mäntylä et al., 2018). Previous studies on MVM 
demonstrated that the nuclear release of parvoviral genomes occurs 
without complete disassembly of the capsids (Cotmore et al., 1999; 
Ros et al., 2006; Ros & Kempf, 2004). However, fast diffusion of 
intranuclear CPV capsid fragments demonstrates the presence of 
disassembled capsids (Mäntylä et al., 2018). Irrespectively to the 
intranuclear fate of capsids, which is linked to the unknown mecha-
nism of genome release, they may have to be primed for genome re-
lease prior to nuclear import as B19V capsid uncoating is enhanced 
by cytoplasmic depletion of divalent cations (Caliaro et al., 2019).

Single particle imaging demonstrated that the first nuclear AAV- 2 
capsids are detected already 15 min after adding the viral particles to cell 
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culture (Seisenberger et al., 2001) although others reported that more 
than 2 hours are needed for nuclear capsid arrival (Bartlett et al., 2000; 
Sonntag et al., 2006; Zhong et al., 2008). The entry of intact capsids 
was also observed for CPV either after infection or after cytoplasmic 
microinjection of viral particles; the latter observation indicating that 
acidification and subsequent structural changes are not essential for 
nuclear entry (Harbison et al., 2009; Suikkanen, Antila, et al., 2003b; 
Vihinen- Ranta et al., 2002). However, these microinjections were per-
formed using parvovirus- susceptible cells and the technically caused 
leakage of capsids from the needle prior to injection leads to exposure 
of capsids to the cell exterior thus initiating parallel infections.

Two possible pathways of how parvoviral capsids enter the nu-
cleus have been proposed: a “classical” entry passing the NPCs using 
the NLS on VP1u, which binds to nuclear import factors of the im-
portin family (Table 1). This would allow the capsids to pass the NPC 
due to their small diameter which is below the 40 nm size limit of the 

NPC (Panté & Kann, 2002) (Figure 1). Alternatively, parvoviral cap-
sids may enter the nucleus through transient holes in the NE, which 
are induced by their interaction with Nups (Porwal et al., 2013) 
(Figure 2). Due to the low efficiency of all parvoviruses, it remains 
not fully evident which pathway leads to progeny infection, and a 
combination of both pathways appears possible.

As mentioned before, acidification leads to exposure of VP1u, 
which comprises a NLS with basic residues as shown for CPV 
(Cotmore et al., 1999, 2010; Vihinen- Ranta et al., 2002). Similarly, the 
externalized N- terminus of AAV2 VP1 and VP2 proteins comprise 
three NLS- like motifs which are essential for the progression of in-
fection (Grieger et al., 2006; Hoque et al., 1999; Johnson et al., 2010; 
Sonntag et al., 2006), as well as three PDZ- motifs crucial for nuclear 
entry and infection (Popa- Wagner et al., 2012). These NLSs may not 
only contribute to the nuclear transport of the capsids but also to 
the transport of capsid proteins, required for nuclear assembly of 

TA B L E  1  Key facts on nuclear entry of parvovirus capsids

Nuclear entry 
requirements Active transport NPC

Interaction with 
Nups NEBD

Autonomous 
parvovirus

B19V: Potential depletion 
of capsid- associated 
divalent cations for 
uncoating (Caliaro 
et al., 2019)

CPV and H- 1PV: Ca2+ 
release for NE 
disruption (Porwal 
et al., 2013)

CPV: Capsids recruit 
importin β to form 
capsid- importin β 
complex

(Mäntylä et al., 2020)
capsid- importin 

β complex is 
transported 
into the nucleus 
(Mäntylä 
et al., 2018)

H- 1PV: 
Coprecipitation 
with Nup358, 
Nup153 and 
Nup62 (Porwal 
et al., 2013)

Interaction with 
Nups may 
trigger PLA2 
exposure 
to induce 
initial Ca2+ 
release for NE 
disintegration 
(Porwal 
et al., 2013)

MVM: NE invagination and redistribution of 
lamin A/C (Cohen et al., 2006)

H- 1PV: Ca2+ release triggers activation of 
mitotic factors (PKC, cdk2/cdk1 and 
caspase 3) for NE disintegration by local 
lamin B depolymerization. No soluble 
cytosolic factors needed in permeabilized 
cells (Porwal et al., 2013)

CPV failed to infect cells preloaded with 
hepatitis B capsids by microinjection 
(Porwal et al., 2013)

Dependo- 
parvovirus

AAV2: Capsid 
acidification (pH 5.2) 
and Ca2+ release 
was required for NE 
disruption (Porwal 
et al., 2013)

AAV2: Three NLS- like 
motifs in VP1 and 
VP2 essential for 
infection (Johnson 
et al., 2010).

Three PDZ- motifs on 
VP1u essential 
for nuclear entry 
and infection 
(Popa- Wagner 
et al., 2012).

Labeled capsids pass- 
through NPC, no 
evidence of NE 
disintegration: 
(Kelich et al., 2015)

rAAV2: Interaction 
with importin β 
with or without 
interaction 
with importin 
α (Nicolson & 
Samulski, 2014)

AAV2 
coprecipitates 
with Nup358, 
Nup153 and 
Nup62 (Porwal 
et al., 2013)

NEBD limited to microinjected AAV2 capsid 
exposed to pH 5.2 (Porwal et al., 2013)

NE invagination showed by EM (Cohen 
et al., 2006; Cohen & Panté, 2005)
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progeny parvoviruses. In fact, VP1/VP2 trimers of MVM are actively 
imported although using importin β - independent pathway (Riolobos 
et al., 2006). Of note, the nuclear import of these trimers requires 
VP1/VP2 phosphorylation by Raf- 1 kinase during entry of the cell 
into S phase, which may contribute to MVM specificity for trans-
formed cells (Lombardo et al., 2000; Riolobos et al., 2006).

More direct evidence for importin β- recruitment on assembled 
capsids was found in time- lapse microscopy of CPV after infection, 
showing that the formation of importin β- CPV- complexes slows the 
diffusion of cytoplasmic CPV capsids (Mäntylä et al., 2018, 2020). 
Further, importin β- CPV capsid complexes are transported simulta-
neously through the NE (Mäntylä et al., 2018), which is consistent 
with data on rAAV- 2 nuclear import, which depends on interac-
tion with importin β alone or in complex with importin α (Nicolson 
& Samulski, 2014). However, at least some nuclear capsids remain 
decorated with importin β (Mäntylä et al., 2018) arguing against a 
classical nuclear import of at least a fraction of capsids, as importin 
β becomes removed from the cargo within the nuclear basket during 
classical NLS- dependent nuclear import.

However, the number of detected intranuclear capsids is very 
low but in agreement with the small number of nuclear replica-
tion compartment foci detected in early stages of MVM and CPV 

infection (Ihalainen et al., 2007; Ruiz et al., 2006). It can be thus not 
excluded that only a minor fraction of parvoviral capsids initiates 
infection.

2.4  |  Entry through the NE by increased nuclear 
envelope permeability

Various parvoviruses exhibit a unique feature in that they permea-
bilize transiently the NE, as it was shown for H- 1PV, CPV, and AAV2 
(Cohen et al., 2006; Cohen & Panté, 2005; Popa- Wagner et al., 2012; 
Porwal et al., 2013) (Table 1). This nuclear envelope break- down 
(NEBD) occurs within minutes after capsid exposure to nuclei, being 
in agreement with a rapid passage of the capsid into the nucleus ob-
served in infection. This led to the hypothesis that these holes in 
the nuclear envelope allow nuclear entry of intact capsids (Figure 2). 
Mechanistically, parvoviral NEBD shows similarities to mitosis in 
that Ca++, released from the lumen between inner and outer nuclear 
membrane, initiates activation of PKCα, which activates Cdk2 and/
or Cdk1, followed by activation of caspase 3 (Figure 2b). The acti-
vation of the kinases allows the hyper- phosphorylation of lamin B, 
which was described to cause local lamin (Cohen et al., 2006). Such 
depolymerization is required for open holes of up to 190 nm (Porwal 
et al., 2013), which are large enough to allow entry of the capsids 
or even larger complexes as capsid- importin complexes. The role of 
caspase 3 is in the proteolytic cleavage of lamin B and not in the di-
rect disruption of the nuclear membranes (Cohen et al., 2006, 2011; 
Cohen & Panté, 2005) (Figure 2c). Caspase 3 is upregulated and ac-
tivated just prior to mitosis (Hsu et al., 2006), being in concordance 
with its function during parvoviral- mediated NEBD.

Pore formation depends on interaction with the NPC in par-
ticular by capsid binding to at least three Nups (Nup358, Nup153, 
and Nup62). Blocking AAV2 or H- 1PV interaction with Nup153 
by hepatitis B virus capsids, which specifically interacts with 
Nup153 (Schmitz et al., 2010) inhibited NEBD. The relevance of 
this finding for infection was later confirmed by CPV, which failed 
to infect cells preloaded with hepatitis B virus capsids by micro-
injection (Mäntylä et al., 2020). As Nup153 is localized in the 
nuclear basket close to the inner ring of the NPC, these obser-
vations indicate that the parvoviruses should be associated with 
importins in order to reach the nuclear side of the NPC (Figure 2a). 
Furthermore, NEBD was accelerated when the capsids were pre- 
acidified and neutralized implying the need of VP1u exposure. 
In fact, PLA2 exposure could also be achieved by direct interac-
tion of parvoviral capsids (AAV2 and H- 1PV) with Nups leading 
to the hypothesis that the accessible PLA2 domain triggers the 
initial Ca++ efflux. However, PLA2 activity on MVM capsids has 
not been reported to be involved in causing NE disruption (Cohen 
et al., 2011) and other mechanisms causing permeabilization can-
not be excluded. This includes amphipathic helices identified on 
VP1u (Leisi et al., 2016) as they permeabilize membranes, which 
was as shown for endosomal escape of adenoviruses (Wiethoff & 
Nemerow, 2015), or the PDZ domains, which exhibit membrane 

F I G U R E  1  Nuclear entry of parvoviruses through the NPC. 
Cytoplasmic parvoviruses (PVs) that have undergone structural 
changes within the endosome bind to importin α (KPNA) /
importin β (KPNB). This allows transport through cellular nuclear 
pore complexes (NPCs). Upon reaching the nuclear basket, the 
PV- importin complex dissociates, releasing the capsid into the 
nucleoplasm. Figure created with BioRender.
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affinity (Fanning & Anderson, 1999) and induce membrane curva-
ture (Herlo et al., 2018).

In summary, there are two seemingly contradictory models of nu-
clear import of parvoviral capsids but both rely on interaction with 
the NPC, which was also demonstrated by single particle tracking of 
rAAV (Junod et al., 2021; Kelich et al., 2015). Numerous data support 
that this interaction is mediated by importin β, however, the interac-
tion between importin α and the NLS exposed on VP1u on capsid sur-
face is not well understood. Nuclear import of microinjected capsids 

(Harbison et al., 2009; Suikkanen, Aaltonen, et al., 2003a) suggests that 
a sub- fraction of capsids might expose their VP1us without acidifica-
tion. Further, it cannot be totally excluded that the nuclear capsids after 
microinjection are derived from infection occurring in parallel.

Differences between the models comprise later events once the 
capsids arrive on the nuclear side of the NPC. While the classical im-
port model favors dissociation of the importins from the capsids and 
diffusion of the latter deeper into the nucleus, the NEBD model sup-
ports interaction with Nup153 possibly after importin β dissociation, 

F I G U R E  2  Entry through the NE by increased nuclear envelope permeability. (a) Parvovirus capsids bound to importins (KPNA: Importin 
α/KPNB: Importin β) bind to Nups. The binding triggers exposure of PLA2 on VP1u inducing calcium efflux. (b) the release of calcium 
activates PKCα, which activates cdk2/cdk1. Caspase 3 is also activated. (c) Hyper- phosphorylation of Lamin B by kinases as well as Lamin 
B- cleavage by caspase 3 leads to its local degradation. (d) The formation of transient holes allows entry of NPC- bound or cytosolic capsids or 
capsid- importin complexes. Figures created with BioRender.
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disintegration of the NE and entry of the capsid. These could be either 
cytosolic capsids (eventually importin β- bound) or the capsids that have 
initiated the NEBD, likely after NPC- dissociation which is mediated 
by cdk- 1 (Kutay et al., 2021). However, as long as it remains unknown 
which capsids initiate infection, none of the models can be excluded.

3  |  NUCLE AR EGRESS

Once parvovirus genome has entered the nucleus, successful replica-
tion depends on cell entry into the S phase. The S phase- dependent 
activation of DNA replication machinery is needed to provide the re-
sources necessary for viral replication. These cellular factors include 
DNA polymerase δ required for conversion of ssDNA to dsDNA tem-
plate for viral gene transcription (Cotmore & Tattersall, 2013). The 
progression to the S phase is accompanied by virus- induced cellular 
DNA damage, ataxia telangiectasia mutated (ATM)- dependent DNA 
damage response (DDR) and pre- mitotic cell cycle arrest in MVM 
infection (Adeyemi et al., 2010; Cotmore & Tattersall, 2013; Ruiz 
et al., 2011). In AAV infection, cytotoxic viral Rep proteins induce 
S- phase arrest (Berthet et al., 2005; Saudan et al., 2000), and UV- 
treated AAV particles evoke ATM-  and Rad3- related kinase (ATR)- 
dependent DDR characterized by accumulation of cells in the late S 
and/or G2 phases (Jurvansuu et al., 2005; Raj et al., 2001; Schwartz 
et al., 2009; Winocour et al., 1988). Preventing cell entry from G2 
phase to mitosis maintains nuclear structure thereby allowing the 
prolonged assembly of new virions (Adeyemi & Pintel, 2014; Chen 
et al., 2010; Morita et al., 2003). The empty capsids are formed in the 
nucleus, and they mature into DNA- filled capsids at the late S/G2 
phase (Gil- Ranedo et al., 2015). After AAV capsid assembly, involv-
ing capsid accumulation in nucleoli (Sonntag et al., 2010; Wistuba 
et al., 1997), targeting of viral ssDNA to viral capsid is mediated by 
Rep proteins (Bleker et al., 2006; Dubielzig et al., 1999).

Viral infection elicits various responses in the host cell which 
can lead to plasma membrane ruptures, formation of membrane 
vesicles, nuclear fragmentation, and finally to cell lysis (Labbé & 
Saleh, 2008). The cellular egress of many non- enveloped viruses is a 
passive process which relies on cell lysis to release viral progeny into 
the extracellular space (Daeffler et al., 2003; Georgi & Greber, 2020; 
Tollefson et al., 1996). The major form of cell death described for 
parvoviruses is apoptosis, however, also necrosis has been detected 
(Chen & Qiu, 2010; Nykky et al., 2010).

In apoptotic cells, the NE permeability is regulated by caspase- 
dependent and - independent alterations of NPCs and caspase- dependent 
cleavage of lamins and other NE proteins (Ferrando- May, 2005; Kihlmark 
et al., 2004; Roehrig et al., 2003; Strasser et al., 2012). As described ear-
lier, nuclear entry of parvovirus capsids is accompanied by the NE dis-
integration and activation of the key enzymes of mitosis (Porwal et al., 
2013). However, nuclear microinjection of H- 1PV capsids does not in-
duce NEBD making it unlikely that this entry- related mechanism is re-
quired for capsid egress from the nucleus.

During parvovirus infection, the disintegration of host DNA 
is followed by DNA damage response and activation of apoptosis TA
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(Adeyemi et al., 2010; Chen & Qiu, 2010). The cell death events are 
mediated by apoptotic caspases (Roos & Kaina, 2006). CPV- infected 
cells have a relatively long lifespan even though the initiator caspases 
8 and 9, and effector caspases 3 and 7 are activated early in infection 
and remain active until very late in infection, until 48– 72 hpi (Nykky 
et al., 2010). Analysis of infected cells has indicated that capsids are 
released from host cells already at 12 hpi (Zhao et al., 2016). These 
observations support the model that viral capsids egress the nucleus 
and the host cell prior to apoptosis- induced cell lysis. After nuclear 
exit cytoplasmic MVM progeny capsids are transported through 
COPII- vesicles of ER and cisternae of Golgi and continue toward 

the cellular periphery in lysosomal/late endosomal vesicles. The ve-
sicular capsid transport and cellular exocytosis depend on gelsolin- 
induced degradation of actin (Bär et al., 2008).

In contrast to these cell- destruction- based exit mechanisms, 
which were previously thought to be the main pathway for progeny 
parvoviral egress, more recent evidence supports that parvoviruses 
are also able to actively egress the nucleus into cytosol before pas-
sive release through cell lysis at the final stage of the infection occurs 
(Table 2). Active translocation has been previously shown for MVM, 
which utilizes the CRM1- mediated active nuclear export pathway 
for nuclear exit of capsids through the NPC (Eichwald et al., 2002; 

F I G U R E  3  Nuclear egress of progeny capsids. Packaging of viral genomes inside capsids causes a conformational change exposing the 
VP2 N- terminal on the capsid surface. (a) MVM capsids are actively exported out of the nucleus through NPCs mediated by the interaction 
between NS2 NES with CRM1 (Bodendorf et al., 1999; Eichwald et al., 2002; Engelsma et al., 2008; Fornerod et al., 1997; Maroto 
et al., 2004; Miller & Pintel, 2002). (b) The phosphorylation of the exposed VP2 N- terminal end on the capsid surface acts as a nuclear 
export signal enhancing capsid export out of the nucleus (Maroto et al., 2004). (c) Phosphorylation of the capsid surface enhances capsid 
export (Wolfisberg et al., 2016). (d) Activation of apoptosis and necrosis affect the structure of the nuclear lamina, and capsids are released 
to the cytoplasm in late infection (Chen & Qiu, 2010; Nykky et al., 2010, (Wolfisberg et al., 2016). Figures created with BioRender.
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Engelsma et al., 2008) (Figure 3a). CRM1, also called exportin 1, is 
a versatile nuclear export receptor which shuttles between the nu-
cleus and cytoplasm (Fornerod et al., 1997) and translocates mul-
tiple cargoes including ribosomal subunits (Ho et al., 2000; Moy & 
Silver, 1999; Thomas & Kutay, 2003). The binding of CRM1 to the 
cargo is promoted by RanGTP (Koyama & Matsuura, 2010) and me-
diated by NES. For nuclear export of MVM capsids, CRM1 interacts 
with the NES in NS2 in a RanGTP- independent manner (Bodendorf 
et al., 1999; Eichwald et al., 2002; Engelsma et al., 2008; Fornerod 
et al., 1997; Maroto et al., 2004; Miller & Pintel, 2002).

Several findings, however, support CRM1- independent nuclear 
capsid export, being thus most likely NS2- independent. Similar to 
nuclear import of MVM VP1/VP2 trimers, nuclear egress of MVM 
capsids is enhanced by Raf- 1 kinase- mediated phosphorylation of 
three serine residues in the N- terminus of VP2 on capsid surface 
(Maroto et al., 2004) (Figure 3b). This pathway relies on exposure of 
the N- terminal domain of VP2, which is exposed in DNA- containing 
parvovirus capsids during their maturation (Agbandje- McKenna 
et al., 1998; Kaufmann et al., 2008; Kontou et al., 2005; Sánchez- 
Martínez et al., 2012; Tsao et al., 1991). Moreover, the phosphoryla-
tion of the capsid surface residues has been linked to nuclear export 
capacity prior to the passive release by cell lysis. Although confor-
mational change of the VP2 N-  terminus on the capsid surface was 
required for phosphorylation, the VP2 N- terminus was dispensable 
for nuclear capsid egress (Wolfisberg et al., 2016) (Figure 3c.) Non- 
phosphorylated capsids exit the nucleus passively upon NE damage 
during apoptosis (Figure 3d). The cellular and nuclear egress of AAV 
was earlier thought to rely on cell lysis caused by overexpression of 
helper virus, adenovirus or herpesvirus, proteins (Meier et al., 2020; 
Smith & Enquist, 2002). Recently, the presence of viral membrane- 
associated accessory protein (MAAP) was observed for AAV at the 
late stages of infection. MAAP is located in the plasma membrane 
and in the nuclear periphery (Galibert et al., 2021; Ogden et al., 2019). 
This protein is a viral egress factor, which also promotes AAV capsid 
association with extracellular vesicles (Elmore et al., 2021).

4  |  CONCLUDING REMARKS

The versatile therapeutic potential of parvovirus has researchers 
focused on understanding the full mechanism of infection. In gene 
therapy, for which an efficient delivery of modified parvoviral vec-
tors (mostly AAV) is crucial, nuclear entry seems to be a bottleneck 
and detailed knowledge may help improving their clinical administra-
tion. Similar to nuclear entry, the studies of viral egress have shown 
also controversial results. Improving the knowledge on export may 
assist oncolytic therapy using autonomous parvoviruses, as their po-
tential depends upon efficient spread.
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