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Abstract

Summary: The Metagenomic Intra-Species Diversity Analysis System (MIDAS) is a scalable metagenomic pipeline
that identifies single nucleotide variants (SNVs) and gene copy number variants in microbial populations. Here, we
present MIDAS2, which addresses the computational challenges presented by increasingly large reference genome
databases, while adding functionality for building custom databases and leveraging paired-end reads to improve
SNV accuracy. This fast and scalable reengineering of the MIDAS pipeline enables thousands of metagenomic sam-
ples to be efficiently genotyped.

Availability and implementation: The source code is available at https://github.com/czbiohub/MIDAS2.

Contact: katherine.pollard@gladstone.ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenotyping, the identification of intraspecific genetic variants in
metagenomic data, is a powerful approach to characterizing population
genetic diversity in microbiomes. Most pipelines identify variants based
on alignment of reads to reference databases of microbial genomes and/
or gene sequences (Supplementary Fig. S1). While comprehensive refer-
ence databases can reveal strain-level relationships which would be
otherwise overlooked (Beghini et al., 2021), alignment to large databases
is computationally intensive. Furthermore, the divergence of reference
genomes from strains in the metagenomic sample affects sensitivity and
precision (Bush et al., 2020; Olm et al., 2021), and existing metageno-
typing tools do not automatically adapt database files based on informa-
tion in the metagenome. In this article, we introduce Metagenomic
Intra-Species Diversity Analysis System (MIDAS2) (Supplementary Fig.
S2), a major update to MIDAS (Nayfach et al., 2016) (Supplementary
Table S1) that addresses these challenges through (i) a new database in-
frastructure geared to run on AWS Batch and S3 that achieves elastic
scaling for constructing database files from large collections of genomes;
and (ii) a fast and scalable implementation of the single nucleotide vari-
ant (SNV) calling pipeline that enables metagenotyping in thousands of
samples with improved accuracy achieved through utilization of paired-

end reads and databases customized to the species present in the samples.
As the only tool that integrates all steps of the metagenotyping process,
from database customization to alignment and variant calling, MIDAS2

helps to promote reproducible research.

2 Implementation

We generated MIDAS Reference Databases (MIDAS DB), com-
prised of species pangenomes, marker genes and representative

genomes, from two public microbial genome collections: UHGG v.1
(Almeida et al., 2021) (4644 species/286 997 genomes) and GTDB
v202 (Parks et al., 2022) (47 893 species/258 405 genomes). This is

a significant increase in database content compared to MIDAS DB
v1.2 (5952 species/31 007 genomes) and other tools (Supplementary

Table S2). We implemented a new infrastructure that dramatically
simplifies building a new MIDAS DB for other genome collections
by using a table-of-contents file assigning genomes to species and

denoting the representative genome for each species (Supplementary
Fig. S3). MIDAS DBs can be built locally, which enables customized
selection of representative genomes, a key component of accurate

SNV calling.
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Metagenotyping SNVs across large numbers of samples is com-
putationally intensive. First, alignment and pileup are applied to
each species in each sample (single-sample step) without assuming a
single strain per sample. Then these pileup results must be scanned
for each genomic site to compute population SNVs (across-samples
step). Previously published methods cap the number of processors
(CPUs) that can be used, because they parallelize over the number of
species being genotyped (Supplementary Note). The SNV module of
MIDAS2 achieves better CPU utilization by splitting genomic sites
into multiple chunks per species. We execute parallelization over
chunks in a way that does not destroy cache coherence to the point
where computation stalls on input or output (I/O; Supplementary
Note).

3 Results

We compared the running time and memory utilization of the
single-sample and across-samples SNV modules of MIDAS and
MIDAS2, using the same database (MIDAS DB v1.2) and 211 sam-
ples from an inflammatory bowel disease cohort (NCBI accession:
PRJNA400072). The single-sample SNV module of MIDAS2 is
slightly faster than MIDAS (Supplementary Fig. S4), with database
customization and Bowtie2 alignment taking up to 75% of run time
(Supplementary Fig. S5). The across-samples SNV module benefited
more from parallelization, scaling linearly (Supplementary Fig. S4)
and running 2.33 times faster in MIDAS2 with 48 CPUs (Fig. 1A).
We also compared runtime with inStrain v1.6.3 Olm et al. (2021)
(Supplementary Table S13) and metaSNV v2 Van Rossum et al.
(2022) (Supplementary Table S14).

MIDAS2, inStrain and metaSNV v2 were applied to three ali-
quots of a standardized bacterial community (Olm et al., 2021), and

SNVs were compared between aliquots which should have identical
metagenotypes (Supplementary Note). metaSNV v2 has the fewest
false positives by only using uniquely aligned reads, but it genotyped
just five of the eight species in the community (Supplementary Table
S5). InStrain and MIDAS2 correctly detected all eight species. When
both are run with a genome database containing only the reference
genomes of the strains in the community, MIDAS2 has fewer false
positives (Fig. 1B). However, the false positive rate of MIDAS2 is
higher when using the MIDAS DB v1.2, in which these species’ ref-
erence genomes are diverged from the sample. Thus, high-quality
reference genomes and post-alignment filters that balance false posi-
tives against false negatives are crucial for metagenotyping.

Since metaSNV v2 was previously shown to be efficient enough
to metagenotype thousands of samples, we assessed the scalability of
MIDAS2 compared to metaSNV v2 on 1097 samples from the
PREDICT study (NCBI accession: PRJEB39223), using MIDAS DB
UHGG with both tools (Supplementary Note). Despite the same spe-
cies selection criteria, MIDAS2 metagenotyped many more species
(44 versus 14 for metaSNV v2) (Supplementary Note). MIDAS2
used more memory (21.21 GB versus 4 GB peak RAM utilization)
and ran slightly longer (average 106 versus 84 min per species) to
achieve this. We conclude that MIDAS2 can metagenotype thou-
sands of samples with reasonable computational costs, providing a
more sensitive alternative to metaSNV v2.

For each of the 44 species from PREDICT with MIDAS2 metage-
notypes, we quantified evidence of a single dominant strain versus
mixtures of multiple strains in each sample with an existing method
(Garud et al., 2019). While most species showed evidence of distinct
lineages across samples (Supplementary Fig. S8), single samples
often had a single dominant strain (Fig. 1C). However, samples with
strain mixtures were common for several species, including
Bacteroides_B dorei (62%) and Faecalibacterium prausnitzii_G
(49%) (Supplementary Figs S9 and S10). We also showed that
MIDAS2 can detect simulated strain mixtures with high accuracy
(Supplementary Table S15), lending credibility to this finding.
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Fig. 1. Speed, accuracy and application of MIDAS2. (A) The SNV module of

MIDAS2 was re-engineered to parallelize within species, making it increasingly

faster than MIDAS as we deploy more CPUs. This analysis was performed with 211

metagenomic samples (NCBI accession: PRJNA400072). (B) Metagenotype accur-

acy was benchmarked using identical aliquots of a standardized microbial commu-

nity, for which all consensus SNVs are false positives. More errors are made with a

large reference genome database compared to one with only the species in the com-

munity (MIDASDB v1.2 versus Zymo Genome). Post-alignment filters, including

how paired-end reads are handled, differ between tools (run with default filters) and

affect false positive rates. Despite a large database (Pangenomes2), metaSNV v2 has

a low false positive rate due to using only uniquely aligned reads, but this comes

with the cost of lower sensitivity. Supplementary Figure S6 shows how database and

post-alignment filters affect errors in population SNVs; MIDAS2 and inStrain have

similar error rates with Zymo Genomes. (C) Distribution of samples with evidence

of a strain mixture versus one dominant strain for 44 species metagenotyped by

MIDAS2 in 1097 samples from the PREDICT cohort (NCBI accession:

PRJEB39223)
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