Skip to main content
. 2022 Nov 7;39(1):btac715. doi: 10.1093/bioinformatics/btac715

Table 2.

The performance of sAMPpred-GAT and the other existing predictors on the independent test XUAMP dataset in terms of ACC, MCC, Sn and Spa

Method ACC MCC Sn Sp Source
amPEPpy 0.679 0.431 0.400 0.958 Xu et al. (2021)
AMPfun 0.674 0.414 0.406 0.943 Xu et al. (2021)
AMPEP 0.661 0.429 0.330 0.992 Xu et al. (2021)
ADAM-HMM 0.684 0.390 0.521 0.847 Xu et al. (2021)
Ampir 0.563 0.156 0.266 0.859 Xu et al. (2021)
AMPScannerV2 0.568 0.137 0.523 0.613 Xu et al. (2021)
AmpGram 0.564 0.131 0.445 0.682 Xu et al. (2021)
Deep-AMPEP30 0.533 0.183 0.065 1.0 Xu et al. (2021)
CAMP-ANN 0.584 0.182 0.385 0.782 Xu et al. (2021)
sAMPpred-GATb 0.715 ± 0.01 0.464 ± 0.011 0.530 ± 0.038 0.9 ± 0.02 This study
a

The ACC, MCC, Sn and Sp values of nine compared methods are calculated based on the detailed prediction results of these predictors reported in Xu et al. (2021), which can be downloaded from http://bliulab.net/sAMPpred-GAT/data/.

b

The reported results of the proposed method are the average and standard deviation after performing the randomness initialization parameters 10 times.

Note: The best performance of each metric is highlighted in bold.