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The adult visual system of the fruit fly, Drosophila melanogaster, contains

seven eyes—two compound eyes, a pair of Hofbauer-Buchner eyelets, and

three ocelli. Each of these eye types has a specialized and essential role to

play in visual and/or circadian behavior. As such, understanding how each

is specified, patterned, and wired is of primary importance to vision biolo-

gists. Since the fruit fly is amenable to manipulation by an enormous array

of genetic and molecular tools, its development is one of the best and most

studied model systems. After more than a century of experimental investiga-

tions, our understanding of how each eye type is specified and patterned is

grossly uneven. The compound eye has been the subject of several thousand

studies; thus, our knowledge of its development is the deepest. By compar-

ison, very little is known about the specification and patterning of the other

two visual systems. In this Viewpoint article, we will describe what is known

about the function and development of the Drosophila ocelli.

Introduction

The adult fruit fly, Drosophila melanogaster, has seven

eyes: a pair of compound eyes, a trio of ocelli, and

two extra-retinal eyelets [1]. Together, these three sys-

tems are responsible for entrainment of the light-

responsive circadian clock and for all visual behaviors

that the fly needs to execute for proper feeding, mate

selection, avoidance of predators, and flight navigation.

The unique visual and circadian behaviors of each sys-

tem are made possible by the distinctive physical struc-

ture of each eye and the downstream neural wiring

patterns. As such, it is important to understand how

each system is first specified and then patterned.

Although an abundance of information on the structure

and physiology of all three visual systems exists,

detailed information on the development of these sys-

tems is primarily confined to the compound eye. Here,

we will provide an overview of each visual system with

particular emphasis on the ocellar system of Drosophila.

The compound eyes

The compound eyes of Drosophila are located on the

lateral sides of the adult head and are each composed

of approximately 750 unit eyes called ommatidia

(Fig. 1A,B) [2]. Each unit eye contains eight photore-

ceptors (R1-R8) and twelve non-neuronal cone and

pigment cells. These cells occupy stereotyped positions

within the ommatidium and perform specialized func-

tions. The photoreceptors convert light into electric

signals, the cone cells secrete the overlying lens, and

the pigment cells optically insulate each unit eye from

its adjacent neighbors. Each photoreceptor neuron will
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express one of five different rhodopsin genes. The

outer photoreceptors R1-6 all express the Rh1 blue-

green-sensitive opsin [3,4]. The inner R7 neuron will

express one of two ultraviolet-sensitive opsins (Rh3/

Rh4) [5–7]. And, the other inner photoreceptor (R8),

which lies beneath the R7, will either express the Rh5

blue-sensitive or the green-sensitive Rh6 opsin [8–10].
This combination of rhodopsin proteins allows the flies

to sense polarized light, motion, and see in color.

The compound eyes are derived from a pair of sac-

like larval structures called eye-antennal disks [11–14].
Overt patterning of the eye begins at the start of the

third larval instar when a wave of differentiation initi-

ates from the posterior margin of the disk. The leading

edge of this differentiating wave can be visualized by a

dorso-ventral groove in the epithelium called the mor-

phogenetic furrow. Over the course of three days, the

furrow traverses across the retinal primordium and

transforms the field of undifferentiated cells into an

ordered array of unit eyes [2]. Within the ommatidium,

cells adopt their fate in a stepwise manner akin to an

assembly line. In short, the photoreceptors are speci-

fied first followed by the cone and pigment cells. The

mechanosensory bristle complexes are added to the

ommatidium last [2,15,16].

The compound eyes are responsible for phototactic

movement, motion detection, pattern recognition, and

color vision [17–27]. How well a compound eye carries

out each of these behaviors is dependent upon several

features that include the overall number of ommatidia,

the physical dimensions of each unit eye, the number

of photoreceptors per unit eye, the ratio of photore-

ceptors cells to second-order neurons, the internal

structure of the rhabdom (fused or open), the neural

wiring of the unit eye (apposition, superposition, or

neural superposition), the number of connections

within the neural circuit, as well as the type and spec-

tral properties of the opsin proteins. In addition to

mediating various visual behaviors, the compound eye

also contributes to the entrainment of the molecular

circadian clock [1,28–32].

The Hofbauer-Buchner eyelet

The extra-retinal eyelets were discovered decades after

the first major monographs on insect visual system

structure and function predicted their existence

[1,17,18]. The two eyelets participate, along with the

compound eyes, in the entrainment of the molecular

clock, and each one lies between one of the compound

eyes and its associated optic ganglion [1,29,31]. The

pair of four-celled eyelets are derived from two bun-

dles of larval photoreceptors that are called Bolwig

organs—named after their discoverer, Niels Bolwig

[33]. These comprise the larval visual system and along

with class IV multidentric (md) neurons allow for

(A) (B) (C)

(D)

Fig. 1. Organization of the adult Drosophila visual systems. (A, B) Scanning electron views of either side or head-on views of the Drosophila

head. The compound eyes occupy positions on the lateral sides of the fly head. The ocelli, by comparison, are located within the dorsal head

vertex that lies between the two compound eyes. (C) Light microscope image of dorsal view of the adult head showing the three ocelli.

(D) A schematic drawing of the adult head showing the different domains of the head vertex. oc = ocellar domain, fr = frons, and orb =

orbital domain. Please note that the ocellar domain contains the three ocelli and the inter-ocellar cuticle (iOC) that lies between the ocelli

themselves.
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complex phototactic behaviors. For example, juvenile

larvae use these two sensory systems to detect light

and then move away from it (negative phototaxis).

Older larvae, by comparison, will engage in positive

phototaxis by using these same organs/neurons to

crawl toward the light [34,35].

Each larval Bolwig organ contains a mixture of four

blue-sensitive (Rh5 expressing) and eight green-sensitive

(Rh6 expressing) photoreceptor neurons [29,36,37].

During pupal development, all of the original green-

sensitive photoreceptors are pruned away by

programmed cell death. The remaining blue-sensitive

photoreceptors then completely change their spectral

sensitivity by first terminating transcription of Rh5 and

then by activating Rh6 expression. As such, each adult

eyelet is comprised of just four Rh6 expressing green-

sensitive photoreceptors [29,31,38]. This change in

rhodopsin expression represents a unique example of

sensory plasticity in terminally differentiated neurons.

Structure and function of the ocellar
visual system in Drosophila

Ever since the ocelli were first described almost

300 years ago [39], anatomists and entomologists have

carefully documented which insects have ocelli and

which ones do not. Although there are exceptions, the

general rule of thumb holds that ocelli are present

within flying insects but not within ones that are

grounded. Exceptions to this rule include some species

of butterflies that lack ocelli altogether and a few spe-

cies of termites, desert ants, and beetles that cannot fly

but have ocelli [40–45]. It appears that the ocelli have

been lost or gained several times during the evolution

of insects. The ocelli share several basic features with

the ommatidia of the compound eye in that they con-

tain photoreceptor neurons, lens-secreting cone cells,

and optically insulating pigment cells.

In Drosophila, the three ocelli are located between

the compound eyes on the vertex of the adult head in

a triangle pattern (Fig. 1C,D). Like the compound

eyes, the ocelli are derived from the pair of larval eye-

antennal disks [13]. Each disk produces one of the two

lateral (also called posterior) ocelli and one half of the

medial (also called anterior) ocellus [46,47]. During

pupal development, the two halves of the medial ocel-

lus are fused to each other when the two eye-antennal

disks are stitched together to make a single intact head

covering [48–50]. Each adult ocellus consists of

approximately 80 photoreceptors, all of which express

the Rh2 violet-sensitive rhodopsin [51–53], as well as a
set of lens-secreting cone cells and optically insulating

pigment cells. The photoreceptor axons directly

innervate the optic lobe, which is the part of the fly

brain that is responsible for processing visual informa-

tion. The optic lobe is comprised of four structural

components: the lamina, the medulla, the lobula, and

the lobula plate. Histological preparations demon-

strated that ocellar photoreceptors directly innervate

the latter two structures [22]. The lobula and lobula

plate also receive information from the compound eye

through intermediate connects that are relayed from

the lamina and medulla [54]. This wiring pattern sug-

gests that visual information received by the com-

pound eye and ocelli is integrated within the deepest

layers of the optic lobe and then passed on to the cen-

tral brain complex [55].

Electrophysiological recordings of the Drosophila

ocellus can be found in just a single paper [56]. In this

study, it was shown that some but not all members of

the phototransduction machinery are shared by com-

pound eye and ocellar photoreceptors. The transient

receptor potential (trp) and retinal degeneration B

(rdgB) genes play important roles in the phototrans-

duction response of compound eye photoreceptors

[57,58]. However, when the ocellar light response from

these mutants was recorded, defects in phototransduc-

tion were detected in trp, but not rdgB, mutants.

Behavioral studies further demonstrated that no recep-

tor potential A (norpA), which is an essential compo-

nent of the phototransduction cascade in compound

eye photoreceptors, is completely dispensable for

visual behaviors mediated by the ocelli [59].

The study by Labhart also showed that the ocellar

photoreceptors are not divided into the same neuronal

subtypes as within the ommatidium of the compound

eye. For example, in the retina, mutations in the seven-

less (sev) gene lead to the transformation of the R7 neu-

ron into a cone cell [60,61]. As a consequence, the eye

is rendered insensitive to ultraviolet light [58,62]. How-

ever, ocellar recordings from sev mutants are indistin-

guishable from wild type, suggesting that an R7

subtype does not exist within the ocelli. In the com-

pound eye, several other neuronal subtypes exist (R8,

R2/R5, R3/R4, and R1/6). A large library of transcrip-

tion factors that specify the fate of each subtype has

been identified by expression patterns and mutant anal-

ysis [63–65]. It would be interesting to see which of

these transcription factors are expressed within the

ocelli and if any of the neuronal subtypes that are pre-

sent in ommatidium are also present in the ocellus.

Behavioral studies of Drosophila indicate that the

ocelli contribute to a wide range of behaviors includ-

ing sensing the horizon, flight stabilization, entrain-

ment of the circadian clock, color choice, and

phototaxis [59,66–71]. These behaviors are normally
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dominated by the compound eyes, and the ocelli

appear to simply augment the visual response. In other

words, flies can still execute these behaviors even when

the ocelli are manually occluded with paint or geneti-

cally ablated. For example, flies with occluded ocelli

have reduced (but not eliminated) phototactic

responses [72]. Similarly, flies in which the ocelli have

been genetically eliminated have reduced but still

robust locomotor activity. They can also discriminate

between different colors albeit not as efficiently as

wild-type flies [66]. Very few electrophysiology studies

on the ocelli have been conducted in Drosophila; thus,

there is still a lot to be learned about the physiological

contributions of the ocelli to fly vision.

Structure and function of the ocelli in
non-Drosophila species

In contrast to the compound eyes, the ocelli, in all spe-

cies examined so far, have very poor resolving power

and are, therefore, not particularly useful for pattern

recognition. This is due to the fact that the ocellar plane

of focus lies behind that of the retina and this results in

an under-focused image [73–76]. Also, the slightly oval

shape of each ocellus produces an astigmatism, which

further degrades an already hazy picture [77]. As such,

the image that the ocelli contribute to the insect brain is

quite blurry. So, what is the role of the ocelli in visual

behavior if it not to help the fly see clearly?

Interestingly, unlike the compound eyes, a universal

set of visual behaviors cannot be attributed to the

ocelli. This is in part because the number, location,

internal structure, and neural circuitry of the ocelli dif-

fer from one species to another. For example, while

Drosophila has three ocelli, the cockroach and most

butterflies have just two, whereas some species of

jumping bristletails can have up to sixteen ocelli

[41,78–82]. Contrastingly, while all three ocelli form a

tight triangular pattern in Drosophila, they are well

separated from each other in the locust [79,83]. Addi-

tionally, while in an overwhelming number of species

the ocelli are located on the external surface of the

head, in some insects such as the sphinx moths the

ocelli are positioned internally underneath the head

epidermis [84]. These factors all impact the ability of

the insect to stabilize itself while in flight and/or see in

differing light conditions.

The function of the ocelli is also affected by varia-

tions in the overall size of the ocellus as well as the

number of photoreceptors that are contained within

each one. For example, the ocelli of nocturnal bees

and ants are larger than those of their diurnal cousins

and this, in part, allows them to forage, navigate, and

orient themselves using celestial light that is 100 million

times dimmer than daylight [85,86]. The number of

photoreceptors within each ocellus can also influence

how well an insect can see in differing light conditions.

As such, there is considerable variability in the number

of receptor neurons that are found in the ocelli of dif-

ferent insects. For instance, while the ocelli of the drain

fly have between two and seven photoreceptors, the

number of such neurons within the fruit fly and the

cabbage looper moth ocelli range from seventy to

ninety [87–89]. And, at the outer extremes are the drag-

onfly, green bush-cricket, and cockroach with 1500,

8000, and 10 000 photoreceptors, respectively [82,90,91].

Because of these differences, the ocelli actually play very

diverse physiological roles in different species.

Several attributed roles for the ocelli include mainte-

nance of stable altitude, gaze level, and orientation, in

flight. This is achieved by detecting, measuring, and

comparing differences in light intensity across the left

and right ocellus (roll) as well as between the anterior

and posterior ocellus (pitch). This is best achieved in

insects that have three closely positioned ocelli

[71,76,83,92,93]. In Drosophila and other diptera, the

halteres function as gyroscopes to aid the compound

eyes and ocelli in flight stabilization [94–97].
The ability of the ocelli and the dorsal rim omma-

tidia of the compound eye to detect and distinguish

polarized light from unpolarized light permits flying

insects to distinguish between the ground and the sky

—this allows for the identification of a sharp horizon

[98]. An additional task for the ocelli is to detect small

changes in light intensity over a large visual field. This

is possible if the number of ocellar photoreceptors is

large when compared to the number of second-order

neurons [76,99,100]. The most dramatic example is

that of the cockroach in which the 10 000 ocellar

photoreceptors converge and synapse on just four

second-order neurons [101]. Some species of desert

ants combine the ability to detect polarized light, dim

light from the stars, and small changes in light inten-

sity to navigate the landscape during nightly foraging

expeditions. In these instances, the ocelli function

together as a celestial compass. Lastly, the ocelli are

used to guide some species such as Drosophila toward

the light [72,75,102,103]. The particular type (visible or

ultraviolet) and wavelength of light that the insect is

attracted to will depend upon the rhodopsin gene that

is expressed within ocellar photoreceptors [66,99]. It

should be noted that the compound eyes are the domi-

nant phototactic organs and that the ocelli function to

augment the phototactic response [67,104].

All of the aforementioned behaviors require that

information be very quickly transmitted from the ocelli
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to the brain. In general, the ocellar photoreceptors and

the second-order neurons to which they connect are

much larger than their counterparts in the compound

eye and its downstream circuit. Also, the number of

sequential connections within the ocellar neural circuit

is fewer and its wiring is much simpler than the com-

pound eye [100,105–110]. As such, visual information

from the ocelli is communicated to the brain at a speed

several orders of magnitude faster than the data that is

captured and transmitted from the compound eyes.

Anatomy of the Drosophila head
vertex

The dorsal head capsule (also called the head vertex)

lies between the two compound eyes and is comprised

of three domains—the ocellar region, the frons, and

the orbital region (Fig. 1C,D) [111]. The ocellar region

contains the three ocelli, two large ocellar bristles, two

post vertical bristles, and six microchaetae bristles.

The last set of bristles lies in between the three ocelli—
this domain is called the inter-ocellar cuticle (iOC).

Immediately adjacent to the ocellar region is the frons

and next to it lies the orbital region. This last domain

borders the compound eye (Fig. 1D). All three

domains develop from the dorsal-anterior quadrant of

the eye-antennal disk, and each is controlled by a

unique gene regulatory network.

Early development of the head vertex

Development of the entire head vertex is dependent

upon the activity of the Wingless (Wg), Hedgehog (Hh),

Epidermal Growth Factor Receptor (Egfr), and Notch

(N) signaling cascades as well as a suite of transcription

factors. Disruptions of these pathways and their down-

stream transcriptional targets affect the development of

various structures within the head vertex including the

ocelli [112–117]. The following is a temporal and spatial

summary of the GRNs that control head vertex devel-

opment within the eye-antennal disk.

A key first step in the development of the head ver-

tex is for several of the above signaling pathways and

their transcriptional targets to first activate and then

refine the expression of orthodenticle (otd), also called

ocelliless (oc) (Fig. 2A). Otd/Oc encodes a K50 class

homeodomain transcription factor that is responsible

for specifying the entire early ocellar field, which

includes the ocelli themselves and the iOC (Fig. 2B)

[118,119]. Both structures, as well as the adjoining

frons, are lost in viable otd/oc loss-of-function muta-

tions [112,120,121]. As a consequence, the orbital

domains expand and fuse together (Fig. 2C).

During the first larval instar, the Pannier (Pnr) tran-

scription factor activates wg expression and the Wg

pathway by extension throughout the entire eye-

antennal disk. The Wg pathway, in turn, stimulates

(A) (B)

(C)

Fig. 2. Establishment of the dorsal head vertex requires Orthodenticle (Otd). (A) Schematic of the gene regulatory network that establishes

otd expression in the dorsal head vertex. (B) Otd protein distribution within the dorsal head vertex region of a third instar eye-antennal disk.

(C) The ocelli and frons are deleted from the adult head of otd/oc loss-of-function mutants.
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otd/oc expression throughout the whole disk. As devel-

opment proceeds, the Decapentaplegic (Dpp) pathway

represses wg expression within the eye field, thereby

relegating it to small domains of the dorsal and ventral

margins. As a result, otd/oc expression becomes

restricted to just the developing head vertex (Fig. 2B)

[112,122]. The Wg pathway also activates the expres-

sion of all three members of the Iroquois Complex—
mirror (mirr), araucan (ara), and caupolican (caup)

[123–126]. These homeodomain transcription factors

are expressed throughout the entire dorsal compart-

ment of the eye-antennal disk and are responsible for

establishing the fate of dorsal structures including the

head vertex [125,127–129]. However, only Mirr

appears to be required for ocellar development. Mirr

and the Wg pathway join the Hh signaling cascade in

maintaining otd/oc expression within the head vertex

through the early third larval instar [112,130]. The Wg

and Hh pathways appear to directly regulate otd/oc as

terminal transcription factors of each pathway bind to

an ocellar specific enhancer [130,131]. It is not clear if

Mrr regulation of otd/oc is direct or indirect via inter-

mediate factors.

By the middle of the third larval instar, significant

changes to the regulatory landscape take place with

the head vertex (Fig. 3A). First, maintenance of otd/oc

transcription becomes autoregulatory and independent

of both Wg and Hh signaling [130]. Its expression

becomes graded with high levels found within the ocel-

lar region and ever decreasing levels within the adja-

cent frons and orbital regions. The differing levels of

Otd/Oc appear to be important for specifying the fate

of these two regions as low levels of exogenous Otd/

Oc protein can rescue the frons, but higher levels are

required to restore the iOC and ocelli [131]. Interest-

ingly, overexpression of otd/oc in wild type results in

the specific enlargement of the ocelli [132].

Next, the regulatory relationship between Otd/Oc,

Wg, and Hh changes dramatically. Instead of being

activated by Wg and Hh signaling, Otd/Oc now acti-

vates the Hh pathway and represses Wg signaling. As

such, the expression patterns of these two morphogens

are no longer overlapping as they were at the start of

third larval instar. Instead, Hh and Wg signaling is

now active in mutually exclusive domains (Fig. 3B,C).

Hh signaling becomes essential for the ocellar domain

while the Wg pathway specifies the adjacent frons and

orbital region [112].

Lastly, within the ocellar region, Otd also the acti-

vates expression of defective proventriculus (dve)

[133,134]. Dve cooperates with Otd to maintain high

levels of hh expression [134]. Within this same region,

Dve also functions to repress transcription of the reti-

nal determination (RD) gene eyegone (eyg) and the

(A) (B)

(C)

Fig. 3. Orthodenticle regulation of hedgehog (hh) and wingless (wg) expression specifies subdomains of the head vertex. (A) Schematic of

the gene regulatory network that establishes Hh signaling within the inter-ocellar cuticle (iOC) domain and Wg signaling in the frontal bristles

(frn) and orbital (orb) domain. (B) hh-lacZ expression within the iOC of a third instar eye-antennal disk. (C) Wg protein distribution within the

frn and orb domains of a third instar eye-antennal disk.
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two IroC complex members ara and caup. Shutting off

eyg is important for modulating the size of the ocellar

region while the repression of ara and caup is essential

for ensuring that the ocellar region is not forced into

adopting the fates of either the orbital domain or the

dorsal compound eye [134,135].

Development of the ocellar domain

Development of the ocellar domain can be separated

into the specification of the ocelli themselves and

region between the three simple eyes—the inter-ocellar

cuticle (iOC) domain. The main event within the iOC

is to activate the Hh pathway, which will autono-

mously control development of the iOC and non-

autonomously direct formation of the medial and

lateral ocelli (Fig. 4). The Hh pathway initially

activates engrailed (en), whose expression is then main-

tained by the Notch pathway [112,136]. En is a tran-

scriptional repressor that is tasked with suppressing

the transcription of patched (ptc) and cubitus interrup-

tus (ci), two key members of the Hh pathway itself

[137–142]. Within the iOC, En blocks activation of the

Hh pathway and this is important because the Hh

pathway, if left unchecked, would transform the iOC

and microchaetae bristles into ocelli. Indeed, reduc-

tions in En protein levels via loss-of-function mutants

or disruptions to the Notch pathway eliminate the

iOC. As a result, the medial and lateral ocelli are

merged together to form a single large ocellus [136].

Hh signaling within the iOC influences the develop-

ment of the adjacent ocelli via two non-autonomous

signaling mechanisms. First, Hh signaling effects ocel-

lar development by non-autonomously activating

expression of a portion of the RD network within the

ocelli (Fig. 5A). One such target is eyes absent (eya),

which is expressed throughout the compound eyes and

ocelli and encodes a transcription factor with both

transcriptional activator and tyrosine phosphatase

activity (Fig. 5B) [143–147]. Two viable, loss-of-

function mutant alleles of eya exist (eya1, eya2).

In both strains, the compound eyes are completely

missing but the ocelli appear normal in appearance

[148,149]. A molecular analysis of eya1 and eya2

determined that the ocelli remain because an enhancer

element that drives expression in the developing eye

but not the ocelli is deleted in both mutant alleles

[150]. A search for additional regulatory elements iden-

tified an enhancer that drives expression within the

ocelli. And, as expected, the removal of this element

eliminates the ocelli [151]. This is consistent with the

loss of ocelli that is seen when an otd/oc enhancer is

used to drive expression of an eya RNAi construct

[152]. Hh signaling from the iOC activates transcrip-

tion of eya in both the medial and lateral ocelli [130].

It remains an open question if the Hh pathway, via

the Cubitus interruptus (Ci) transcription factor,

directly binds to and activates the ocellar enhancer.

A second input into eya appears to be the Pax6

transcription factor Twin of Eyeless (Toy). Toy occu-

pies the highest genetic position within RD network

and is expressed throughout the developing eye and

ocellar regions from the earliest stages of development

(Fig. 5C) [153]. Toy as well as its paralog and down-

stream target Eyeless (Ey) are required for the forma-

tion of the entire eye-antennal disk. When expression

of both genes is simultaneously knocked down (to

eliminate all Pax6 function), the eye-antennal disks fail

to form and the resulting pharate adults are headless

[154]. Similarly, the vast majority of toyhdl and toy1

null mutants also lack the eye-antennal disks [154,155].

However, a small number of both mutant alleles do

survive to adulthood and have ocellar defects

[132,152,155,156]. This is consistent with the loss of

ocelli that is seen when toy is knocked down via RNAi

just within the ocellar domain (Fig. 5D) [152]. eya is

Fig. 4. Engrailed (En) repressor specifies the fate of the iOC.

Schematic of the gene regulatory network that establishes En

expression within the iOC. The En repressor blocks expression of

downstream target genes. This is essential for establishing the fate

of the iOC. The activation of hh expression is important for the

establishment of the neighboring ocelli. Hh signaling from the iOC

non-autonomously activates target genes in the lateral and medial

ocelli.
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thought to be regulated by Toy because its expression

within the ocelli is severely disrupted in toy mutants

while the overexpression of toy has the opposite effect

[132]. It is not clear, however, if Toy binds to the ocellar

specific enhancer of eya that was identified in [151] and

activates its expression. In the compound eye, Ey and

Toy do not appear to directly activate eya expression.

In the compound eye, Eya forms a biochemical

complex with the homeobox transcription factor Sine

Oculis (So) [157]. The So-Eya complex is an integral

part of the RD network and functions to both pro-

mote an eye fate and to suppress the formation of

head epidermis [143,157–161]. The first evidence that

so is important for ocellar development came from the

viable so1 mutant—adult flies lack both the compound

eyes and the ocelli (Fig. 5E) [162]. As expected, so is

expressed in both visual systems (Fig. 5F). As with the

viable eya1 and eya2 alleles, so1 flies harbor a

spontaneous deletion of an enhancer element [158]. In

this instance, the deletion is large enough to encom-

pass separate eye and ocellar regulatory sequences

[163–165]. While so expression is directly activated by

both Toy and Ey in the compound eye [164,166], its

initial expression in the ocelli appears to be dependent

upon Eya [132]. Afterward, maintenance of so expres-

sion within each ocellus is controlled by an autoregula-

tory loop that is independent of both Pax6 proteins

[132,165].

Within the ocelli, the So-Eya complex goes on to

activate the expression of the proneural gene atonal

(ato) via control of an enhancer element (Fig. 5A)

[167]. The complex similarly regulates ato expression

in the developing eye as well [168]. In the compound

eye, ato is expressed in and required for the formation

of the R8 photoreceptor [169–171]. This in turn trig-

gers the stepwise recruitment of the remaining

(A) (B)

(C)

(F)(E)(D)

Fig. 5. Retinal determination protein (Eya) specifies ocellar development. (A) Schematic of the gene regulatory network that establishes eya

expression within the ocelli. Multiple inputs including both Hh signaling and Toy activate eya expression which in turn activates sine oculis

(so). The So-Eya complex specifies the fate of the ocellus via activation of several transcription factors including Atonal (Ato). (B) Eya protein

distribution within the compound eye and both ocelli of a third instar eye-antennal disk. (C) Toy protein distribution within the dorsal head

vertex domain and adjacent head epidermal region of the antenna of a third instar eye-antennal disk. (D) Variable numbers of ocelli are lost

from the adult head when toy expression is knocked down with RNAi. (E) Sine Oculis (So) protein distribution within the compound eye and

both ocelli of a third instar eye-antennal disk. (F) The compound eyes and ocelli are completely lost from the adult head in so loss-of-

function mutants.
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photoreceptor neurons, which can be divided into sev-

eral additional subtypes R2/5, R3/4, R1/6, and R7

[2,16,169,172,173]. Within a developing ocellus only a

subset of the approximately 80 photoreceptor neurons

express ato. This could suggest that although an

R7-like cell may not exist (see above) other neuronal

subtypes might exist in the ocellus as they do in the

ommatidium of the compound eye.

In addition to ato, a number of other targets of the

So-Eya complex have been identified in the developing

eye [174–180]. A few of these targets, including ey, are

not expressed within the developing ocelli [181] and

thus represent examples of how the gene regulatory

networks that underlie the two visual systems differ

from each other. In contrast, several targets such as

glass (gl), pointed (pnt), and the RD network gene

dachshund (dac) are expressed in both types of eyes

[175,182–185]. The gl gene is one of the best studied

So-Eya targets. Loss-of-function mutations that dis-

rupt gl eliminate photoreceptor formation in both the

compound eyes and ocelli [186]. An enhancer that

drives expression within the ocelli has been recently

identified [185], and it will be interesting to determine

whether its activation is directly dependent upon the

So-Eya complex. We note here that gl is also expressed

in adult ocelli and is required for photoreceptor main-

tenance and proper ocellar function [28,30].

Hh signaling from the iOC also activates expression

of the RD network member optix just within the medial

ocellus (Fig. 6A,B) [187]. Optix is the Drosophila homo-

log of vertebrate Six3/6 and encodes a transcriptional

repressor [188–190]. In addition to its role in specifying

the fate of the compound eye, optix is also required for

the progression of the morphogenetic furrow [189,191].

Its role in ocellar development is to inhibit the expres-

sion of en within the medial ocellus (Fig. 6A) [187]. This

allows for Hh signaling to be activated in the medial

ocellus, which is essential for the downstream GRN (de-

scribed above) to be activated. The medial ocellus is lost

when optix expression is knocked down. Its loss is

caused by the upregulation of En expression within the

medial ocellus [187]. As optix is only expressed in the

medial ocellus, other factors must be present in the lat-

eral ocellus to further restrict en expression.

The other mechanism by which Hh signaling from

the iOC controls ocellar development involves complex

signaling through the neighboring frons (Fig. 7). Hh

signaling from the iOC activates expression of vein

(vn), a ligand for the EGF Receptor, within the adjoin-

ing frons [116]. Vn then signals back and activates

EGFR signaling within the ocelli themselves. The

most downstream transcription factor of the EGFR

pathway, pointed (pnt), is expressed within the ocelli

[192]. Loss-of-function EGFR alleles, expression of a

(A)

(B)

Fig. 6. Retinal determination protein Optix prevents the medial ocellus from adopting the fate of iOC. (A) Schematic of the gene regulatory

network that describes how the fate of the ocelli is established. The So-Eya complex specifies the fate of the ocelli by activating

photoreceptor-specific genes while other factors simultaneously preventing the ocellus from adopting the fate of the iOC (via repression of

en). In the medial ocellus, the repression of en is mediated by the retinal determination protein Optix. Other factor(s) are likely to play a sim-

ilar role in repressing en expression within the lateral ocellus. (B) Optix protein is found just within just the medial ocellus of a third instar

eye-antennal disk.
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dominant-negative EGFR protein, and knockdown of

pnt via RNAi all result in the elimination of the ocelli

and associated bristles [114,192,193]. EGF Receptor

signaling works with Otd and Dve to maintain otd

expression within the ocellar region [194].

Conclusions

The vast array of genetic and molecular tools that are

available to Drosophila researchers has established the

fly as a premier system to study important topics in

developmental biology such as fate specification and

tissue patterning [195]. For over a century, these tools

have been applied to the study of the compound eye

in several thousand individual studies. So, while our

knowledge of the compound eye is far from complete,

it is both vast and deep. By comparison, our under-

standing of how the ocellar visual system develops is

still in its infancy even though the ocelli control a

broad array of essential behaviors and share portion

of the same gene regulatory network as the com-

pound eye. Moreover, since the compound eyes and

ocelli are likely to have arisen from a common ances-

tral visual system, studies of the ocelli will put us in a

strong position to understand how these two organs

have evolved [196]. It is our hope that this Viewpoint

article renews interest in ocellar visual system devel-

opment.
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