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Abstract

Emotions ubiquitously impact action, learning, and perception, yet their essence and role remain 

widely debated. Computational accounts of emotion aspire to answer these questions with greater 

conceptual precision informed by normative principles and neurobiological data. We examine 

recent progress in this regard and find that emotions may implement three classes of computations, 

which serve to evaluate states, actions, and uncertain prospects. For each of these, we use the 

formalism of reinforcement learning to offer a new formulation that better accounts for existing 

evidence. We then consider how these distinct computations may map onto distinct emotions 

and moods. Integrating extensive research on the causes and consequences of different emotions 

suggests a parsimonious one-to-one mapping, according to which emotions are integral to how 

we evaluate outcomes (pleasure & pain), learn to predict them (happiness & sadness), use them 

to inform our (frustration & content) and others’ (anger & gratitude) actions, and plan in order to 

realize (desire & hope) or avoid (fear & anxiety) uncertain outcomes.
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1. Intro

Emotional states ubiquitously impact action, perception and learning. Through these 

influences and others, emotions are thought to have played a crucial role throughout 

evolution in increasing the survivability of our species (Darwin, 2015; Nesse & Ellsworth, 

2009). Conversely, when emotions malfunction, they can have debilitating consequences for 

the individual. Indeed, emotional disturbances play key roles in a wide range of mental 

disorders, such as depression, bipolar disorder, borderline personality disorder, phobias, and 

other anxiety disorders. These disorders, however, differ substantially from one another in 
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the types and timescales of emotions they involve (Greenberg et al., 2003; Hazlett et al., 

2021; Matsunaga et al., 2008; Miyamoto et al., 2013; Regier et al., 2013; Sobocki et al., 

2006; Regier et al., 2013; Seligman, 1971; Tsanas et al., 2016; Carpenter & Trull, 2013; 

Fernandez & Johnson, 2016; Houben & Kuppens, 2020; Keltner & Kring, 1998). It is thus 

not an exaggeration to say that without a thorough understanding of emotions, we cannot 

hope to fully understand how human cognition functions or dysfunctions. Nevertheless, 

despite decades of emotion research, the literature remains rife with disagreement, even on 

basic questions such as what emotional states are, what causes them, and what are their roles 

(Adolphs et al., 2019; Ekman et al., 1987; Frijda, 1993; Lench et al., 2011; Moors et al., 

2013; Parkinson, 1997; Russell, 1980, 2003; Russell & Barrett, 1999; Scherer, 2005).

At the same time, advances in computational cognitive science have given rise to a 

new understanding of how people form evaluations, and how these evaluations influence 

actions and physiological responses (Baker et al., 2009; Friston, 2009; Montague et al., 

1996; Shenhav et al., 2017; Tobler et al., 2007; Westbrook et al., 2020). Critically, 

evaluations, action tendencies and physiological responses are precisely what most emotion 

theorists accept as central constituents of emotions (Ellsworth, 2013; Frijda, 1993; Lazarus 

& Lazarus, 1991; Moors et al., 2013; Parkinson, 1997; Scherer, 2009a). Somewhat 

surprisingly, however, in studying these functions computational cognitive science has rarely 

considered emotions. It thus stands to reason that both emotion research and computational 

cognitive science can benefit a great deal from integrating their respective insights into 

a coherent theory. Emotion research provides theoretical frameworks for conceptualizing 

emotions, and empirical knowledge on the evaluations and behavioral responses that 

emotions entail. Conversely, computational cognitive science provides quantitative tools for 

linking between perceptual input, its evaluation, and ensuing behavior, in a manner that is 

constrained by normative principles and neurobiological data. The goal of this paper is to 

facilitate an integration between these two closely related, yet largely independent, fields.

Luckily, we do not need to start from scratch. An increasing number of researchers have 

begun to lay foundations for a computational cognitive science of emotions. Broadly, these 

efforts have taken one of three approaches. The first aims to explain how experiences 

of emotions (i.e., feelings) arise, specifically, by classifying patterns of interoceptive and 

exteroceptive sensations that correspond with past exemplars of each feeling (Barrett, 2017; 

Seth & Friston, 2016). Researchers taking this approach often consider specific feelings to 

be too variable across individuals and cultures for them to be systematically characterized. 

The second approach aims to explain how emotions simplify action selection and inferences 

about the environment, specifically by constraining the set of probable states and actions 

to those that are congruent with the present emotion (Bach & Dayan, 2017; Huys & Renz, 

2017). Researchers taking this approach view emotions as heuristics that are evoked due to 

lack of information or cognitive resources, and which do not necessarily constitute veridical 

representations. They thus have relatively little to say about what emotions might represent 

about the environment and oneself.

We therefore focus here on a third approach, which aims to understand what computations 

about the environment and oneself emotions represent. This approach draws from non-

computational theories that view emotions as constituted, in whole or in part, from 
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appraisals – a set of cognitive judgments concerning the satisfaction of one’s needs by 

the environment (Clore & Ortony, 2000; Ellsworth, 2013; Frijda, 1986, 1993, p. 19; 

Lazarus, 1991; Lazarus & Lazarus, 1991; Moors, 2013; Moors et al., 2013; Nussbaum, 

2004; Reisenzein, 1995; Solomon, 1988). Researchers taking this approach have begun 

to replace the plethora of traditional appraisal dimensions, such as pleasantness, goal 

relevance, agency, and controllability, to name just a few, with a more parsimonious set 

of computations.

In what follows, we examine this literature through the lens of the computational 

framework of reinforcement learning1. Our examination reveals three classes of proposed 

computations: computations concerning expected reward (Eldar et al., 2016; Joffily & 

Coricelli, 2013), computations concerning the effectiveness of actions in obtaining reward 

(Bennett, Davidson, et al., 2021), and computations concerning uncertain future reward 

(Hagen, 1991; Peters et al., 2017). In each case, we propose modifications of previous 

suggestions that may more parsimoniously account for existing evidence. We then consider 

how well these different classes of computations cohere with one another, and whether 

together they could offer a comprehensive computational account of emotion. First, however, 

we begin by considering the significance to emotions of a concept that all the computations 

we identify are predicated on – the concept of reward.

2. Reward in machines and humans

2.1 The computational concept of reward

In reinforcement learning, a reward function specifies to what degree different states and 

actions are of value to the agent and should thus be pursued, and to what degree they are 

harmful and should thus be avoided. Correspondingly, the goal of a reinforcement learning 

agent is to maximize its expected cumulative reward:

E rt + γrt + 1 + γ2rt + 2 + γ3rt + 3 + ⋯ (2.1.1)

where t denotes the present time step, and γ is a discount rate between 0 and 1 that serves 

to discount future rewards. In this expected sum, rewards may also be negative (r < 0) in 

which case they are often referred to as ‘punishment’. The agent typically does not know 

in advance which available options are most rewarding. To learn this, the agent needs to try 

them out and observe the reward associated with each. Thus, through trial and error, it can 

come to choose options that maximize its expected cumulative reward.

2.2 Reward as pleasure and pain

In humans, reward does not only reinforce choices but also has hedonic value. This has led 

psychologists (Frijda, 2001) philosophers (Helm, 2002), and even computational scientists 

(Sutton & Barto, 2018; Turing, 1969) to converge on the idea that reward is represented 

in humans by pleasure and pain. As an example, consider how remarkably similar the 

1Though we use here the formalism of reinforcement learning to describe computations, note these can also be described using the 
formalism of ‘active inference’ (Friston et al., 2016).
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following phenomenological analysis of pleasure is to the computational definition of 

reward (Frijda, 2001):

“The core of affective experience, whatever its guise, is its evaluative nature. 

Affect introduces value in a world of factual perceptions and sensations. It creates 

preferences, manifest or experienced palatability and aversiveness of stimuli, and 

behavioral priorities other than as are based on habit strength. Pleasure is good, and 

pain is bad, and so are their objects.”

Like reward and punishment, pleasure is primarily evoked by experiences that promote our 

well-functioning, such as consuming food, performing something well or achieving a goal, 

whereas pain is inflicted by experiences that harm us (Frijda, 2001). The goal of maximizing 

expected cumulative pleasure is thought to guide our behavior (Bentham, 1996; Mellers et 

al., 1999). And to know how pleasurable an experience is going to be, we normally first need 

to try it out (e.g., when tasting new food).

This correspondence between pleasure and reward is further underscored by empirical 

findings. Like pleasure, the reward function that guides human decisions adapts to 

homeostatic needs (e.g., eating is less pleasurable when we are not hungry; Keramati & 

Gutkin, 2014) and changing goals (e.g., winning a game is less pleasurable when we 

do not aim to win; Juechems & Summerfield, 2019). Moreover, outcomes that for most 

people constitute reward are less rewarding to people who suffer from an inability to feel 

pleasure (i.e., anhedonia; Huys et al., 2013), and more rewarding under the influence of 

pleasure-enhancing opioids (van Steenbergen et al., 2019).

However, though they lie at the core of emotional experiences, pleasure and pain are not 

themselves considered emotions. Rather, they are primary evaluative processes, to which 

emotions are in some way secondary (Frijda, 2001; Jacobson, 2021; Price, 2000). To 

understand precisely in what way, we inquire what computations about reward emotions 

may represent.

3. Computation of expected reward

Recent work has argued that emotional states represent mismatches between actual and 

expected rewards (Eldar et al., 2016; Joffily & Coricelli, 2013), often referred to as ‘reward 

prediction errors’. To understand why representing these errors can be useful, it is helpful to 

consider their role in reinforcement learning.

3.1 Value learning

A reinforcement learning problem (Sutton & Barto, 2018) is often operationalized by 

assuming that each state s the agent can occupy may be associated with a different amount 

of reward r. The value of a state (denoted V(s)), however, includes not only this immediate 

reward but also the expected reward associated with all future states that follow s:

V (s) ≡ E rt + γrt + 1 + γ2rt + 2 + γ3rt + 3 + ⋯ ∣ st = s (3.1.1)
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A popular algorithm for learning the values of different states relies on what are typically 

referred to as temporal-difference prediction errors (Sutton & Barto, 2018):

δt = rt + γV t st + 1 − V t st (3.1.2)

where V t denotes value as it is estimated at time step t. Prediction errors are computed in 

this way since the value of each state st should equal, on average, the immediate reward 

obtained in it, rt, plus the discounted value of the succeeding state, st+1. Once we compute 

these prediction errors, value learning simply consists of using them to update existing value 

estimates:

V t + 1 st = V t st + ηδt (3.1.3)

where η is a learning rate between 0 and 1, which need not be fixed. Bayesian inference 

dictates that the update should be smaller (i.e., η will be lower) the more confident we 

are in our existing value estimate relative to how reliably we think the observed reward is 

associated with the present state (Mathys et al., 2011).

A large body of cognitive science research indicates that humans and animals employ value 

learning (Daw & O’Doherty, 2014; Kable & Glimcher, 2009; D. J. Levy & Glimcher, 2012; 

Montague & Berns, 2002; Padoa-Schioppa, 2011). For example, many brain imaging studies 

have shown that activation in specific brain areas, such as the ventromedial prefrontal cortex 

and ventral striatum, is correlated with learned values (Bartra et al., 2013; Levy & Glimcher, 

2012; O’Reilly, 2020). Moreover, early foundational work in primates (Schultz et al., 1997) 

showed that brainstem dopaminergic neurons signal the reward prediction errors defined in 

Eq. 3.1.2. Though in some instances people may not learn values as described above, but 

rather relative preferences among sets of states (Bennett, Niv, et al., 2021; Shteingart & 

Loewenstein, 2014), value learning in one form or another remains a key building block of 

any comprehensive account of human learning and decision making.

3.2 Emotion as change in value

Empirical work has shown that positive reward prediction errors are associated with positive 

emotions, and negative reward prediction errors (i.e., disappointments) with negative 

emotions (Mellers et al., 1997; Rutledge et al., 2014). The relationship between emotional 

state and reward prediction errors has also been demonstrated outside the lab, in the impact 

of real world outcomes such as sports matches and student exams on mood (Otto & 

Eichstaedt, 2018; Villano et al., 2020).

But is it the prediction error per se (δ) that evokes emotional state, or is it the magnitude 

of the change in value (i.e., ηδ in Eq. 3.1.3)? Intuitively, changes in value may be the 

more likely cause since surprising outcomes that change our future expectations (high η; 

e.g., a good exam score revealing that our abilities are better than we thought) seem more 

emotionally meaningful than surprises that we consider to be chance events (low η; e.g., a 

good exam score due to a grading error). In the studies mentioned above, changes in value 

were mostly not measured, at least not in a way that was dissociable from reward prediction 

errors. A recent study, however, decoupled these two quantities by introducing trial-to-trial 
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changes in reward magnitude that impacted only reward prediction errors and not expected 

values (Blain & Rutledge, 2020). Subjects’ self-reports during the task suggested that 

emotional state is primarily driven by changes in value (ηδ).

3.3 Emotional state as cumulative change in value

Emotional states may persist for seconds, hours, weeks or even months. Extension in time 

endows them with two key properties. First, rather than constituting a response to a single 

specific event, enduring emotional states accumulate the impact of multiple events. This 

cumulative property has long been theoretically postulated (Mendl et al., 2010; Nettle & 

Bateson, 2012; Parducci, 1995; Ruckmick, 1936; Webb et al., 2019) and has also been 

empirically demonstrated over small timescales (Rutledge et al., 2014). This suggests a 

formulation of emotional state as cumulative change in value:

Mt + 1
V = (1 − λ) ηδt + ληδt − 1 + λ2ηδt − 2 + λ3ηδt − 3 + ⋯ (3.3.1)

where λ ∈ [0,1] serves to discount value updates made longer ago. This sum, which extends 

infinitely into the past with diminishing weights, can be continuously estimated using the 

following recursive update rule:

Mt + 1
V = Mt

V + (1 − λ) ηδt − Mt
V

(3.3.2)

This construal of an enduring emotional state is intuitively summarized by saying that we 

are in a positive emotional state when reward is becoming generally more available to us, 

and in a negative emotional state when the availability of reward is decreasing.

Though the computation of change in the general availability of reward can, and likely is, 

made using different algorithms, a useful property of the formula presented above is that 

the setting of λ modulates the two properties that are thought to distinguish emotions and 

moods, namely, how long the emotional state lasts and whether it constitutes a response 

to a specific event (Ekman, 1999; Ketai, 1975; Morris, 2012; Schnurr, 1989). With λ = 0, 

the emotional state only reflects the very last change in value, and the impact of a change 

only lasts one time step. The closer λ is to 1, the more equal are the weights of older and 

newer changes in value, and consequently, each individual value change has a longer lasting 

impact on emotional state. Thus, different settings of λ offer a continuum of possibilities for 

modeling emotional state, from an instantaneous emotion to a long-lasting mood.

3.4 The role of enduring emotional states

According to our formulation, an instantaneous emotion corresponds to an individual change 

in value and has no extension in time. Thus, it is most parsimonious to assume that its role is 

to execute or signal the value update. But what role does an enduring emotional state serve? 

This question brings us to the second property enabled by extension in time. Empirical work 

indicates that enduring emotional states tend to generalize the information that evoked them 

(Eldar et al., 2016) via the operation of an emotion-congruent bias (Clore, 1992; Eldar & 

Niv, 2015; Lerner & Keltner, 2000; Michely et al., 2020; Slovic et al., 2007; Vinckier et 

al., 2018). Having been evoked by a series of positive value updates, an enduring positive 
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emotional state may make subsequent outcomes seem better than they normally seem, and 

thus lead to further positive value updates. For example, winning a wheel-of-fortune draw 

can improve people’s emotional state and positively enhance values learned from subsequent 

outcomes for a set of unrelated slot machines (Eldar & Niv, 2015). In this way, the emotional 

state generalizes the positive outcome obtained from one source of reward (i.e., the wheel-

of-fortune draw) by incorporating it into the values of other, subsequently sampled, sources 

of reward (i.e., the slot machines).

In this example, generalization is irrational because the outcomes of the wheel of fortune 

draw and of playing the slot machines are mutually independent. However, in ecological 

settings, changes in reward availability may often be linked across time and across different 

sources of reward. As an example of a link between consecutive time steps (i.e., trends), 

consider how when spring arrives, the availability of food doesn’t change overnight, but 

rather, it increases gradually, which means that an initial increase predicts further increases. 

As an example of a link between different sources of reward, consider how a change of 

season may make multiple types of food, water, and shelter synchronously more abundant. 

Similarly, in social animals, success in obtaining one type of reward (e.g., gathering food) 

can increase the individual’s social status, and thus increase their access to other types of 

reward (e.g., sexual partners).

In each of these cases, individual rewards are probabilistically determined, and therefore 

value can only be estimated up to some approximation error. But these estimates will be 

more accurate if we take into account correlations across sources of reward and across time. 

This can be achieved by biasing each individual value update towards the recently typical 

update, that is, in accordance with the emotional state:

V t + 1 st = V t st + ηδt + (1 − η)Mt
V

(3.4.1)

This emotion-biased value update can in fact be mathematically derived as the optimal 

equation for inferring the location of a moving object from a sequence of noisy observations, 

with value corresponding to the object’s location and emotional state to its velocity (Eldar et 

al., 2016). The idea is that in inferring the value of a specific source of reward, an unbiased 

agent only considers rewards already obtained from that source, and therefore neglects 

global changes in expected reward. Conversely, an emotion-biased agent informs its specific 

value estimates with the recent global trend.

4. Computation of action evaluation

Reward depends not only on the states a reinforcement learning agent occupies, but also on 

the actions the agent chooses to take. Correspondingly, the second class of computations 

that have been suggested to be represented by emotional states comprise evaluations of how 

effective actions are in obtaining reward (Bennett, Davidson, et al., 2021; Kurzban et al., 

2013). Thus, we next consider how agents evaluate their own actions and accordingly adjust 

their action-selection policy.
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4.1 Learning how to obtain reward

In reinforcement learning, the expected reward associated with taking action a in state s is 

defined as the action’s value, Q:

Q(a, s) ≡ E rt + γrt + 1 + γ2rt + 2 + γ3rt + 3 + ⋯ ∣ at = a, st = s (4.1.1)

There is a close correspondence between values of actions and values of states, in that the 

latter equals a weighted sum of the former:

V (s) ≡ ∑aπ(a ∣ s)Q(a, s) (4.1.2)

where π(a|s) is the agent’s policy, that is, the probability it will take action a in state s. 

Consequently, the relative effectiveness of an action in obtaining reward can be represented 

as the advantage (A) it confers above the value of the state in which it was taken:

Aat ∣ st ≡ Q at, st − V st (4.1.3)

A rational agent should always strive to eliminate advantage, since negative advantage (i.e., 

A < 0) means that the evaluated action is disadvantageous and should thus be excluded from 

the policy, whereas positive advantage (i.e., A < 0) means that alternative disadvantageous 

actions are unnecessarily included in the policy. Indeed, eliminating advantage is a useful 

learning algorithm in various machine learning applications (Baird, 1994), and is consistent 

with how humans often adjust their behavior when learning by trial and error (Bennett, Niv, 

et al., 2021; Palminteri et al., 2015; Solomyak et al., 2022).

Advantage is typically estimated based on a reward, rt, that was received following action at:

Aat ∣ st = rt + V st + 1 − V st (4.1.4)

In this, advantage closely resembles a reward prediction error (compare with Eq. 3.1.2). 

However, meaningful differences between these two quantities can be observed once we 

re-express advantage as a function of the values of chosen (at) and alternative (ã) actions:

Aat ∣ st = Q at, st − ∑aπ a ∣ st Q a, st
= ∑a ≠ atπ a ∣ st Q a, st − Q at, st

(4.1.5)

This formulation exposes that advantage concerns the relative difference between the values 

of chosen and unchosen actions. Consequently, computations of advantage and reward 

prediction error differ substantially in cases where the agent finds out that an action it did 
not choose is either more or less valuable than it previously estimated.

As an illustration, imagine you are standing in line to buy tickets for the theatre. You choose 

one of two alternative queues (queue I) and then find out that the other queue (queue II) 

is moving much faster than you expected. In this case, the advantage you would compute 

for your choice of queue is negative, appropriately signaling a missed opportunity (Bennett, 
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Davidson, et al., 2021; Coricelli et al., 2005; Loomes & Sugden, 1982), but you would 

experience no prediction error with respect to this queue since it is moving as expected. 

Moreover, you will in fact experience a positive prediction error with respect to the state 

‘about to choose a queue’, regardless of whether it is your queue or the alternative queue 

that is faster than expected. Conversely, if both queues suddenly move faster than expected, 

advantage remains at zero, and the improvement in your situation will be captured as a 

positive reward prediction error with respect to your current state’s value. Thus, although 

reward prediction errors and advantage are often correlated, they diverge in that the former 

generally signals changes in expected reward, whereas the latter signals differences in 

expected reward between chosen and alternative actions.

4.2 Emotion as relative action effectiveness

It is widely recognized that emotions are involved in how we evaluate and adjust our actions. 

Negative emotions, in particular, are thought to signal that we are not doing as well as we 

could be doing, and should therefore change our course of action (Kurzban et al., 2013). 

Such policy adjustment makes sense whenever we find that an alternative course of action 

may work better, which is to say, whenever the effectiveness of our current course of action 

is lower than that of alternative courses of action. In such cases, the resulting emotional state 

facilitates a search for alternative courses of action (Goldberg et al., 1999), thereby helping 

us adjust our policy to avoid further loss.

The measure of advantage precisely captures the comparison between chosen and alternative 

actions, and thus, it has recently been suggested to be represented by emotional state 

(Bennett, Davidson, et al., 2021). This suggestion can explain not only the general 

involvement of emotion in how we evaluate and adjust our actions, but also more subtle 

empirical observations. First, it inherently explains why we feel bad when an action we 

could have taken, but didn’t, is found to have better outcomes than expected (Coricelli et 

al., 2005; Loomes & Sugden, 1982). In addition, it explains why we typically have stronger 

emotional responses to outcomes of actions that we don’t normally take (Kahneman & 

Miller, 1986; Kutscher & Feldman, 2019). This is because outcomes of more typical actions 

similarly impact both sides of the advantage equation (i.e., both Q(a,s) and V(s), since the 

latter is an average of the value of typical actions) and thus partially cancel out.

There are at least two factors, however, that moderate the usefulness of an estimated 

advantage as a measure of action effectiveness. The first is that the observed outcome based 

on which advantage is estimated may only be probabilistically determined by the action. For 

this reason, advantage-based updates of policies are usually moderated by a learning rate 

between 0 and 1, which reflects the degree to which observed outcomes are thought to be 

controlled through action. This learning rate can thus be thought of as an index of estimated 

environmental controllability (Ligneul et al., 2022).

The second potential moderating factor is self-control, that is, the degree to which the 

agent can control its own action. Self-control could be low for actions that we are innately 

predisposed to take or avoid, that have become habitual, or that require skill, planning, 

or training (e.g., telling a joke effectively, or shooting a basketball into the basket). To 

formalize self-control, we assume that rather than being controlled directly, the agent 
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changes its policy by adjusting a set of control parameters θa|s, one for each action, such that 

the probability of taking an action is proportional to eβa ∣ sθa ∣ s
. Here, βa|s represents how 

difficult it is to acquire or eliminate action a. This formulation ensures that while the control 

parameters are uniformly controllable, the actions they control are not. The controllability of 

action a in state s is thus denoted as:

∇θa ∣ sπ(a ∣ s) = βa ∣ sπ(a ∣ s)(1 − π(a ∣ s)) (4.2.1)

Combining environmental and self-control into a measure of overall controllability, 

Cat ∣ st = η∇θa ∣ sπ(a ∣ s), allows expressing policy adjustment as (Williams, 1992)2:

θt + 1
a ∣ s = θt

a ∣ s + Cat ∣ stAat ∣ st (4.2.2)

Compared to estimated advantage alone, the multiplication of controllability and estimated 

advantage, Cat ∣ stAat ∣ st offers a more accurate representation of the gains and losses that are 

attributable to our choices.

4.3 Emotional state as cumulative action effectiveness

The accumulation of multiple gains and losses that are attributable to our choices is thought 

to be represented by an enduring emotional state (Bennett, Davidson, et al., 2021). To also 

account for controllability, here we propose the following formulation of this accumulation:

Mt + 1
A = (1 − λ) Δθt

a ∣ s + λΔθt − 1
a ∣ s + λ2Δθt − 2

a ∣ s + λ3Δθt − 3
a ∣ s + ⋯ (4.3.1)

where Δθt
a ∣ s = Cat ∣ stAat ∣ st. As in the case of value changes, if modelled with λ = 0, the 

computed emotional state only reflects the last action, but the higher λ is, the more it will 

reflect actions taken longer ago.

Like other emotional states, enduring emotional states representing action effectiveness also 

have the consequence of generalizing the information that evoked them. Thus, negative 

emotional states evoked by poor outcomes of actions make subsequent outcomes seem 

worse and more attributable to actions (Ask & Pina, 2011; DeSteno et al., 2000; Lerner & 

Tiedens, 2006; Quigley & Tedeschi, 1996; Tetlock, 2002). In similar to Eq. 3.3.1, this impact 

of emotional state may be formulated as:

θt + 1
a ∣ s = θt

a ∣ s + Cat ∣ stAat ∣ st + 1 − Cat ∣ st Mt
A

(4.3.2)

Why is such generalization beneficial? In a noisy environment, each individual observation 

relatively little information. Averaging over multiple recent outcomes via Mt
A accumulates 

2Note that this update is often divided by πt(at|st) to prevent a bias in policy adjustment resulting from the fact that some actions are 
executed more and therefore their relevant parameters are updated more.
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information from multiple observations, and thus offers a more informative measure of how 

well the current policy is doing. It is precisely this rationale that underlies the widespread 

use of ‘momentum’ in machine learning algorithms (Rumelhart et al., 1985). Indeed, 

simulations have shown that informing policy updates by a cumulative measure of advantage 

accelerates learning in various artificial settings (Bennett, Davidson, et al., 2021).

To draw the parallel to real world problems, consider that an enduring negative emotional 

state due to recurrent underperformance may signal that a person’s overall approach is 

suboptimal, indicating they should more critically examine their subsequent actions. For 

example, a student may experience a series of failures in achieving their goals such as 

failing an exam, not being able to focus during class, and making repeated errors in their 

assignments. Together, these may indicate that the student has adopted inefficient working 

habits. By negatively biasing the processing of subsequent outcomes, a negative emotional 

state may aid the student to more quickly identify and modify additional cases of poor 

performance.

4.4 Emotions about other people’s actions

Other people’s actions can evoke emotions that are as strong and meaningful as the emotions 

we have about our own actions (FeldmanHall & Chang, 2018). We propose such emotions 

can also be understood as representations of action effectiveness that serve to adjust policy. 

Except that in this case, the policy that is being adjusted is someone else’s. Indeed, it is 

well known that emotions are often expressed in order to influence other people’s behavior 

(Jones et al., 2011; Parkinson, 1996). For instance, when someone acts in a way that harms 

us, we may express a negative emotion with the hope that the person will change their ways. 

Moreover, there is evidence that such emotions represent not only (dis)advantage (to us due 

to someone else’s actions) but also controllability. Thus, emotional responses are stronger in 

response to the outcomes of peers’ actions that are perceived as intentional, and therefore, as 

more amenable to control (De Quervain et al., 2004). Similarly, when people aim to change 

a peer’s behavior, and believe that to be achievable, they tend to experience more negative 

emotions towards the peer (Lemay Jr et al., 2012).

5. Computation of uncertain prospects

The classes of computations we considered so far identify changes in expected reward that 

are indicated by evident outcomes. An additional computation we need to consider concerns 

outcomes that may or may not happen in the future. Indeed, dangers and opportunities 

have long been thought to be the subject of emotions. Computational work has suggested 

that our emotions about such uncertain prospects may represent the width and skewness of 

the distribution of possible outcomes (Hagen, 1991; Wu et al., 2011), and more generally, 

our uncertainty about these outcomes (A. Peters et al., 2017). In reinforcement learning, 

computations about uncertain prospects can be captured in two broad ways, either by 

associating a given state or action with a distribution of rewards (‘distributional RL’; 

Dabney et al., 2018), or by associating a given action in a given state with a distribution 

of succeeding states, each of which is associated with a scalar reward (‘Model-based RL’; 

Doll et al., 2012). Here we use the latter formalism because it offers a way to represent the 
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effects of our actions on specific prospective outcomes, which often serve as the objects of 

our emotions.

5.1 Prospecting for reward

A prospective reinforcement-learning agent computes the value of a present state st based on 

the values of the future states st+1 that are likely to follow it, given the different actions it 

may choose:

V st = E rt + γV st + 1 ∣ st, πt
= E rt ∣ st, πt + γE V st + 1 ∣ st, πt
= E rt ∣ st, πt + γ∑sp st + 1 = s ∣ st, πt V (s)
= E rt ∣ st, πt + γ∑aπ at = a ∣ st ∑sp st + 1 = s ∣ st, at = a V (s)

(5.1.1)

Here, the left term represents the expected immediate reward, and the right term represents 

the prospective reward, computed as a weighted average over possible future actions (a) 

and states (s). To perform this computation the agent requires a model of the world that 

specifies which future states are likely given different actions (i.e., p(st+1|st,at))). For this 

reason, prospective reinforcement-learning is often referred to as ‘model-based’ (Daw et al., 

2011; Daw & Dayan, 2014; Doll et al., 2015; Gläscher et al., 2010). Notably, the values of 

future states can also be expanded as a function of the states that follow them, and so can the 

values of those states, and so on ad infinitum.

A main benefit of performing such prospective computation is that it allows us to compute 

values for states that we never experienced. For example, we can infer a positive value 

for exercising regularly, before ever having done so, based on a model of the world that 

specifies that exercising regularly improves health. Another related benefit of this form of 

computation is that it quickly and efficiently adjusts to changes in the environment. It does 

so since new information regarding the probability of a future state s instantly changes 

the value estimated for any state that s might follow. Prospection rids us of the need to 

experience these states anew to know that their values changed. For example, upon learning 

that a highly infectious virus is spreading in our city, prospection allows us to decrease our 

estimated values for attending any type of crowded social event.

5.2 Emotion as danger and opportunity

Using the formalism of prospective reinforcement learning, we devise a representation of 

danger and opportunity that is sensitive to the computations implicated by previous work, 

namely, the width and skewness of the distribution of possible outcomes. We first consider 

skewness.

Positive and negative skewness are associated with positive and negative anticipatory 

emotions (Hagen, 1991; Wu et al., 2011), or in other words, emotion is positive when 

there are prospects that are much better than the expected outcome, and negative when there 

are prospects that are much worse. We can represent how the value of an individual prospect 

differs from expectations as:
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Gs, t + Δt = V (s) − E V st + Δt ∣ st, πt (5.2.1)

where V(s) is the value of a prospective state s that may materialize Δt time steps following 

present time t, and E V st + Δt ∣ st, πt  is the expected value for that future time, averaged 

over the possible future states the agent may occupy, given current state st and its action-

selection policy πt. G tells us whether it would be a good thing if the prospect materializes. 

If a prospect with G > 0 materializes, that means things turned out better than expected, 

whereas if a prospect with G < 0 materializes, things turned out worse than expected.

G, however, does not provide information about the probability the prospect will materialize. 

It is thus susceptible to any prospect no matter how imaginary or irrelevant it might be. This 

problem can be solved by modulating G by the probability of the prospect, p(st+Δt=s|st,πt). 

The question here is whether this probability should be counted as such, or whether what 

primarily drives emotions are prospects whose probability is potentially controllable. From 

a rational perspective, there is no use in devoting mental resources to a prospect we cannot 

control. Anecdotal evidence seems to support this perspective. For example, people who 

report being less concerned with death attribute this to their understanding that death is 

inevitable or not under their control (Feifel, 1974). Additionally, accepting that one cannot 

control a negative prospect is a common coping strategy that serves to mitigate negative 

emotions (Jackson et al., 2012; McCracken & Keogh, 2009; Zettler et al., 1995). And in the 

positive domain, availability of desirable prospects increases positive anticipatory emotions 

(Ghoniem et al., 2020).

Thus, we propose that emotions may only be affected by probabilities of prospects that, to 

the person’s estimation, are potentially controllable. In the case of a positive prospect, what 

we should care about is whether there is a course of action, a, by which we may be able 

to increase the prospect’s probability, whereas with regards to a negative prospect, we care 

about whether we can do something (that we are not already planning to do, as specified by 

our present policy πt) to avoid it:

Cs, t + Δt =

if G > 0 max
a

∇θa ∣ sπ(a ∣ s) p st + Δt = s ∣ st, a − p st + Δt = s ∣ st, πt

if G < 0 max
a

∇θa ∣ sπ(a ∣ s) p st + Δt = s ∣ st, πt − p st + Δt = s ∣ st, a

(5.2.2)

Using these definitions, prospective emotions anticipating individual prospects can be 

expressed as an upper confidence bound (UCB; Garivier & Moulines, 2011) on the 

prospective change in value modulated by the potential to do something about it:

[CG]s, t + Δt
UCB (5.2.3)

An upper confidence bound on a given computation is the largest probable quantity it might 

produce given our uncertainty about the estimates involved.

Emanuel and Eldar Page 13

Neurosci Biobehav Rev. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This computation satisfies all properties suggested by prior work (Figure 1). First, the upper 

confidence bound is inherently higher the more uncertain we are about the values and 

probabilities of prospective states, and thus the computed emotion will scale with the width 

of the estimated distribution of outcomes that is attributable to lack of knowledge (i.e., 

estimation uncertainty). Second, if it is the true distribution of possible outcomes that is 

wider (i.e., higher irreducible uncertainty), that means that on average probable prospects 

deviate more from the expected value (i.e., higher absolute G), and thus the computed 

emotions will also be stronger. Third, if the distribution of possible outcomes is positively 

skewed, that means there are prospects with greater positive deviations which would lead 

to stronger positive emotions, whereas if the skewness is negative, that means there are 

prospects with greater negative deviations leading to stronger negative emotions.

5.3 Emotional state as cumulative prospection

Prospective emotions do not always concern a single definite prospect (Grupe & Nitschke, 

2013; LeDoux & Pine, 2016). To represent prospective emotions in the presence of 

uncertainty about when and where the prospect will materialize and what precisely it might 

involve, we can sum over different possible prospects and time delays:

Mt
P = (1 − γ)∑s ∑i = t + 1

∞ γi − t[CG]s, t + Δt
UCB

(5.3.1)

This sum represents prospective emotional states that extend in time and are not specific to a 

single prospect.

Like the other types of emotional states, empirical research suggests that prospective 

emotional states also serve to generalize, in this case, from old to new prospects. Thus, 

having been evoked by a recognized danger, a negative prospective emotional state increases 

our tendency to recognize and respond to additional dangers (Abend et al., 2020; Bar-Haim 

et al., 2007; Mogg & Bradley, 1998; Pitman et al., 1993; Rosen & Schulkin, 1998). 

Such enhanced threat detection may be mediated, for instance, by increased attention to 

threat-related words (MacLeod et al., 1986) or images (Öhman et al., 2001). A prototypical 

example of increased threat detection is offered by the enhanced startle responses people and 

animals exhibit under threat (Davis et al., 1993). In a dangerous environment where taking 

risks is ill advised (e.g., a jungle with predators and poisonous animals), this effect may be 

lifesaving. Drawing the parallel in the domain of positive prospects, we can conceptualize a 

positive prospective emotional state as a motivational state in which a person is primed to 

recognize and pursue opportunities (Luthans & Jensen, 2002).

6. Mapping computations onto emotions

6.1 Three classes of computations

We identified three classes of computations that emotions may represent: computations 

of changes in expected reward, of the effectiveness of potentially controllable actions, 

and of potentially controllable dangers and opportunities. As we have seen, all three are 

useful, in ways that complement each other, to an agent striving to maximize reward. 

Tracking expected reward is necessary for performing the two other computations, and 
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can help arbitrate between action and inaction (Niv et al., 2006) as between exploration 

and exploitation (Le Heron et al., 2020; McClure et al., 2005). Evaluating the relative 

effectiveness of actions based on experience helps improve one’s policies even absent a 

world model that enables prospection, whereas prospection enables estimating expected 

reward and the effectiveness of actions in the absence of direct experience. Indeed, 

the cognitive science literature strongly suggests that humans utilize all three of these 

computations.

Seen as appraisals, one might be tempted to assume a many-to-many mapping between the 

computations we described and emotions (Scherer, 2009a). However, these computations 

lie one step above the primary appraisals often invoked in theories of emotions. For 

example, the computation of reward lost or gained due to potentially controllable actions 

incorporates multiple appraisal dimensions such as pleasantness, goal relevance, agency, 

and controllability. This raises another, more parsimonious possibility, that of a one-to-one 

mapping between computations and emotions.

6.2 Three classes of emotions

Our proposal here (Figure 2) leans on Nesse and Ellsworth’s (2009) evolutionary analysis 

of the roles of different emotions, as on an extensive psychological literature examining the 

antecedents and consequences of different emotions (Averill, 1968; Carver, 2004; Carver 

& Harmon-Jones, 2009; Cunningham, 1988, 1988; Frijda, 1986, 1987; Harmon-Jones & 

Sigelman, 2001; Keltner et al., 1993; Kreibig, 2010; Lench et al., 2011, 2016; Levine, 1996; 

Levine & Pizarro, 2004; Nesse & Ellsworth, 2009; Oatley et al., 2006; Oatley & Duncan, 

1994; Roseman, 1996). Closely resembling our three classes of computations, this literature 

identifies two classes of emotions that are evoked by evident outcomes, and one that is 

evoked in anticipation of prospective outcomes.

The first two classes involve, on one hand, emotions such as happiness and sadness, and 

on the other hand, emotions such as frustration, anger, and content. Both sets of emotions 

are evoked by evident outcomes, but they differ in whether those outcomes are potentially 

controllable. Thus, happiness and sadness are evoked by outcomes that are not necessarily 

attributable to someone’s actions and thus there may not be anything one can, or needs 

to, do to about them. The appropriate response is to adjust one’s expectations, upwards 

(happiness) or downwards (sadness), and carry on. Happiness and sadness are thus well 

suited to represent positive and negative changes in value.

By contrast, emotions such as frustration, anger, and content occur when outcomes warrant 

positive or negative evaluations of actions. Correspondingly, these emotions are associated 

with behavioral changes that can be understood as adjustments of one’s policy in favor 

of advantageous, and away from disadvantageous, actions. This class of emotions is the 

most social and diverse out of the three classes due to two reasons: (i) we evaluate and 

influence not only our, but also other people’s, actions, and (ii) our actions impact not only 

ourselves but also others. In many languages, different combinations of responsible and 

affected agent are labeled as distinct emotions (Figure 3). Thus, when we suffer because of 

our own mistakes, we get ‘frustrated’ (Dollard et al., 1939), whereas if someone else is at 

fault, we get ‘angry’ (Averill, 1983; Berkowitz, 1999; Ortony et al., 1990). If we harmed 
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someone else we feel ‘guilt’ (Chang & Smith, 2015; Leith & Baumeister, 1998; Tangney & 

Fischer, 1995), whereas if it was someone else that harmed another person, we feel ‘moral 

indignation’. What is common to all these scenarios is that we estimate that things are not 

going as well as they could go due to our or others’ actions. The emotions that represent this 

judgment serve to change the responsible party’s policy, either directly or through a social 

expression of the emotion.

Finally, the quintessential prospective emotions are fear and desire (T. Brown, 1846; Nesse 

& Ellsworth, 2009). Both emotions are evoked by negative and positive prospects, and both 

motivate planning, to avoid or realize the emotion-inducing prospect. These emotions also 

each have their polar opposite. Specifically, the lack of desirable prospects is often referred 

to as apathy, and the lack of fearful prospects as calm. Of all emotions, fear has probably 

been most extensively studied in relation to learning, with decades of research devoted to 

what was once called “fear conditioning” and is now more commonly referred to as “threat 

conditioning”. This change in terminology has to do with the predominant use of animals 

in such research, and the inability to question animals about their emotions (LeDoux, 

2014). Perhaps as a result, research in humans on fear conditioning has also neglected the 

emotional aspect of this much studied phenomenon. Our computational formulation of fear 

as a representation of potentially controllable danger, and the quantitative predictions such 

a formulation can generate, may facilitate a reconsideration of the role of fear in threat 

conditioning in humans and animals.

6.3 Three classes of moods

Though general theories on the subject of moods are lacking, many researchers implicitly 

or explicitly assume that there are different types of moods (Harmatz et al., 2000; Jansson 

& Nordgaard, 2016; McGowan et al., 2020; Rottenberg, 2005; Truax & Selthon, 2003; 

Tsanas et al., 2016). Moreover, the classifications of moods in the literature often parallel 

classifications of emotions. For example, extended diffuse (i.e., non-specific) sadness is 

often referred to as a sad or depressed mood, extended diffuse anger is referred to an 

angry or irritable mood, and extended diffuse fear is referred to as an anxious mood. This 

correspondence between emotions and moods, as well as the distinction between them in 

timescale and specificity, are well captured by assuming that moods are constructed through 

temporal integration of momentary emotions. As we have seen, this perspective can be 

implemented with regards to each of the computations we identified through a cumulative 

sum. These sums provide running averages of recent changes in expected reward, of recent 

success or failure of our and others’ actions, and of recently encountered dangers and 

opportunities.

Defined as these computations, moods accelerate learning through generalization, that is, 

by biasing the agent in favor of computations that are similar in type and valence to those 

the present mood represents. This is helpful for the simple reason that whenever similar 

changes, evaluations, or prospects are frequently encountered, it makes sense to regard 

them as a priori more likely. It is important to note, however, that the benefit of emotional 

states as prior expectations concerning the present environment extends beyond the domain 

of learning. Specifically, such prior expectations could explain the patterns of automatic 
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physiological responses and action tendencies associated with emotional states (Scherer, 

2009b). As an example, consider how increased arousal and quick reactivity to potential 

threats, both features of an anxious mood, can be helpful in the dangerous environments that 

an anxious mood signals.

A key open question about moods is where to draw the line between them and emotions, 

and whether a line should be drawn at all. Convention has it that emotions last moments 

to minutes, whereas moods last hours to weeks. We are not aware, however, of empirical 

evidence that justifies such a categorical distinction. Indeed, our formulations in this paper 

allow a continuum of possibilities for modeling emotional states, from a momentary emotion 

to a lasting mood. Future work could investigate whether emotional states temporally 

integrate computations on only a few fixed timescales, or on a whole continuum of 

timescales.

7. Summary and general implications

The emotions we examined in this paper combine to form a set of interdependent 

computations necessary for an agent to behave adaptively given limited information in 

an uncertain world. Though we have presented specific algorithms for carrying out each 

computation (Figure 2), the essential part of our proposal concerns what is being computed, 

namely, obtained reward (pleasure and pain), changes in expected reward (happiness/

sadness), the relative effectiveness of actions in obtaining reward (content/anger), potential 

changes in expected reward the agent could plan for (fear/desire), and global changes in the 

prior probability of each of these computations (the different types of mood).

This proposed framework generates a plethora of quantitative predictions that are amenable 

to testing in and outside the lab. There are two prerequisites for testing these hypotheses 

in human subjects. First, rather than querying subjects about one or two dimensions of 

their emotional states, as done so far in computationally inspired investigations of emotion 

(Rutledge et al., 2014; Eldar & Niv, 2015; Villano et al., 2020), finer-grained information 

needs to be collected about different types of emotions and moods. Second, the experimental 

design needs to be powerful enough to allow independently manipulating changes in 

expected reward, action evaluations, and prospective computations.

Recent progress has also charted a way towards studying emotions in animals (Anderson 

& Adolphs, 2014), a critical endeavor if we are to understand emotional function and 

dysfunction at the neural level. In the absence of subjective reports, it is proposed 

that emotional states in animals are operationalized via a set of objective canonical 

characteristics, which include scalability, valence, persistence, and generalization. The 

computations we outlined here fit exceptionally well with this approach since they possess 

all these characteristics. Future studies of emotions in animals could thus make use of the 

computations we proposed to design manipulations that would evoke specific emotions, 

as well as to generate quantitative hypotheses about the downstream effects of these 

manipulations on learning and behavior. This could help map the neural chain of events 

that is necessary for each computation to be properly performed.
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In this regard, it is important to remember that the algorithmic details that we delineated 

likely underestimate the complexity and sophistication of the brain mechanisms in place. 

Thus, for example, it is likely that a change in expected reward will evoke stronger or 

longer-lasting happiness if there is reason to believe that this change is particularly likely 

to generalize to other sources of reward. Additionally, our formulation of how action 

effectiveness is computed directly couples these computations with changes in policy, 

though in practice decisions about policy could dissociate from these computations. We 

also left open the question of whether and how people infer specific relevant timescales for 

computing mood, and whether this computation is equipped to detect discrete, as opposed 

to gradual, global changes. Thus, substantial additional research is required to investigate 

the finer details of how these computations are performed and used. Nevertheless, 

our framework offers a first comprehensive account of the computations mediated by 

different emotional states, together with a set of biologically plausible and empirically 

supported algorithms for performing these computations. We next examine several general 

implications that arise from a consideration of this framework as a whole.

7.1 Disentangling emotions

The task of differentiating between different types of emotion is complicated by the 

observation that different emotions tend to co-occur. This is especially evident regarding 

the three major negative emotions: sadness, anger, and fear (or anxiety). All three types 

of emotion are prevalent, for instance, in depression, in bipolar disorder, and in borderline 

personality disorder (Goldberg & Fawcett, 2012; Riley et al., 1989; Tsanas et al., 2016). And 

all three strongly covary in the general population (Diener & Emmons, 1984). Our account 

provides a natural explanation for this co-occurrence since it posits that all three types of 

emotion can be evoked by new information that portends a poor outcome. Sadness will be 

evoked to the extent that the new information lowers expectations of the future. Anger will 

also be evoked if the poor outcome is attributed to ours or others’ actions. And fear will also 

be evoked if there is uncertainty about whether the poor outcome will eventually materialize, 

such that we might be able to avoid it. These three possibilities are mutually compatible and 

often occur together.

Given the complexity and uncertainty involved in performing these computations, it is also 

no wonder that we often find ourselves not knowing what to feel. So far, an inability to 

report one’s emotions (i.e. alexithymia) has been taken as evidence that a person has a 

problem perceiving or verbalizing their emotions (Taylor & Bagby, 2004), possibly because 

the concepts they hold for different emotions are not well differentiated (Demiralp et al., 

2012). Our account suggests, however, that in many cases the difficulty might not be in 

the act of interoceptive perception and categorization but rather in making inferences about 

the external environment and one’s state in it. For instance, whether we respond with anger 

or sadness depends on our ability to assign (or not assign) credit for a poor outcome 

to someone’s actions. If we are uncertain about this, then an undifferentiated negative 

emotional response may the best we can do.

On longer timescales, our account suggests that meaningful interactions likely exist between 

different types of mood. For instance, enduring sadness entails that reward availability is 

Emanuel and Eldar Page 18

Neurosci Biobehav Rev. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decreasing, which should impact the significance and likelihood of prospective computations 

responsible for emotions such as fear and desire. At the same time, a prospective emotion 

such as anxiety might focus attention on negative implications of experienced outcomes 

and thus bias computations concerning changes in value, potentially tempering happiness 

and promoting sadness. Indeed, phenomenological studies have exposed complex emotion 

dynamics with meaningful consequences for mental health (Houben et al., 2015). Future 

work could consider how these empirically observed dynamics cohere with the computations 

delineated here.

7.2 Situational, developmental, and innate priors

Another consequence of the uncertainty inherent in emotion-mediated computations is 

that they are invariably informed by prior expectations. Such prior expectations can be 

situational, developmental, or innate. Here we proposed that the primary role of moods is to 

act as situational priors. A sad mood biases computations towards sadness, an irritable mood 

biases computations towards anger, an anxious mood biases computations towards fear, and 

so on. These impacts of different moods are rational to the extent that decreases in value 

portend further decreases in value (sadness; Eldar et al., 2016), suboptimal actions portend 

further suboptimal actions (anger; (Bennett, Davidson, et al., 2021), and looming dangers 

portend further dangers (fear; Bolles & Fanselow, 1980).

By contrast to temporary moods, lasting developmental and innate priors could underlie 

stable individual predispositions to experience one or another type of emotion (Akiskal 

et al., 2005; Davidson & Irwin, 1999; Marteau & Bekker, 1992; Spielberger et al., 1983; 

Wilkowski & Robinson, 2008). Besides genetic variation, such priors may be shaped by 

a person’s predominant childhood experiences. For instance, growing up with an abusive 

parent rationally motivates a prior expectation that one is likely to be harmed by others’ 

actions, thus leading the child to be quick to respond with anger and aggression (Trickett & 

Kuczynski, 1986).

A particularly important prior expectation, the impact of which cuts across multiple types of 

emotion, concerns controllability. Beliefs about controllability may be informed by innate, 

developmental, and situational factors. For instance, it is well established that experiencing 

lack of controllability over outcomes can generate “learned helplessness”, which can be 

understood as a belief that outcomes cannot be controlled by our actions (Lieder et al., 2013; 

Maier & Seligman, 1976). Our account predicts, and indeed evidence supports, that such 

a belief will have a substantial impact on one’s temperament, diminishing a tendency to 

respond actively with anger and enhancing a tendency to respond passively with sadness and 

resignation (Launius & Lindquist, 1988; Peterson & Seligman, 1983; Sedek & Kofta, 1990).

Within a given situation, the expected relationship between controllability and anger is made 

more complex when we consider not only how intense anger is expected to be but also 

how long it is likely to persist. If controllability is very low then there is no point getting 

angry, but if it is very high, any disadvantageous action that is identified will be quickly 

eliminated from the policy, and then anger will quickly fade. The maximum amount of anger 

is thus expected at some medium level of controllability. Based on this rationale, we may 

also expect abnormal amounts of anger in cases where the estimated level of controllability 
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is higher than the actual level. A similar logic applies to the relationship of controllability 

with the prospective emotional states of fear, anxiety, desire, and hope.

7.3 Function and malfunction

It is increasingly recognized that psychopathologies of mood and anxiety may be rooted 

in dysfunctions of computational mechanisms used to obtain reward and avoid punishment 

(Aylward et al., 2019; Bach, 2021; V. M. Brown et al., 2021; Chiu & Deldin, 2007; Gillan 

et al., 2020; Halahhakoon et al., 2022; Huys & Browning, 2021; I. Levy & Schiller, 2021; 

McCabe et al., 2010; Montague et al., 2012; Sharp et al., 2021; Sharp & Eldar, 2019; Szanto 

et al., 2015; Zorowitz et al., 2021). However, this rapidly evolving literature has so far 

mostly shied away from defining what constitutes functional and dysfunctional emotional 

responses. The normative definitions we proposed here fill this crucial gap, and can thus 

advance existing research towards identification and investigation of psychopathological 

emotions.

Emotional malfunction may arise within our framework if a computational algorithm does 

not work properly (e.g., changes in value are inferred when there aren’t any), if a person’s 

prior assumptions are inappropriate (e.g., controllability is believed to be lower or higher 

than it is), or relatedly, if the person has adapted to one environment but now resides in 

a different one wherein past computations are no longer suitable (Montague et al., 2012). 

Importantly, each of these failures may apply to each of the different factors that impact 

a given emotion. For instance, excessive anxiety could result due to overestimation of 

potential decreases in value (Eq. 5.2.1) or due to misestimation of self-control (Zorowitz 

et al., 2020; Eq 5.2.2). Similarly, excessive sadness could result due to underestimation of 

obtained reward (i.e., diminished pleasure; r in Eq. 3.1.2) or due to an asymmetry in learning 

that makes negative value updates predominate over positive value updates (e.g., due to 

differences in η in Eq. 3.1.3). Ultimately, given the extent to which psychopathological 

processes have so far resisted elucidation, a multifactorial approach is most likely to bear 

fruit.

That said, at least one specific pathological mechanism might engender multiple types of 

emotional disturbances. This mechanism concerns the generalizing impact of mood, which 

entails, for instance, that sadness which is evoked by recent negative value updates promotes 

further negative value updates. The critical question here is whether sadness-induced 

negative value updates make a person even sadder. Normatively, this should not be the 

case (notice that the computation of mood in Eq. 3.3.2 does not factor in the mood-induced 

component of value updates). However, if the brain does not dissociate between value 

updating that is induced by mood and that which is induced by external information, 

and thus factors both into the computation of mood, then sadness and happiness will 

recursively self-intensify. Such lack of dissociation may either constitute normal function, 

given the brain’s implementational constraints, or a specific form of malfunction. Either 

way, preliminary evidence indicates that self-intensifying moods might be key to explaining 

individual predispositions to mood disorders (Eldar & Niv, 2015). The possibility that 

irritable and anxious moods also self-intensify has yet to be thoroughly investigated, but it is 
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easy to see how this mechanism could contribute to mental disorders involving extreme rage 

or anxiety.

8. Brain implementation

Whether distinct emotions are implemented by distinct neural circuits is a matter of 

ongoing debate (Berridge, 2019; Hamann, 2012). Some meta-analyses found that different 

emotions are associated with different patterns of brain activity (Vytal & Hamann, 

2010), whereas others failed to find such dissociation (Lindquist et al., 2012). Our 

account of emotions as reflective of distinct types of computation entails that different 

emotions must be implemented by dissociable neural circuits. However, since each 

emotion-mediated computation involves multiple cognitive functions (e.g., perception, 

valuation, prediction, and learning, to name just a few of the processes involved in value 

learning), the neural circuits implementing these computations are likely spread over large, 

partially overlapping networks of brain regions. It is unclear whether current macroscopic 

neuroimaging techniques are best suited to dissociate such overlapping circuits. Indeed, one 

methodological difference that seems to distinguish the works that do find unique neural 

signatures for different emotions is that these works admitted signatures that consist of 

granular partially overlapping multi-voxel patterns of brain activity (Kragel et al., 2016).

Ultimately, our account suggests that the debate concerning the brain basis of emotion 

may be most effectively solved by focusing on computational mechanisms as a bridge 

between emotion and brain function (LeDoux, 2000; Sander et al., 2005). The computational 

mechanisms we associated here with distinct emotions – the reward function, value learning, 

policy learning, and prospection – have all been, for some time now, major targets for 

neuroscientific study. Thus, in combination with our account, existing neuroscience research 

generates clear hypotheses concerning the likely neural substrates of each type of emotion. 

We next review several of these hypotheses.

8.1 Liking vs wanting

The functional dissociation that we proposed between pleasure on one hand, and happiness 

and content on the other, fits with a familiar dissociation from the neuroscience literature 

between ‘liking’ and ‘wanting’. A substantial body of empirical work dissociates between 

gaining pleasure from consuming a given reward (i.e., liking) and motivation to obtain the 

reward (i.e., wanting; Berridge, 1996; Berridge et al., 2009). The dissociation between these 

two functions is most evident in pathological conditions such as schizophrenia (where liking 

can be intact while wanting is suppressed) and addiction (where wanting persists in the 

absence of liking; Berridge & Robinson, 2016). Indeed, these two functions seem to be 

implemented by distinct neural mechanisms. Thus, liking is thought to be at least partially 

mediated by opioids, whereas wanting is thought to be partially mediated by dopamine 

(Berridge, 2007).

In normal function, liking and wanting are dissociated in time, in the sense that one can 

be observed in the absence of the other (Berridge & Dayan, 2021). Our account explains 

this dissociation by positing that liking (i.e., pleasure) represents the reward value of present 
experience, whereas wanting (i.e., policy) relies on information gained from past experience 
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(McClure et al., 2003). It thus makes sense that wanting will follow liking and will persist 

for some time in its absence. In addition, our account enriches the concepts of liking and 

wanting by offering a computational role for the inherently affective liking – namely, that 

of a reward function – and an affective aspect to the computational construct of wanting, 

or more precisely for the learning that leads to wanting – namely, that of happiness and 

content. A neural prediction to which this perspective directly leads is that whereas pleasure 

is mediated by opioids, happiness and content should be mediated by dopamine. Several 

studies already offer preliminary empirical support for this prediction (Rutledge et al., 2014, 

2015; van Steenbergen et al., 2019).

An intriguing open question relates to the possibility that pleasures may not only drive the 

learning that leads to wanting, but could themselves be modified through learning from other 

types of reward signals (Dayan, 2021). An illustrative example of such modification is how 

we naturally acquire a taste for foods that made us satiated and an aversion of foods that 

made us nauseous (Birch, 1999; Myers & Sclafani, 2001). How and when different types 

of pleasure (e.g., gustatory, sexual, affiliative, achievement-related) are modified is thus a 

promising target for future work.

8.2 Value vs policy learning

The distinction between value and policy learning, which we proposed differentiates 

between sadness and anger, is a key characteristic of “actor-critic” reinforcement learning 

models (Sutton & Barto, 2018). In addition to their usefulness for solving machine learning 

problems (Grondman et al., 2012; Haarnoja et al., 2018; Konda & Tsitsiklis, 2000; Peters & 

Schaal, 2008), this class of models has been widely used for understanding how the brain 

learns to predict and maximize reward. This body of work suggests that value learning is 

mediated by dopaminergic prediction error signals transmitted from the ventral tegmental 

area to the ventral striatum and frontal areas (Barto, 1995; Houk & Adams, 1995; Joel 

& Weiner, 2000; Miller & Wickens, 1991; Waelti et al., 2001; Wickens & Kötter, 1995), 

whereas policy learning is mediated by dopaminergic signals from the substantia nigra 

pars compacta to the dorsal striatum (Lerner et al., 2015; O’Doherty et al., 2004; Roeper, 

2013; Rossi et al., 2013). Though this simple picture still requires further elaboration and 

investigation (Averbeck & O’Doherty, 2022; Niv, 2009), it already offers a way to think 

about how sadness and anger may be differentiated in the brain. A key principle to notice 

here is that the circuits for value and policy learning closely interact with one another. In 

fact, policy updates are thought to be guided by learned values, and brain-stem dopaminergic 

prediction error signals drive both types of learning. Thus, dissociating these two circuits 

would require carefully designed theory-driven manipulations and an ability to differentiate 

between neighboring and interacting neural populations.

8.3 Prospection vs retrospection

Our account distinguishes between emotions that are evoked by prospection concerning 

what may or may not happen (e.g., fear and desire) and emotions that reflect learning from 

what has already happened (e.g., happiness and anger). Despite having been proposed by 

the very person who is thought to have coined the term ‘emotion’ (Brown, 1846), such 

distinction between prospective and retrospective emotion has since been oddly absent from 
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the literature (with the notable exception of Nesse and Ellsworth, 2009). Computationally, 

we propose this distinction is most precisely defined by saying that retrospective emotions 

are evoked by actual changes in expected value that are believed to have happened 

(‘happened’ only in the sense that the expected value has already changed, not in the sense 

that it already materialized and was consumed as reward), whereas prospective emotion 

are evoked by potential changes in value which may or may not happen. Empirically, 

this distinction is marked by the fact that prospective emotions intensify with time as the 

prospect they are concerned with draws near (Mobbs et al., 2007), whereas retrospective 

emotion are typically maximal when evoked and then decay with time (Rutledge et al., 

2014).

The computations we proposed prospective and retrospective emotions mediate map onto 

what has been widely characterized in the literature as model-based and model-free 

reinforcement learning, respectively (Daw & Dayan, 2014; Daw & O’Doherty, 2014; Sutton, 

1990). Thus, the large body of literature investigating how model-based and model-free 

learning are implemented in the brain could shed light on the neural basis of prospective 

and retrospective emotion. An overlap between these two types of emotion is suggested by 

the finding that both model-based and model-free learning are correlated with activity in 

the human striatum (Daw et al., 2011). Yet the two systems are also neurally distinguished 

in that model-free learning was found to be associated with reward prediction error signals 

in the putamen, whereas model-based learning associates with activity in the dorsomedial 

prefrontal cortex (Doll et al., 2015). Thus, here too, a picture of partially overlapping and 

partially distinct neural circuits emerges.

Further undermining the separation between these two circuits is the likely possibility 

that model-based prospection itself contributes to model-free learning. This contribution 

may take at least two main forms: model-based inferences may guide model-free credit 

assignment during actual experience (Moran et al., 2021), and the model-free system could 

learn from model-based simulation of possible experiences (Gershman et al., 2014; Mattar 

& Daw, 2018; Russek et al., 2017; Sutton, 1990). Indeed, recent studies indicate that 

simulating sequences of possible future states enables people to update their values and 

policy prior to actual experience (Eldar et al., 2020; Liu et al., 2019, 2021). It is easy to 

imagine how this such prospective simulation, by acting as a substitute for actual experience, 

could evoke retrospective emotions such as happiness and anger.

8.4 Mood

We proposed that moods serve to generalize inferences to subsequent experiences and 

prospects. To date, we are aware of only one study that investigated the neural substrates 

of this generalizing impact in humans (Vinckier et al., 2018). The findings indicates that 

the generalizing impact of a positive emotional state are mediated by activity in the 

ventromedial prefrontal cortex, whereas those of a negative emotional state are mediated 

by activity in the insula. Further research is required to substantiate these findings in other 

experimental settings, as well as to investigate different types and timescales of mood. 

Particularly promising in this respect is the development of animal models of affective biases 

(Hales et al., 2014). Manipulating rodents’ emotional states biases their judgements in a 
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manner that is broadly consistent with the ideas proposed here. Developing animal models 

of affective biases that correspond to distinct emotions is a promising target for future 

research.

9. Relationship with other theoretical accounts

9.1 Other computational accounts

Our account builds on several previous suggestions concerning the computations that 

emotions mediate, which to date have not been jointly considered. Here we integrated 

these proposed computations into a unified framework that clarifies each computation’s 

role and the relations between them. Thus, the valence of one’s mood has previously been 

suggested to represent either changes in value (Eldar et al., 2016; and see Joffily and 

Coricelli (2013) for a similar suggestion formalized using the free energy framework) or 

action effectiveness (i.e., integrated advantage; (Bennett, Davidson, et al., 2021). As these 

two types of computation warrant different behavioral responses, we proposed that they 

are represented by different classes of emotions (happiness/sadness vs. content/anger) that 

motivate different types of behavior (activity/inactivity vs. behavioral perseverance/change).

Similarly, computations of uncertainty have been previously suggested to be represented 

by people’s anticipatory emotions (Hagen, 1991) and levels of stress (Peters et al., 2017). 

The term ‘stress’ has different definitions and is not universally recognized as an emotional 

state, but it is closest to what in the emotion literature is typically referred to as anxiety. 

Indeed, our definition of anxiety in the present paper includes uncertainty as a precondition, 

since there is no use trying to prevent inevitable or impossible prospects. However, for the 

same reason, we propose that anxiety should scale only with uncertainty that is potentially 

reducible through our control over the environment. Additionally, Peters et al.’s definition of 

stress does not separately account for uncertainty about a prospect and the change in value 

it would bring should it materialize. Here, we proposed that both factors are reflected in a 

person’s level of anxiety.

Defining the computations each emotion represents (i.e., at Marr’s computational level of 

analysis; Marr, 2010) opens the way to investigating algorithmic characteristics of these 

computations. Of particular interest is the common notion that emotions act as heuristics, 

in the sense that they do not represent optimal computations, but rather, cost-saving 

mental shortcuts. To test this idea, however, we first need to agree on what computation 

a particular emotion may represent, and only then can we ask whether emotions mediate 

these computations optimally or not. So far, this question has not been properly studied or 

even explicitly asked, likely due to a lack of clarity about the computations involved. We 

suspect that once the question is posed in this way, the common view of emotions as a type 

of heuristics that provides oversimplified answers to complicated problems might be put 

into doubt. Indeed, we have recently highlighted how rational inferences concerning higher 

order constructs such as global changes in value may often be mistaken for heuristics (Sharp 

et al., 2022). Briefly, the reason is that such inferences represent general properties of the 

environment (or of one’s state in it) that predict individual outcomes only on average, and 

can thus seem extraneous to a naïve observer focusing on an individual case. Instead, we 
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propose, such inferences are best viewed as a rational consequence of operating with limited 

information in an uncertain world.

9.2 The circumplex model of emotion

Previous work linking emotion to the processing of reward and punishment has primarily 

considered emotion as described by the circumplex model (Russell, 1980). This influential 

model maps different emotions onto a two-dimensional space of valence and arousal. Within 

this space, it is suggested that reward drives emotional states of high arousal and positive 

valence, whereas punishment drives states of high arousal and negative valence. Failing 

to obtain reward is thought to be associated with a more complex pattern beginning with 

high-arousal and then culminating in low-arousal negative states (Mendl et al., 2010). 

Our account differs from this idea by invoking distinct emotions, and the computations 

associated with them, to mediate the impact of reward and punishment on valence and 

arousal. The result can be thought of as a three-dimensional space of emotion, with the 

additional dimension distinguishing between retrospective and prospective emotions (Figure 

4).

Our account and previous accounts make fairly similar predictions with regards to 

prospective emotions, but substantial differences exist with regards to retrospective 

emotions. First, we propose that retrospective emotions represent value differences, not 

reward pe se (Eldar et al., 2021). Second, our account suggests that an important dimension 

of emotion is the degree to which outcomes are attributed to actions, which determines 

where emotion lies on the continuum between anger and sadness. Third, our account 

predicts that a similar emotion will be evoked by decreases in expected punishment as 

by increases in expected reward. The evidence reviewed throughout this manuscript already 

provides support for some of these unique predictions, but future research could more 

exhaustively study points of disagreement with previous theory.

9.3 Appraisal and Evolutionary accounts

In offering computational roles for emotions, our account is inherently grounded in appraisal 

theory (Clore & Ortony, 2000; Ellsworth, 2013; Frijda, 1986; Lazarus, 1991; Moors et al., 

2013; Scherer, 1984) and evolutionary accounts (Nesse & Ellsworth, 2009) of emotion. 

At the heart of appraisal theory is the assertion that emotions reflect cognitive judgments 

assessing the satisfaction of one’s needs by the environment. Although different theories 

hold different views on which variables are appraised, there is mostly a consensus regarding 

central variables such as goal relevance, goal congruence, certainty, coping potential and 

agency (Moors et al., 2013). The appraised variables associated with an emotion are thought 

to determine the circumstances that give rise to the emotion and the action the emotion 

favors (Lazarus, 1991). Our account can be thought of as a mathematical formalization 

and specification of this broad idea. However, unlike basic appraisals, the computations we 

identify directly map onto distinct emotions, and thus improve on the explanatory power of 

appraisals in terms of parsimony.
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9.4 Social accounts

Social accounts of emotion suggest that emotions have evolved in social animals in order 

to solve social situations that are critical to their survival (Keltner & Haidt, 1999, 2001). 

Most emblematic of the social function of emotions are the facial expressions with which 

they are associated. These expressions are regularly used to communicate emotional states 

(Adolphs, 2002; Ekman, 1992), and are often a main means of communication between 

infants and caregivers (Niedenthal & Brauer, 2012). Such a mechanism may have developed 

over evolutionary history in order to convey information to others regarding our own internal 

state. Of course, for this mechanism to be socially useful, there needs to be some degree 

of correspondence between the expressed emotion and one’s internal states. In other words, 

each emotion must be tied to a distinct cognitive process or computation. Our account 

proposes what these computations are.

A related view is that emotional experiences in humans take place within a socially 

construed context and thus differences in such context, for instance between different 

cultures, result in different emotional reactions to similar events (Frijda & Mesquita, 1994). 

This may seem to suggest that the role of emotions cannot be uniform as we have proposed. 

However, the computations we delineated can have markedly different results depending on 

one’s social environment. This is especially true since all these computations reflect in one 

way or another one’s reward function, which is highly dependent on what other people in 

one’s society value. Thus, our account agrees with social accounts of emotion that emotional 

responses will differ substantially across cultures, yet we maintain that the computations 

underlying these responses will be similar.

9.5 Constructionist accounts

A major controversy among theories of emotion separates between basic emotions (Ekman, 

1992; Sauter et al., 2010) and constructionist accounts (Barrett, 2006; Lindquist et al., 

2013) of emotion. Unlike basic emotions accounts, constructionist accounts argue that the 

distinction between different emotions is not inherent to our biology. Rather, emotions 

are socially constructed in the sense that people learn what each emotion is from other 

people. We entirely concur with the idea that people learn to recognize emotions from 

social experience, and that there are differences in how emotions are understood by different 

people in different cultures. However, the widespread and effective use of emotion terms in 

common language requires that each of these terms will have a common meaning that is 

recognized by most people most of the time (Adolphs et al., 2019). Thus, like any socially 

constructed concept (consider for instance the set of objects the word ‘table’ maps onto), 

it is not unreasonable to expect that emotion terms will map with some regularity onto 

prevalent processes that characterize our external or internal worlds (W. A. Cunningham et 

al., 2013). It is these processes that our account aimed to delineate. Thus, ultimately, we 

believe that emotions can and should be viewed as both constructed and basic – constructed 

in terms of how people categorize and verbalize emotions, and basic in terms of the 

computations that emotions mediate.
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9.6 Detailed taxonomies

Whereas our account proposes quantitative definitions mostly for a few primary emotions, a 

substantial body of work has developed more detailed categorizations of secondary emotions 

(Cowen et al., 2019; Jarymowicz & Imbir, 2015; Keltner, 2019; Shiota et al., 2017). These 

include emotions like guilt, jealousy, pride, gratitude, and love, which are often thought of as 

subtypes of the primary emotions. As an example of how our account could accommodate 

such diversity, in our discussion of action-evaluation emotions, we have sketched how 

the same computation may explain both guilt and moral indignation depending on the 

agent that suffers the poor outcome (see Figure 3). A similar set of secondary emotions 

can also be derived in the domain of positive action effectiveness (e.g., ‘gratitude’ and 

‘content’). Additionally, by incorporating counterfactual information about what we could 

have done, computations of action effectiveness can capture the familiar emotion of regret. 

And extending this idea to a comparison between the outcomes we experience and those 

experienced by concrete other people could furnish a definition for the common emotion of 

jealousy (Farrell, 1980; Salovey & Rodin, 1986). Future work can follow this approach to 

more comprehensively map these and other computations that secondary emotions mediate.

10. Conclusion

In this work, we offered a formal account of the human emotional landscape as composed 

of multiple interacting elements, each mediating a different type of computation. Together 

these elements serve to evaluate outcomes (pleasure & pain), to form expectations based 

on these evaluations (happiness & sadness), to favor actions that lead to more valuable 

outcomes (anger & content), and to identify valuable or harmful prospects we could plan 

for (fear & desire). Each of these emotions can also extend in time, as mood, and thus 

represent global inferences concerning the environment and oneself that are useful for 

informing subsequent computations. This quantitative account integrates a very large body 

of empirical research on emotion, but except for a handful of studies, most of this research 

has so far been qualitative. We are hopeful this work will inspire future quantitative studies 

which could formally test and develop the definitions set forth here, and investigate their 

implications for a broad range of human behaviors in health and disease.
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Highlights

• Emotions mediate computations that evaluate states, actions, and prospects

• These three classes of computation map onto three familiar types of emotions

• Prior expectations are mediated by three corresponding types of moods
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Figure 1. Determinants of positive and negative prospective emotions.
A. If the distribution of possible outcomes is wider, there are more probable prospects 

with high deviation from the expected value, and thus both positive and negative emotions 

are stronger. The estimated distribution can be wider either because outcomes are random 

(irreducible uncertainty) or due to lack of information (estimation uncertainty). B. If the 

skewness of the distribution is negative, then there are more probable prospects with a 

high negative deviation from the expected value, and thus negative emotions predominate. 

Conversely, if skewness is positive, then there are more prospects with a high positive 

deviation, and thus positive emotions predominate.
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Figure 2. 
Summary of computations we propose are represented by emotional states.
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Figure 3. Action-evaluation emotions.
Different emotion labels are used for different combinations of culpable agent (‘poor 

outcome due to’) and the agent suffering as a result (‘poor outcome suffered by’). These 

labels are paralleled by corresponding labels in the domain of positive outcomes (e.g., 

‘anger’ correspond to ‘gratitude’, ‘frustration corresponds to ‘content’)
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Figure 4. Proposed impact of reward within the emotion circumplex.
The impact differs for changes in expected reward that have already happened 

(retrospective) and those that may happen in the future (prospective). Note that ‘reward’ 

in our account refers to a reward function that sums across both rewarding (positive) and 

punishing (negative) attributes of states and actions.
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