Table 2.
Method | ACC | MCC | Sn | Sp | Source |
---|---|---|---|---|---|
amPEPpy | 0.679 | 0.431 | 0.400 | 0.958 | Xu et al. (2021) |
AMPfun | 0.674 | 0.414 | 0.406 | 0.943 | Xu et al. (2021) |
AMPEP | 0.661 | 0.429 | 0.330 | 0.992 | Xu et al. (2021) |
ADAM-HMM | 0.684 | 0.390 | 0.521 | 0.847 | Xu et al. (2021) |
Ampir | 0.563 | 0.156 | 0.266 | 0.859 | Xu et al. (2021) |
AMPScannerV2 | 0.568 | 0.137 | 0.523 | 0.613 | Xu et al. (2021) |
AmpGram | 0.564 | 0.131 | 0.445 | 0.682 | Xu et al. (2021) |
Deep-AMPEP30 | 0.533 | 0.183 | 0.065 | 1.0 | Xu et al. (2021) |
CAMP-ANN | 0.584 | 0.182 | 0.385 | 0.782 | Xu et al. (2021) |
sAMPpred-GATb | 0.715 ± 0.01 | 0.464 ± 0.011 | 0.530 ± 0.038 | 0.9 ± 0.02 | This study |
The ACC, MCC, Sn and Sp values of nine compared methods are calculated based on the detailed prediction results of these predictors reported in Xu et al. (2021), which can be downloaded from http://bliulab.net/sAMPpred-GAT/data/.
The reported results of the proposed method are the average and standard deviation after performing the randomness initialization parameters 10 times.
Note: The best performance of each metric is highlighted in bold.